89
1 Matthias Liepe; 03/28/2008 Accelerating (S)RF Cavities Matthias Liepe

Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

Embed Size (px)

Citation preview

Page 1: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

1Matthias Liepe; 03/28/2008

Accelerating (S)RF Cavities

Matthias Liepe

Page 2: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

2Matthias Liepe; 03/28/2008

Outline

• RF Cavity Design– Design objectives– Numerical Eigenmode solver– Design examples:

• NC vs. SC• SC cavity center cell shape• Number of cells of SC cavities• SC cavity end cell optimization

• Higher order modes– Introduction: HOMs and excitation by a beam– HOM damping schemes– HOM damping examples and results

Page 3: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

3Matthias Liepe; 03/28/2008

RF Cavity Design

• RF Cavity Design– Design objectives– Numerical Eigenmode solver– Design examples:

• NC vs. SC• SC cavity center cell shape• Number of cells of SC cavities• SC cavity end cell optimization

Page 4: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

4Matthias Liepe; 03/28/2008

Cavity Design Objectives

Pulsed operation

CW operation

High beam current

High beam power

Beam quality (emittance) preservation

Low beam power

Heavy beam loading

Lorentz force detuning

RF power dissipationin cavity walls

Beam stability (HOMs)

Parasitic interactions(input coupler kick, alignment)

Low Qext

Availability of high-power RF sources

High Qext,microphonics

Mechanical design:stiffness,

vibration modes,tunability,

thermal analysis

RF design:frequency & operating temperature choice,optimal gradient,

cavity shape optimization,number of cells,

cell-to-cell coupling,HOM extraction,

RF power coupling

Input coupler design

HOM damper design

Tuner design

RF controls

Cryostat design

Cavity design

Machine parameters Effects/cavity parameters

from S. Belomestnykh

Page 5: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

5Matthias Liepe; 03/28/2008

Cavity Design Parameters

• Choice of material (impacts losses and operating gradient)• Frequency (impacts size of cavity, cost, surface resistance,

assembly technique …)• Number of cells (impacts field flatness, tunability, HOM

extraction, pulsed operation …)• Aperture size (impacts beam stability, peak fields, HOM

damping …)• Cavity shape (impacts peak surface fields at a given Eacc, power

dissipation at a given Eacc, multipacting …)• …

Page 6: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

6Matthias Liepe; 03/28/2008

Numerical Eigenmode Solver

The modes in real cavities (with beam tubes,…) cannot be calculated analytically.

⇒⇒⇒⇒ Use numerical codes (like MAFIA, Microwave studio, SLANS, Superfish,… ).

mesh modes

TM010 modes

ππππ / 2 mode

ππππ mode

Page 7: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

7Matthias Liepe; 03/28/2008

Tools for RF Design

Page 8: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

8Matthias Liepe; 03/28/2008

Examples - MAFIA

MAFIA is a 3D simulation code used for the design of RF cavities and other electromagnetic structures, includingelectrostatic and magnetostatic devices. It is an acronym for the solution of MA xwell’s equations using the FiniteIntegration Algorithm. MAFIA uses a rectangular mesh generation routine which is flexible enough to model even the most complex geometries. The routine allows the user to specify the"coarseness" of the mesh in a particular area of interest.

MAFIA User Guide, The MAFIA Collaboration: DESY, LANL and KFA, May 1988.

B-cell, CESR, Cornell U.

V. Shemelin, S. Belomestnykh. Calculation of the B-cell cavity external Q with MAFIA and Microwave Studio. Workshop on high power couplers for SC accelerators. Newport News, VA, 2002.

Page 9: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

9Matthias Liepe; 03/28/2008

Examples - Microwave Studio

Injector Cavity for ERL

The program combines both a user friendly interface (Windows based) and simulation performance.

Perfect Boundary Approximation increases the accuracy of the simulation by an order of magnitude in comparison to conventional simulators.

The software contains 4 different simulation techniques (transient solver, frequency domain solver, eigenmode solver, modal analysis solver).

CST Microwave Studio, User Guide, CST GMbH, BuedingerStr. 2a, D-64289, Darmstadt, Germany.

