17
AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss Representations of surfaces Representation of a surface S as projections on the xy- and xz -planes, etc. are z = f (x, y), x = g(x, z ) or g(x, y, z )=0. For example, z =+ q a 2 - x 2 - y 2 or x 2 + y 2 + z 2 = a 2 ,z 0 represents a hemisphere of radius a and center O. A surface S can be represented by a vector function r(u, v)=[x(u, v),y(u, v),z (u, v)] = x(u, v)i + y(u, v)j + z (u, v)k, u, v R This is called a parametric representation of a surface, u, v varying in a two-dimensional region R are the parameters of the representation. EXAMPLE 1 Parametric representation of a cylinder A circular cylinder x 2 + y 2 = a 2 , -1 z 1 has radius a, height 2, and the z -axis as the axis. A parametric representation is r(u, v)=[a cos u, a sin u, v]= a cos ui + a sin uj + vk, u, v in rectangle R :0 u 2π, -1 v 1. The components of r(u, v) are x = a cos u, y = a sin u, z = v. EXAMPLE 2 Parametric representation of a sphere A sphere x 2 + y 2 + z 2 = a 2 has the parametric representation r(u, v)= a cos v cos ui + a cos v sin uj + a sin vk, u, v in rectangle R :0 u 2π, -π/2 v π/2.

AB2_5 Surfaces and Surface Integrals

Embed Size (px)

Citation preview

AB2.5: Surfaces and Surface Integrals.Divergence Theorem of Gauss

Representations of surfaces

Representation of a surface S as projections on the xy- and xz-planes, etc. are

z = f(x, y), x = g(x, z)

org(x, y, z) = 0.

For example,z = +

√a2 − x2 − y2 or x2 + y2 + z2 = a2, z ≥ 0

represents a hemisphere of radius a and center O.

A surface S can be represented by a vector function

r(u, v) = [x(u, v), y(u, v), z(u, v)] = x(u, v)i + y(u, v)j + z(u, v)k, u, v ∈ R

This is called a parametric representation of a surface, u, v varying in a two-dimensionalregion R are the parameters of the representation.

EXAMPLE 1 Parametric representation of a cylinder

A circular cylinder x2 + y2 = a2, −1 ≤ z ≤ 1 has radius a, height 2, and the z-axis as the axis.A parametric representation is

r(u, v) = [a cosu, a sinu, v] = a cosui + a sinuj + vk,

u, v in rectangle R : 0 ≤ u ≤ 2π, −1 ≤ v ≤ 1.

The components of r(u, v) are

x = a cosu, y = a sinu, z = v.

EXAMPLE 2 Parametric representation of a sphere

A sphere x2 + y2 + z2 = a2 has the parametric representation

r(u, v) = a cos v cosui + a cos v sinuj + a sin vk,

u, v in rectangle R : 0 ≤ u ≤ 2π, −π/2 ≤ v ≤ π/2.

The components of r(u, v) are

x = a cos v cosu, y = a cos v sinu, z = a sin v.

EXAMPLE 3 Parametric representation of a cone

A circular cone z = +√x2 + y2, 0 ≤ z ≤ H has the parametric representation

r(u, v) = u cos vi + u sin vj + uk, u, v in rectangleR : 0 ≤ v ≤ 2π, 0 ≤ u ≤ H.

The components of r(u, v) are

x = u cos v, y = u sin v, z = u.

Indeed, this yields x2 + y2 = z2.

Tangent to a surface

Get a curve C on S by a pair of continuous functions

u = u(t), v = v(t)

so that C has the position vector r̃(u(t), v(t)). By the chain rule, we get a tangent vector of acurve C

r̃′(t) =dr̃dt

=∂r∂uu′ +

∂r∂vv′.

Hence the partial derivatives ru and rv at a point P are tangential to S at P and we assumethat are linearly indepedent. Then their vector product gives a normal vector N of S at P ,

N = ru × rv 6= 0.

The corresponding unit normal vector n

n =1|N|

N =1

|ru × rv|ru × rv.

If S is represented byg(x, y, z) = 0,

thenn =

1|grad g|

grad g.

EXAMPLE 4 Unit normal vector of a sphere

g(x, y, z) = x2 + y2 + z2 − a2 = 0:

n =1

|grad g|grad g =

1a

grad g =[x

a,y

a,z

a

]=x

ai +

y

aj +

z

ak.

