1
INTRODUCCION Chemical solution deposition of Y 1 Ba 2 Cu 3 O 7-x thin films on SrTiO 3 substrates Jorge L. Garcia 1,2 , H. Sánchez Cornejo 1 , L. de los Santos Valladares 3,4 , C.H.W. Barnes 4 J. Flores Santibañez 1 and A. Bustamante Dominguez 1 1 Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima 14, Perú. 2 Programa Agua Andes, Jr. Francisco Bolognesi 150 A, Int. 303, San Miguel, Lima 32, Perú. 3 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819, People’s Republic of China. 4 Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, United Kingdom Conventionally the fabrication of superconducting thin films is carried out by tedious processes and requires expensive equipment. Here we report the growth of YBa 2 Cu 3 O 7-x (YBCO) thin films on SrTiO 3 substrates by the low-cost chemical solution deposition technique [1]. The preparation includes the precipitation of yttrium, barium and copper acetates in oxalic acid; and directly dripping onto SrTiO 3 ([100] orientation) substrates. The epitaxial growth of the deposited layer was carried out by calcination and thermal treatments at 840 and 860 . The surface morphology was inspected by optical microscopy. X-ray diffraction (XRD) confirms the preferential epitaxial growth (00l) of the YBCO crystallites, especially after thermal treatment at 860 . Both samples show a superconducting critical temperature of 90 K. The estimation of the critical current density ( ) of the samples was measured indirectly from their respective hysteresis cycles following the Bean equation [2] at 10 K. For the sample treated at 840 , was 19 x 10 4 A/cm 2 , while for the sample obtained at 860 was 17 x 10 9 A/cm 2 , indicating that a thermal treating of 840 is enough to obtain a versatile YBCO thin film. Conclusiones Methodology Abstract CRYOGENIC ENGINEERING CONFERENCE & INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE Connecticut Convention Center Hartford, Connecticut, USA July 21 25, 2019 This work has been financed in part by the Vice-Rector's Office of the National University of San Marcos Research through the Con-Con research grant program (Projects 111301071 and 090701011), The work in Cambridge has been financed by the European Union's ALBAN Program (No. E06D101257PE) and the Cambridge Overseas Trust. Referencias Agradecimientos = 20∆ 2 3 where is the difference in magnetization values at a particular magnetic field, and , , and are the thickness, the width, and the length of the sample, respectively. A.1 Chemical solution A.1 A.3 A.2 Sample preparation (a) Cu(COOCH 3 ) 2 .1H 2 O (b) Y(COOCH 3 ) 3 .4H 2 O (c) Ba(COOCH 3 ) 2 0.8991g acetato de Cu 0.5075 g acetato de Y 0.7668 g acetato de Ba 0 5 10 15 20 25 30 35 40 0 100 200 300 400 500 600 700 800 900 1000 860°C x 12 h Temperature ( o C) Time (h) 60°C x h 840°C x 12 h 84°C x h 0 5 10 15 20 25 30 35 40 0 100 200 300 400 500 600 700 800 900 1000 10 20 30 40 50 60 70 80 0 20 40 60 80 100 120 140 160 180 A A: YBaCu 3 O 6 (200) 46.56 (200) 46.68 (005) 38.72 32.7 (004) 30.76 (003) 22.94 (100) (002) 15.24 Intensity 22.74 46.88 (006) 55.31 (007) XRD Y123 on SrTiO 3 (840 o C) (110) 72.54 (300) 0 10 20 30 40 50 60 70 80 90 1 10 100 B: YBaCu 3 O 6 C:Y 2 O 3 (422) C (004) A: Cu 2 BaO 2 17.8 46.56 (200) XRD Y123 on SrTiO 3 (860 o C) (007) 55.31 (006) 46.87 (005) 38.72 30.76 (003) 22.94 (100) 22.74 (002) 15.24 Intensity 32.7 (110) 73.15 41.6 58.3 (101) A (116) D D:CuYO 2 (108) Analysis Result 0 2000 4000 6000 8000 10000 0 100 200 300 400 500 600 700 800 H (Oe) 840 o C T = 10 K Jc (A/cm 2 ) 0 2000 4000 6000 8000 10000 100 200 300 400 500 600 700 800 860 o C T = 10 K H (Oe) Jc (A/cm 2 ) -10000 -5000 0 5000 10000 -0.0004 -0.0002 0.0000 0.0002 0.0004 Magnetic Moment (emu) H (Oe) 840 o C T = 10 K -10000 -5000 0 5000 10000 -0.0003 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004 H (Oe) Magnetic Moment (emu) 860 o C T = 10 K 0 20 40 60 80 100 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0 20 40 60 80 100 120 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 840 o C FC ZFC Temperature (K) Magnetic susceptibility (emu/mol -Oe) 90 K 90 K 860 o C FC ZFC A.2 Deposition A. 3 Thermal treatments Preparation of the compound (precursor Solution) YBaCuOAcetates, for the preparation of 1.5 g precursor calcination Furmace Sample in furmace sintered Theatment process Optical Microscopy Sample on Sustrate 840 x100 Sample on Sustrate 860 x100 Magnetic Moment Magnetic susceptibility Both samples, 840 and 860 show a superconducting critical temperature of 90 K , Zero Field Cooling (ZFC) y Field Cooling (FC) X-Ray Diffraction (XRD) Critical Current Density (Jc) Following the Bean equation [2] Magnetic moment Vs. H, sample 840 Magnetic moment Vs. H, sample 860 Sample treated at 840 : 19 x 10 4 A/cm 2 Sample obtained at 860 : 17 x 10 9 A/cm 2 [1] Yuanqing Chen et al. (2016). High Critical Current Density of YBa2Cu3O7−x Superconducting Films Prepared through a DUVassisted Solution Deposition Process. Scientific Reports. DOI: 10.1038/srep38257. [2] J. Narayan, A. Bhaumik y R. Sachan., Journal of Applied Physics Vol 123 2018 135304. We can manufacture superconducting films at low cost. The morphological characterization, optical microscopy, indicated that in the sample treated thermally at 860 is more homogeneous. The XRD gives the Coexisting with the secondary phases BaCuO 2 , Cu 2 BaO 2 and Y2BaCuO 5 (green phase). Magnetic moment graphs Vs temperature, improve as the temperature increases. A thermal treating of 840 is enough to obtain a versatile YBCO thin film. M2Po2B-03