Page 10: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

10Matthias Liepe; 03/28/2008

Examples-SuperLANS / CLANS

• SuperLANS (or SLANS) is a computer program designed to calculate the monopole modes of RF cavities using a finite element method of calculation and a mesh with quadrilateral biquadratic elements.

• SLANS has the ability to calculate the mode frequency, quality factor, stored energy, transit time factor, effective impedance, max electric and magnetic field, acceleration, acceleration rate, average field on the axis, force lines for a given mode, and surface fields.

• Later versions, SLANS2 and CLANS2, calculate azimuthally asymmetric modes, and CLANS and CLANS2 can include into geometry lossy dielectrics and ferromagnetics.

Page 11: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

11Matthias Liepe; 03/28/2008

Design Example 1: Normal conducting vs. Superconducting RF

Sacc

S

sdiss RGQR

VdsHRP

⋅⋅⋅⋅======== ∫∫∫∫ /2

1 22rPower dissipated into the wall:

Example:Example:• Accelerating voltage: let’s take only 1 MV• Constant R/Q (depends on cell shape): 1000 ΩΩΩΩ• Geometry constant: 270 ΩΩΩΩ• Surface resistance: Rs,copper= 10 mΩΩΩΩ Rs,Nb= 10 nΩΩΩΩ

⇒ Pdiss,copper= 37 kW Pdiss,Nb = 37 mW

⇒ Copper is not the best choice for a ILC shape cavity…

Page 12: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

12Matthias Liepe; 03/28/2008

Minimizing Losses

Sacc

S

sdiss RGQR

VdsHRP

⋅⋅⋅⋅======== ∫∫∫∫ /2

1 22r

Depend only on cavity geometry.Depend only on cavity geometry.⇒⇒⇒⇒⇒⇒⇒⇒ Maximize for copper cavities.Maximize for copper cavities.

Minimize surface resistance!Minimize surface resistance!⇒⇒ Superconducting cavities.Superconducting cavities.

mmΩΩΩΩΩΩΩΩ (copper) (copper) ⇒⇒⇒⇒⇒⇒⇒⇒ nnΩΩΩΩΩΩΩΩ

Less important for SRF cavities!

Page 13: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

13Matthias Liepe; 03/28/2008

RF Cavities for Linacs

• TESLA• superconducting cavity• niobium • 1.3 GHz• 2 K (LHe)

• one cell from NLC• normal conducting cavity• copper• 11.4 GHz• water cooled

Fundamental differences due to difference in wall losses.

Page 14: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

14Matthias Liepe; 03/28/2008

Superconducting Cavities: Advantages

Can operate at a higher voltage in cw operation orlong pulse operation because of low losses.

Power consumption is less. ⇒⇒⇒⇒ Operating costsavings, better conversion of ac power to beampower.

Power dissipation is not the primary concern! Can tailor design to a given accelerator application.

Page 15: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

15Matthias Liepe; 03/28/2008

Superconducting Cavities: Advantages (cont.)

Freedom to adapt design better to the accelerator requirements allows, for example, the beam-tube and the cell iris size to be increased:

• Reduces the interaction of the beam with the cavity.(scales as iris radius2 to 3) ⇒⇒⇒⇒ The beam quality is better preserved.Important for, e.g., FELs.

• HOMs are removed more easily. Better beam stability.⇒⇒⇒⇒More current accelerated. Important for, e.g., B-factories.

• Reduce the amount of beam scraping.⇒⇒⇒⇒ Less activation in,e.g., proton machines.Important for, e.g., SNS, Neutrino factory.

• Allows more coupling between cells in multicell structures.⇒⇒⇒⇒ Better energy exchange between cells.Important for e.g., high-energy machines.

Page 16: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

16Matthias Liepe; 03/28/2008

Design Example 2: Center Cell Shape of an SRF Cavit y

- 16 -

The cell length(L) determines the cavity geometrical beta value.

The cell iris radius (Riris) is mainly determined by the cell-to-cell coupling requirements and cavity impedance limitations.

The iris ellipse ratio (r=b/a) is primary determined by the local optimization of the peak electric field.

The cell radius (D) is used for the frequency tuning without modifying any electromagnetic or mechanical cavity parameter.