EXAMPLE 5 Unit normal vector of a cone

g(x, y, z) = −z +√x2 + y2 = 0:

n =1

|grad g|grad g =

1√2

[x√

x2 + y2,

y√x2 + y2

,−1]

=

x√x2 + y2

i +y√

x2 + y2j− k.

Definition and evaluation of surface integrals

A surface integral of a vector function F(r) over a surface S is defined as∫S

∫F · ndA =

∫R

∫F(r(u, v)) ·N(u, v)dudv,

where

r(u, v) = [x(u, v), y(u, v), z(u, v)] = x(u, v)i + y(u, v)j + z(u, v)k, u, v ∈ R

is a parametric representation of S with a normal vector

N = ru × rv 6= 0

and the corresponding unit normal vector

n =1|N|

N.

Note thatndA = n|N|dudv = |N|dudv,

and it is assumed that the parameters u, v vary in a domain R on the u, v-plane.In terms of components

F = [F1, F2, F3) = F1i + F2j + F3k,

n = [cosα, cosβ, cos γ] = cosαi + cos βj + cos γk,

N = [N1, N2, N3) = N1i +N2j +N3k,

and ∫S

∫F · ndA =

∫S

∫(F1 cosα + F2 cos β + F3 cos γ)dA =

∫S

∫(F1N1 + F2N2 + F3N3)dudv.

EXAMPLE 1 Flux through a surface

Compute the flux of water through the parabolic cylinder

S : y = x2, 0 ≤ x ≤ 2, 0 ≤ z ≤ 3

if the velocity vector is v = F = [3z2, 6, 6xz].

Solution. S is represented by

r(u, v) = [u, u2, v] = ui + u2j + vk, 0 ≤ u ≤ 2, 0 ≤ v ≤ 3

because one can set x = u, z = v, and y = x2 = u2.From this

ru = [1, 2u, 0], rv = [0, 0, 1];

the vector product of ru and rv gives a normal vector N 6= 0 of the parabolic cylinder

N = ru × rv =

∣∣∣∣∣∣∣i j k1 2u 00 0 1

∣∣∣∣∣∣∣ = 2ui− j = [2u,−1, 0].

The corresponding unit normal vector

n =1|N|

N =1√

1 + 4u2(2ui− j).

On SF(r(u, v)) = F(S) = [3v2, 6, 6uv] = 3(v2i + 2j + 2uvk).

Hence

F(r(u, v)) ·N(u, v) = 3[v2, 2, 2uv] · [2u,−1, 0] = 3(2uv2 − 2) = 6(uv2 − 1).

The parameters u, v vary in the rectangle R : 0 ≤ u ≤ 2, 0 ≤ v ≤ 3. Now we can write andcalculate the flux integral:∫

S

∫F · ndA =

∫R

∫F(r(u, v)) ·N(u, v)dudv =

∫ 3

0

∫ 2

06(uv2 − 1)dudv = 6(

∫ 3

0v2dv

∫ 2

0udu−

∫ 3

0

∫ 2

0dudv) = 6(32 · 2− 6) = 72.

EXAMPLE 2 Surface integral

Compute the surface integral for S being a portion of the plane

S : x+ y + z = 1, 0 ≤ x, y, z ≤ 1.

for F = [x2, 0, 3y2].

Solution. Setting x = u and y = v, we have z = 1−u− v, so that S can be represented by

r(u, v) = [u, v, 1− u− v], 0 ≤ v ≤ 1, 0 ≤ u ≤ 1− v.

From thisru = [1, 0,−1], rv = [0, 1,−1];

a normal vector

N = ru × rv =

∣∣∣∣∣∣∣i j k1 0 −10 1 −1

∣∣∣∣∣∣∣ = i + j + k = [1, 1, 1].

The corresponding unit normal vector

n =1|N|

N =1√3

(i + j + k).

On SF(r(u, v)) = F(S) = [u2, 0, 3v2] = u2i + 3v2k).

HenceF(r(u, v)) ·N(u, v) = [u2, 0, 3v2] · [1, 1, 1] = u2 + 3v2.dudv.

The parameters u, v vary in the triangle R : 0 ≤ v ≤ 1, 0 ≤ u ≤ 1− v. Now we can write andcalculate the surface integral:∫

S

∫F · ndA =

∫R

∫F(r(u, v)) ·N(u, v)dudv =

∫R

∫(u2 + 3v2)dudv =

∫ 1

0

∫ 1−v

0(u2 + 3v2)dudv =

∫ 1

0dv∫ 1−v

0u2du+ 3

∫ 1

0v2dv

∫ 1−v

0du =

= (1/3)∫ 1

0(1− v)3dv + 3

∫ 1

0v2(1− v)dv = (1/3)

∫ 1

0t3dt+ 3

∫ 1

0(v2 − v3)dv =

(1/3) · (1/4) + 3(1/3− 1/4) = 1/3.