Abcdefg · 2019. 7. 17. · T 32.7) 73.15 41.6 58.3) A) D D:CuYO 2) 0 10 20 30 40 50 60 70 80 90 1 10 100 Analysis Result 0 2000 4000 6000 8000 10000 0 100 200 300 400 500 600 700

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • INTRODUCCION

    Chemical solution deposition of Y1Ba2Cu3O7-x thin films on SrTiO3 substrates Jorge L. Garcia 1,2, H. Sánchez Cornejo1, L. de los Santos Valladares 3,4, C.H.W. Barnes4 J. Flores Santibañez1 and A. Bustamante Dominguez1

    1 Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima 14, Perú.

    2 Programa Agua Andes, Jr. Francisco Bolognesi 150 A, Int. 303, San Miguel, Lima 32, Perú.

    3 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819, People’s Republic of China.

    4 Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, United Kingdom

    Conventionally the fabrication of superconducting thin films is carried out by tedious processes and

    requires expensive equipment. Here we report the growth of YBa2Cu3O7-x (YBCO) thin films on

    SrTiO3 substrates by the low-cost chemical solution deposition technique [1]. The preparation

    includes the precipitation of yttrium, barium and copper acetates in oxalic acid; and directly dripping

    onto SrTiO3 ([100] orientation) substrates. The epitaxial growth of the deposited layer was carried out

    by calcination and thermal treatments at 840 and 860 ℃. The surface morphology was inspected by optical microscopy. X-ray diffraction (XRD) confirms the preferential epitaxial growth (00l) of the

    YBCO crystallites, especially after thermal treatment at 860 ℃. Both samples show a superconducting critical temperature of 90 K. The estimation of the critical current density (𝐽𝑐) of the samples was measured indirectly from their respective hysteresis cycles following the Bean equation

    [2] at 10 K. For the sample treated at 840 ℃, 𝐽𝑐 was 19 x 104 A/cm2, while for the sample obtained at 860 ℃ 𝐽𝑐 was 17 x 109 A/cm2, indicating that a thermal treating of 840 ℃ is enough to obtain a versatile YBCO thin film.

    Conclusiones

    Methodology

    Abstract

    CRYOGENIC ENGINEERING CONFERENCE & INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE Connecticut Convention Center Hartford, Connecticut, USA July 21 – 25, 2019

    This work has been financed in part by the Vice-Rector's Office of the National University of

    San Marcos Research through the Con-Con research grant program (Projects 111301071 and

    090701011), The work in Cambridge has been financed by the European Union's ALBAN

    Program (No. E06D101257PE) and the Cambridge Overseas Trust.

    Referencias

    Agradecimientos

    𝐽𝑐 =20∆𝑀

    𝜏𝑤2 𝜄 −𝑤3

    where ∆𝑀 is the difference in magnetization values at a particular magnetic field, and 𝜏, 𝑤, and 𝜄 are the thickness, the width, and the length of the sample, respectively.