The side wall inclination (αααα) and B and A can be use to minimize relative surface peak fields.

Usual design goal: Maximize R/Q*G / Usual design goal: Maximize R/Q*G / minimize peak magnetic surface field for minimize peak magnetic surface field for given wall angle, maximum peak electric given wall angle, maximum peak electric field and minimum iris radiusfield and minimum iris radius

Page 17: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

17Matthias Liepe; 03/28/2008

JLab’s optimized shape was designed under restriction that the angle of the wall slope is not less than 8 deg. This angle is useful to let liquid easily flow from the surface when chemical treatment or rinsing are performed.

This shape is also more mechanically strong.

If one rejects the limitation of the angle we can further improve the value of G*R/Q

JLab

LL Cell

from V. Shemelin

G*R/Q, relative units:

0.90 (75deg) 1.00 (82deg) 1.02 (90deg) 1.042 (105 deg)

Page 18: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

18Matthias Liepe; 03/28/2008

Cavity Cell Shape and R/Q*G and Loss Factor

Comparison of 1-Cell Geometries

25

35

45

55

65

75

85

95

105

115

0 50 100

Z (mm)

R (

mm

)

30mm_10%

30mm_20%

35mm_10%

35mm_20%

39mm_10%

39mm_20%

43mm_10%

43mm_20%

Baseline

1.3 GHz center-cell:

• Cells optimized for fixed side

wall angle (82 deg) and electric

peak field (E/Eacc=2.2)

3 3.5 4 4.5-12

-10

-8

-6

iris radius [cm]long

. los

s fa

ctor

[V

/pC

]

3 3.5 4 4.51.2

1.4

1.6

1.8x 10

4

iris radius [cm]

R/Q

*G [

ΩΩ ΩΩ2]

3 3.5 4 4.511.5

12

12.5

13co

olin

g po

wer

[kW

]

iris radius [cm]

Total cooling power (fund. mode + HOM at 80K)16 MV/m, 2*100 mA

7-cell cavity

For single cell

TTF shape

Page 19: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

19Matthias Liepe; 03/28/2008

Wall Angle, Peak Field and R/Q*G

from V. Shemelin

Page 20: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

20Matthias Liepe; 03/28/2008

Impact of Cell Shape on HOM Impedances (I)

from Bob Rimmer

Page 21: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

21Matthias Liepe; 03/28/2008

Impact of Cell Shape on HOM Impedances (II)

from Bob Rimmer

Page 22: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

22Matthias Liepe; 03/28/2008

Design Example 3: Number of Cells per SC Cavity

• Risk of trapped modes increases with number of cells5 6 7 8 990

95

100

105

110

115

cells per cavityrela

tive

cons

truc

tion

cost

[%

]

F. Marhauser at al. PAC 1999

1500 2000 2500 3000 3500 4000

102

104

106

Q

frequency [MHz]

7 cell8 cell9 cell

Monopoles

Page 23: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

23Matthias Liepe; 03/28/2008

Trapped Modes

Page 24: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

24Matthias Liepe; 03/28/2008

HOM strength (number of Cells)

from Bob Rimmer

Page 25: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

25Matthias Liepe; 03/28/2008

Design Example 4: 7-Cell SRF Cavity End-Cell Design

• End cell shape has significant impact (example HOM) :

• Can fine-tuning of end cell to– Increase damping of most dangerous HOM(s)– Avoid strong monopole modes at beam harmonics– Note: Can optimize end cell shape only for a few selected modes!!

changed end-cell shape

Page 26: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

26Matthias Liepe; 03/28/2008

End Cell Optimization: ILC Cavity

Page 27: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

27Matthias Liepe; 03/28/2008

7-Cell SRF Cavity End-Cell Design

from V. Shemelin

Page 28: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

28Matthias Liepe; 03/28/2008

Cavity Examples: SRF High beta Cavities

Page 29: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

29Matthias Liepe; 03/28/2008

RF Cavity Design

• Higher order modes– Introduction: HOMs– HOM excitation by a beam– HOM damping schemes– HOM damping examples and results

Page 30: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

30Matthias Liepe; 03/28/2008

HOM Excitation by a Bunch

time

The bunched beam excites higher-order-modes (HOMs)= wakefields = electromagnetic fields in the cavity.

bunch

bunch

bunch

Page 31: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

31Matthias Liepe; 03/28/2008

Beam-Cavity Interaction

• Bunch traverses a cavity• ⇒⇒⇒⇒ deposits electromagnetic

energy, which is described as wakefields (time domain) or higher-order modes (HOMs, frequency domain)

• Subsequent bunches are affected by these fields and at high beam current one must consider instabilities

from S. Belomestnykh

Page 32: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

32Matthias Liepe; 03/28/2008

Single Bunch Monopole Losses:Wake Potential of a Point-Charge

The beam excites higher-order-modes (HOMs) in a cavity:

bunch

• When a charge passes through a cavity, it excites HOMs.

• If it passes exactly an axis, it will only excite monopole modes.

• For a point charge, the HOM excitation depends only on the bunch charge and the cavity shape.

• The excited field can be described by the wake potential.

Page 33: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

33Matthias Liepe; 03/28/2008

Higher-Order-Modes (HOMs)

transverse kicktransverse kick--fieldsfields

Dipole modes, quadrupole modes,Dipole modes, quadrupole modes,……

Monopole modesMonopole modes

electric field magnetic field

electric field

z

longitudinal electric longitudinal electric field on axisfield on axis

Page 34: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

34Matthias Liepe; 03/28/2008

Monopole, Dipole and Quadrupole Modes…

Monopole Dipole

Quadrupole

from R. Wanzenberg

Page 35: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

35Matthias Liepe; 03/28/2008

Methods of HOM Calculations: Frequency Domain

Page 36: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

36Matthias Liepe; 03/28/2008

Time-Domain Method (I)

Page 37: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

37Matthias Liepe; 03/28/2008

Time-Domain Method (II)

Page 38: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

38Matthias Liepe; 03/28/2008

RF Cavity Design

• Higher order modes– Introduction: HOMs– HOM excitation by a beam– HOM damping schemes– HOM damping examples and results

Page 39: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

39Matthias Liepe; 03/28/2008

HOM Excitation

The excited HOM power of a single bunch depends on:

the HOMs of the cavity (i.e. their shunt impedance),

the bunch charge (PHOM ∝∝∝∝qb2),

the bunch length (i.e. the spectrum of a bunch).

0 20 40 60 80 1000

20

40

60

80

100

HOM frequency [GHz]

% o

f HO

M p

ower

loss

abo

ve f

HO

M

Example:

σσσσbunch = 0.6 mm ⇒⇒⇒⇒ Short bunches excite very high frequency modes!

Page 40: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

40Matthias Liepe; 03/28/2008

Single Bunch Monopole Losses: The Bunch

-5 -4 -3 -2 -1 0 1 2 3 4 50

200

400

600

800

1000

z [mm]

char

ge d

istr

ibut

ion

[arb

. uni

ts]

Longitudinal charge distribution for a 600 µµµµm bunch:

Page 41: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

41Matthias Liepe; 03/28/2008

Single Bunch Monopole Losses:The Bunch Spectrum

0 200 400 6000

0.2

0.4

0.6

0.8

1

f [GHz]

bunc

h sp

ectr

um

Spectrum of a 600 µµµµm bunch:

Page 42: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

42Matthias Liepe; 03/28/2008

Beam-cavity interaction: Wave Function

Lorentz-Forces on test charge:

The integrated field seen by a test particle travel ing on the same path at a constant distance s behind a point charge q is the longitudinal wake (Green) function w(s).