    A.1 Chemical solution

    A.1

    A.3

    A.2

    Sample

    preparation

    (a) Cu(COOCH3)2.1H2O

    (b) Y(COOCH3)3.4H2O

    (c) Ba(COOCH3)2

    0.8991g acetato de Cu 0.5075 g acetato de Y

    0.7668 g acetato de Ba

    0 5 10 15 20 25 30 35 40

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    860°C x 12 h

    Te

    mp

    era

    ture

    (oC

    )

    Time (h)

    60°C x h

    840°C x 12 h

    84°C x h

    0 5 10 15 20 25 30 35 40

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    10 20 30 40 50 60 70 80

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    A

    A: YBaCu3O

    6

    (200

    )

    46.56

    (200

    )

    46.68

    (005

    )

    38.72

    32.7

    (004

    )

    30.76

    (003

    )

    22.94

    (100

    )

    (002

    )

    15.24

    Inte

    nsity

    22.74

    46.88

    (006

    )

    55.31

    (007

    )

    XRD Y123 on SrTiO3

    (840 oC)

    (110

    )

    72.54

    (300

    )0 2 4 6 8 10

    0

    2

    4

    6

    8

    10

    0 10 20 30 40 50 60 70 80 90

    1

    10

    100

    B: YBaCu3O

    6

    C:Y2O

    3

    (422

    )

    C

    (004

    )A: Cu

    2BaO

    2

    17.8

    46.56

    (200

    )

    XRD Y123 on SrTiO3

    (860 oC)

    (007

    )

    55.31

    (006

    )

    46.87(00

    5)

    38.72

    30.76

    (003

    )

    22.94

    (100

    )

    22.74

    (002

    )

    15.24

    Inte

    nsity

    32.7

    (110

    )

    73.1541.6

    58.3

    (101

    )

    A (116

    )

    D

    D:CuYO2

    (108

    )

    0 10 20 30 40 50 60 70 80 90

    1

    10

    100

    Analysis Result

    0 2000 4000 6000 8000 10000

    0

    100

    200

    300

    400

    500

    600

    700

    800

    H (Oe)

    840oC

    T = 10 K

    Jc (

    A/c

    m2)

    0 2000 4000 6000 8000 10000

    100

    200

    300

    400

    500

    600

    700

    800

    860oC

    T = 10 K

    H (Oe)

    Jc (

    A/c

    m2)

    -10000 -5000 0 5000 10000

    -0.0004

    -0.0002

    0.0000

    0.0002

    0.0004

    Ma

    gn

    etic M

    om

    en

    t (e

    mu

    )

    H (Oe)

    840oC

    T = 10 K

    -10000 -5000 0 5000 10000

    -0.0003

    -0.0002

    -0.0001

    0.0000

    0.0001

    0.0002

    0.0003

    0.0004

    H (Oe)

    Ma

    gn

    etic M

    om

    en

    t (e

    mu

    )

    860oC

    T = 10 K

    0 20 40 60 80 100

    -0.06

    -0.05

    -0.04

    -0.03

    -0.02

    -0.01

    0.00

    0 20 40 60 80 100 120

    -0.06

    -0.05

    -0.04

    -0.03

    -0.02

    -0.01

    0.00

    840 oC

    FC

    ZFC

    Temperature (K)

    Mag

    netic

    sus

    cept

    ibilit

    y (e

    mu/

    mol

    -Oe)

    90 K

    90 K

    860 oC

    FC

    ZFC

    A.2 Deposition

    A. 3 Thermal treatments

    Preparation of the compound (precursor Solution) YBa₂Cu₃O₇

    Acetates, for the preparation of 1.5 g precursor

    calcination

    Furmace Sample in furmace sintered Theatment process

    Optical Microscopy

    Sample on Sustrate 840 ℃ x100 Sample on Sustrate 860 ℃ x100

    Magnetic Moment

    Magnetic susceptibility

    Both samples, 840 ℃ and 860 ℃ show a superconducting critical temperature of 90 K , Zero Field Cooling (ZFC) y Field Cooling (FC)

    X-Ray Diffraction (XRD)

    Critical Current Density (Jc)

    Following the Bean equation [2]

    Magnetic moment Vs. H, sample 840 ℃ Magnetic moment Vs. H, sample 860 ℃

    Sample treated at 840 ℃ 𝐽𝑐 : 19 x 104 A/cm2

    Sample obtained at 860 ℃ 𝐽𝑐: 17 x 109 A/cm2

    [1] Yuanqing Chen et al. (2016). High Critical Current Density of YBa2Cu3O7−x

    Superconducting Films Prepared through a DUVassisted Solution Deposition Process. Scientific

    Reports. DOI: 10.1038/srep38257.

    [2] J. Narayan, A. Bhaumik y R. Sachan., Journal of Applied Physics Vol 123 2018 135304.

    We can manufacture superconducting films at low cost.

    The morphological characterization, optical microscopy, indicated that in the sample treated

    thermally at 860 ℃ is more homogeneous. The XRD gives the Coexisting with the secondary phases BaCuO2, Cu2BaO2 and Y2BaCuO5

    (green phase).

    Magnetic moment graphs Vs temperature, improve as the temperature increases.

    A thermal treating of 840 ℃ is enough to obtain a versatile YBCO thin film.

    M2Po2B-03