Page 43: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

43Matthias Liepe; 03/28/2008

Single Bunch Monopole Losses:Wake Function of a Point Charge after a TESLA Cavit y

-2 0 2 4 6 8-5

-4

-3

-2

-1

0x 10

wak

e fu

nctio

n [V

/pC

]

distance s [mm]

Page 44: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

44Matthias Liepe; 03/28/2008

Single Bunch Monopole Losses:Wake Potential of a Point Charge after a TESLA Cavi ty

The fft of the wake function gives the cavity impedance Z(ωωωω):

1 10 100 100010 -1

10 0

10 1

10 2

10 3

real

par

t of Z

(ωω ωω

) fo

r a

TE

SLA

cav

ity [

ΩΩ ΩΩ]

f [GHz]

Page 45: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

45Matthias Liepe; 03/28/2008

Single Bunch Monopole Losses:Wake Potential of a Bunch after a TESLA Cavity

-5 -4 -3 -2 -1 0 1 2 3 4 5-3

-2.5

-2

-1.5

-1

-0.5

0x 10 13

z [mm]

wak

e po

tent

ial [

V/C

]

bunch

sdsswsqsWs

′′−′= ∫∞−

)()()(

The wake potential W is a convolution of the linear bunch charge density distribution q(s) and the wake function w

Page 46: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

46Matthias Liepe; 03/28/2008

Single Bunch Monopole Losses:Loss Factor

∫∫∫∫∞∞∞∞

∞∞∞∞−−−−==== dssWsqk )()(||

beambunchIQkP |||| =

This is the total energy lost by a bunch divided by the time separation of two consecutive bunches.

This does not include any interaction between bunches (i.e. resonant mode excitation)!!!

Once the longitudinal wake potential is known, the longitudinal loss factor , which tells us how much electromagnetic energy a bunch leaves behind in a structure can be defined as:

2q

Uk

∆=

AverageAverage power loss:

Page 47: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

47Matthias Liepe; 03/28/2008

Single Bunch Monopole Losses:HOM Power Frequency Distribution

0 100 200 3000

50

100

150

200

250

f [GHz]

pow

er [W

]

integrated power up to frequency f

Most of the HOM powerMost of the HOM power

is well below 100 GHz.is well below 100 GHz.

The frequency distribution of the HOM losses is determined by the bunch spectrum and the cavity impedance Z(ωωωω):

[[[[ ]]]]2)(~)()( ωωωωωωωωωωωω qZP ∝∝∝∝

Page 48: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

48Matthias Liepe; 03/28/2008 48

High current and short bunches

0 0.5 1 1.5 2 2.5

x 104

0

50

100

150

200

250

300

350

beam

cur

rent

[mA

]

1/(bunch length) [m-1 ]

CESR

JLAB FEL CEBAFTTF II

TTF II

ERLs:Storage ring currents and linac bunch length⇒ Significant HOM power up to 100 GHz!⇒ Where does the high frequency power go?

Page 49: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

49Matthias Liepe; 03/28/2008

Page 50: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

50Matthias Liepe; 03/28/2008

Bunch Trains:The more Complex Picture

Tb

The HOMs excited by a bunch are decaying due to losses,

but: still significant field present in the cavity when the next bunch enters the cavity!

⇒⇒⇒⇒ Resonant excitation of a HOM, if

bHOM T

Nf1≈

Page 51: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

51Matthias Liepe; 03/28/2008

HOM Excitation

The excited HOM power of a bunch train depends on:

the HOM losses of a single bunch,

the beam harmonic frequencies and the HOM frequencies (resonant excitation is possible!),

the bunch charge and the beam current (PHOM ∝∝∝∝QI),

and the external quality factor, Qext of the modes. Lower Qext means less energy deposited by the beam:

PHOM ∝∝∝∝ Qext

Page 52: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

52Matthias Liepe; 03/28/2008

Bunch Trains:The more Complex Picture

In averagethe total HOM losses per cavity are given by the single bunch losses (77 pC bunch charge, 2.6 GHz

bunch repetition rate, σσσσb= 600 µµµµm):

W160 A0.2 77pC V/pC4.10|||| ====⋅⋅⋅⋅⋅⋅⋅⋅======== beambunchIQkP

But: If a monopole mode is excited on resonance, the loss for this mode can be much higher:

2beamQI

QR

P

====

⇒ To stay below 200 W200 W: • achieve (R/Q)Q < 5000(R/Q)Q < 5000, • or avoid resonant excitation of the mode.

Page 53: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

53Matthias Liepe; 03/28/2008

Bunch Trains:The more Complex Picture

Example: Cornell ERL:

injector the in GHz 3.1⋅⋅⋅⋅==== Nf HOMlinac main the in GHz 6.2⋅⋅⋅⋅==== Nf HOM

… so most of the monopole modes in the ERL will not be excited resonantly.

1000 2000 3000 4000 5000 6000 70000

0.5

1

1.5

2

f [MHz]

modes in a 9-cell cavity

beam harmonics

…up to xx GHz

Page 54: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

54Matthias Liepe; 03/28/2008

Bunch Trains:HOM Frequencies Spread

Can one design the HOM frequencies such, that non of the modes are excited resonantly?

The higher the frequency, the more sensitive is the frequency of a HOM to small perturbations in the cavity shape:

How large is “const”? Example: 2.4 GHz modes at TTF

Simple approximation: .constff

HOM

HOM ====∆∆∆∆

Mode #

σf[H

z]

σf = 10 MHz⇒ const = 0.4 %

i.e. σf = 20 MHz at 5.2 GHzσf = 31 MHz at 7.8 GHzσf = 42 MHz at 10.4 GHz

16 MHz

2 MHz

Page 55: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

55Matthias Liepe; 03/28/2008

Bunch Trains:A Simple Model: 10000 Monopoles with random f’s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

20

40

60fr

eque

ncy

[GH

z]

mode #

0 10 20 30 40 50 600

10

20

30

40

50

frequency [GHz]

# of

mod

es

frequency of the modes

frequency distribution

Page 56: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

56Matthias Liepe; 03/28/2008

Bunch Trains:A Simple Model: 10000 Monopoles with random f’s

0 10 20 30 40 50 6010

0

105

1010

frequency [GHz]

loss

fac

tor

k [

V/(

As)

]

0 10 20 30 40 50 600

50

100

150

frequency [GHz]

inte

grat

ed p

ower

[W

]

assumed loss factor of the modes

calculated single bunch losses

Page 57: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

57Matthias Liepe; 03/28/2008U N I V E R S I T YCORNELL

Bunch Trains:A Simple Model: 10000 Monopoles with random f’s

0 10 20 30 40 50 600

1

2

3

4

5

6

7

8

pow

er [W

]

frequency [GHz]

Example: all HOMs have Q = 1000,one set of frequencies

Page 58: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

58Matthias Liepe; 03/28/2008

A Simple Model: 1000 Monopoles with random f’sTotal HOM Monopole Power for random Sets of Frequen cies

95 100 105 110 115 120 125 130 135 140 1450

50

100

#

QL=100

0 50 100 150 200 250 3000

50

100

#

QL=1000

0 200 400 600 800 1000 1200 14000

200

400

#

QL=10 4

0 2000 4000 6000 8000 10000 120000

2000

4000

6000

#

power [W]

QL=10 5

All HOMs have Q = 100

All HOMs have Q = 1000

All HOMs have Q = 104

All HOMs have Q = 105

Page 59: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

59Matthias Liepe; 03/28/2008

Higher-Order-Modes (HOMs)

Parasitic modes excited by the accelerated beam may lead to:

degradation of the beam quality (transverse emittancegrowth due to dipole modes, BBU, energy spread),

additional cryo-losses (wall losses, heating ofcables and feedthroughs), mostly due to monopole modes.

⇒ Requirements on the Requirements on the external quality factor,external quality factor,QQext ext of the modes.of the modes.

Without additional damping the HOMs can haveWithout additional damping the HOMs can havevery high quality factors (Q>10very high quality factors (Q>101010)! )!

Page 60: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

60Matthias Liepe; 03/28/2008

RF Cavity Design

• Higher order modes– Introduction: HOMs– HOM excitation by a beam– HOM damping schemes– HOM damping examples and results

Page 61: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

61Matthias Liepe; 03/28/2008

Solution (for SC Cavities):HOM Couplers and Absorbers

The parasitic e-m fields can be kept below the threshold by means of HOM couplers and HOM

absorbers, usually attached to the beam tubes of a s.c. cavity.

HOM coupler

HOM couplerHOM absorber

Page 62: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

62Matthias Liepe; 03/28/2008

Higher-Order-Mode Couplers and Absorbers

f/GHz1 10 100

trapped and quasi trapped modes

propagating modes

HOM couplers HOM beam-pipe absorber

to room temperatureload

facc

absorber between cavitiesat temperature level with good

cryogenic-efficiencyThe frequency where the HOMs start to propagate

depends on the beam tube diameter: ωωωωc ∝∝∝∝ 1/diameter!

waveguide couplersantenna couplers

Page 63: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

63Matthias Liepe; 03/28/2008

HOM Extraction/Damping Schemes

Several approaches are used:

• Loop couplers (several per cavity for different modes/orientations)

• Waveguide dampers

• Beam pipe absorbers (ferrite or ceramic)

JLab proposalBNL ERL cryomodule B-cell beam line components (TLS)

TESLA cavity loop coupler

Page 64: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

64Matthias Liepe; 03/28/2008

Broadband Beam Pipe RF Absorber

propagating modes

• High frequency modes propagate out the beam pipe.

• RF absorbing material can damp these modes.

• Dissipated power will be intercepted by cooling (water, GHe, LN2).

• Candidate absorber materials: ferrites (used in CESR HOM load) Zr10CB5 CERADYNE (used for

CEBAF HOM load) Mo in AL2O3 …facc is below the cut-

off frequency of the tube

Page 65: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

65Matthias Liepe; 03/28/2008- 65 -

Broadband RF Absorber

Fundamental mode: f=1.300 GHz ferrite absorber

16.5 cm

Example: dipole mode: f=3.9 GHz

•Low field at absorber ⇒⇒⇒⇒ no significant damping of the fundamental mode

but:• Propagating modes have higher fields at the absorber

⇒⇒⇒⇒ damping and power extraction!

ferrite absorber

Q < 104

Q > 1010

Page 66: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

66Matthias Liepe; 03/28/2008

Higher-Order-Mode Couplers

Coaxial Coupler Waveguide Coupler

Rejection filter suppresses coupling to the accelerating mode.

Waveguide cutoff suppresses coupling to the accelerating mode.

HOM out

HOM out

Page 67: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

67Matthias Liepe; 03/28/2008

TTF HOM Loop Coupler (1)

HOM coupler at each side of the cavity close to end cell

to damp HOMs

Page 68: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

68Matthias Liepe; 03/28/2008

HOM Loop-Couplers

Coupler model: superconductingpick-up antennasuperconducting

pick-up loop

capacitivecoupling

output toroom temp.

load

capacitor of the1.3 GHz notch

filter

Important to reduce Q of non-propagating dipole modes. Can only handle a few 10 W.

Will work up to a few GHz but not above. Cooling / heating from fundamental mode issue in cwcavity

operation.

Page 69: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

69Matthias Liepe; 03/28/2008

Methods for HOM Damping

from Bob Rimmer

Page 70: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

70Matthias Liepe; 03/28/2008

Methods for HOM Damping: Effectiveness

from Bob Rimmer

Page 71: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

71Matthias Liepe; 03/28/2008

HOMs

• Higher order modes– Introduction: HOMs– HOM excitation by a beam– HOM damping schemes– HOM damping examples and results

Page 72: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

72Matthias Liepe; 03/28/2008

Example 1: CESR HOM Ferrite Absorber (1)

Flute beam pipe ⇒⇒⇒⇒ guide out the first two defecting modes.

Total HOM power: several kW!

Qext < 103

Page 73: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

73Matthias Liepe; 03/28/2008

CESR HOM Ferrite Absorber (2)

ferrite

water cooling

Page 74: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

74Matthias Liepe; 03/28/2008

CESR HOM Ferrite Absorber (3)

Use a single cell (no reflection by irises between cells) Open beam tubes so that all modes propagate out the beam tubes!

Use material with very high RF losses.

Page 75: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

75Matthias Liepe; 03/28/2008

Example 2: The Cornell ERL Injector

beam

4.34 m

ferrite #1

ferrite #4ferrite #5ferrite #3

ferrite #2ferrite #6

HOM damping concept: Make all TM monopole and all dipole modes propagating by increasing the beam tube diameter (as in

CESR).

Page 76: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

76Matthias Liepe; 03/28/2008

Cornell ERL Beam Line HOM Loads

Flange to Cavity

Flange to Cavity

RF Absorbing

Tiles

Cooling Channel

(GHe)Shielded Bellow

TT2, Co2Z, CeralloyRF absorbing tiles

He GasCoolant

80 KOperating temp.

1.4 – 100 GHzHOM frequencies

26 W (200 W max)Power per load

Page 77: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

77Matthias Liepe; 03/28/2008

Cornell ERL Beam Line HOM Loads: Damping Calculations

1000 1500 2000 2500 3000 3500 4000 450010

-2

100

102

104

106

108

1010

1012

f [MHz]

Qfe

rrite

accelerating mode, almost undamped, as it should be

strongly damped HOMs

Page 78: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

78Matthias Liepe; 03/28/2008

ERL Main Linac HOM Damping Simulations

• CLANS calculations (started 3D Microwave Studio mod els)• Modes are sufficiently damped for 100 mA operation

1000 1500 2000 2500 3000 3500 400010-2

100

102

104

106

frequency [MHz]

R/Q

*Q/2

f [O

hm/c

m2 /

GH

z]

2400 2600 2800

102

104

106

Q

frequency [MHz]

MonopolesDipoles

5000 5200 5400

102

104

106

Q

frequency [MHz]

≈ Factor 5 below BBU limit

7-cell TTF shape

7-cell low loss

Page 79: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

79Matthias Liepe; 03/28/2008

Example 4: ILC Cavity with HOM Loop Couplers

1.E+03

1.E+04

1.E+05

1.E+06

1 2 3 4 5 6 7 8 9

#D41 #S32#S29 not measured #S30#D39 #D40#S28 #D42

TM 011 mode #

Q

measured by G. Kreps, DESY

TTF module #3

Page 80: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

80Matthias Liepe; 03/28/2008

TTF HOM Coupler:Measured Damping of Dipole Modes

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1 2 3 4 5 6 7 8 9

#D41 #S32 #S29 #S30

#D39 #D40 #S28 #D42

TE111 mode #

Q

1b 2b 3b 4b 5b 6b 7b 8b 9b

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

Q

1 2 3 4 5 6 7 8 91b 2b 3b 4b 5b 6b 7b 8b 9bTM 110 mode # measured by G. Kreps, DESY

low R/Q

high R/Q modes

high R/Q modes

low R/Q

Page 81: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

81Matthias Liepe; 03/28/2008

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1.00E+10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

9-cell CavitiesTE111 Dipole Modes: TTF Module 2

(R/Q)Qf [ΩΩΩΩMHz]

Mode #

Page 82: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

82Matthias Liepe; 03/28/2008

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1.00E+10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Series1Series2Series3Series4Series5Series6Series7

Series8

9-cell CavitiesTE111 Dipole Modes: TTF Module 3

(R/Q)Qf [ΩΩΩΩMHz]

Mode #

Page 83: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

83Matthias Liepe; 03/28/2008

9-cell CavitiesTM110 Dipole Modes: TTF Module 2

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1.00E+10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

(R/Q)Qf [ΩΩΩΩMHz]

Mode #

Page 84: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

84Matthias Liepe; 03/28/2008

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

1.40E+10

1.60E+10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Series1Series2

Series3Series4

Series5Series6

Series7Series8

9-cell CavitiesTM110 Dipole Modes: TTF Module 3

(R/Q)Qf [ΩΩΩΩMHz]

Mode #

Page 85: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

85Matthias Liepe; 03/28/2008

Experimental Setup for Beam Based HOM Measurements at TTF/FLASH

Page 86: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

86Matthias Liepe; 03/28/2008

Beam Based HOM Measurements at TTF/FLASH

Page 87: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

87Matthias Liepe; 03/28/2008

Example 5: BNL ERL Cavity

Page 88: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

88Matthias Liepe; 03/28/2008

Example 6: TJNAF 1A Cryomodule Design

Page 89: Accelerating (S)RF Cavities - Cornell Universityhoff/LECTURES/08S_688/08S_688...Matthias Liepe; 03/28/2008 2 Outline • RF Cavity Design – Design objectives – Numerical Eigenmode

89Matthias Liepe; 03/28/2008

TJNAF 1A Cryomodule Design