Divergence theorem of Gauss

Recall that if v(x, y, z) is a differentiable vector function,

v(x, y, z) = v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k,

then the functiondiv v =

∂v1

∂x+∂v2

∂y+∂v3

∂z

is called the divergence of v.Formulate the divergence theorem of Gauss.Let T be a closed bounded region in space whose boundary is a piecewise smooth orientable

surface S (consists of finitely many smooth surfaces). Let F(x, y, z) be a vector function that iscontinuous and have continuous first partial derivatives everywhere in some domain containingT . Then ∫ ∫

T

∫div FdV =

∫S

∫F · ndA.

Here n is an outer unit normal vector of S pointing to the outside of S.In components,∫ ∫

T

∫ (∂F1

∂x+∂F2

∂y+∂F3

∂z

)dxdydz =

∫S

∫(F1 cosα + F2 cosβ + F3 cos γ)dA.

or ∫ ∫T

∫ (∂F1

∂x+∂F2

∂y+∂F3

∂z

)dxdydz =

∫S

∫(F1dydz + F2dzdx+ F3dxdy).

EXAMPLE 1 Evaluation of a surface integral by the divergence theorem

EvaluateI =

∫S

∫(x3dydz + x2ydzdx+ x2zdxdy),

where S is a piecewise smooth surface consisting of the cylinder x2 + y2 = a2 (0 ≤ z ≤ b) andthe circular disks z = 0 and z = b (x2 + y2 ≤ a2) (S consists of three parts of smooth surfaces).

Solution. We haveF1 = x3, F2 = x2y, F3 = x2z.

Hence the divergence of F = [F1, F2, F3] is

div F =∂F1

∂x+∂F2

∂y+∂F3

∂z= 3x2 + x2 + x2 = 5x2.

Introducing the polar coordinates

x = r cos θ, y = r sin θ (cylindrical coordinates r, θ, z)

we havedxdydz = rdrdθdz,

and by the divergence theorem, the surface integral is transformed to a triple integral over theclosed region T in space whose boundary is the surface S of the cylinder,∫

S

∫(x3dydz + x2ydzdx+ x2zdxdy) =

∫ ∫T

∫div FdV =

∫ ∫T

∫5x2dxdydz =

5∫ b

z=0

∫ a

r=0

∫ 2π

θ=0r2 cos2 θrdrdθdz =

5b∫ a

0

∫ 2π

0r3 cos2 θdrdθ = 5b

a4

4

∫ 2π

0cos2 θdθ =

5ba4

8

∫ 2π

0(1 + 2 cos θ)dθ =

54πba4.

EXAMPLE 2 Verification of the divergence theorem

EvaluateI =

∫S

∫F · ndA), F = 7xi− zk

over the sphere S : x2 + y2 + z2 = 4 by the divergence theorem and directly.

Solution. We haveF = [F1, 0, F3], F1 = 7x, F3 = −z.

The divergence of F is

div F =∂F1

∂x+∂F2

∂y+∂F3

∂z= 7 + 0− 1 = 6,

and, by the divergence theorem,

I =∫ ∫

T,ball

∫div FdV = 6

∫ ∫T,ball

∫dxdydz = 6 · 4

3π23 = 64π.

Now we will calculate the surface integral over S directly. Use the parametric representationof the sphere of radius 2

S : r(u, v) = 2 cos v cosui + 2 cos v sinuj + 2 sin vk,

u, v in rectangle R : 0 ≤ u ≤ 2π, −π/2 ≤ v ≤ π/2.

Thenru = [−2 sin u cos v, 2 cos v cosu, 0],

rv = [−2 sin v cosu,−2 sin v sinu, 2 cos v],

N = ru×rv =

∣∣∣∣∣∣∣i j k

−2 sinu cos v 2 cos v cosu 0−2 sin v cosu −2 sin v sinu 2 cos v

∣∣∣∣∣∣∣ = [4 cos2 v cosu, 4 cos2 v sinu, 4 cos v sin v].

On S we havex = 2 cos v cosu, z = 2 sin v,

and, correspondingly,

F(r(u, v)) = F(S) = [7x, 0,−z] = [14 cos v cosu, 0,−2 sin v].

HenceF(r(u, v)) ·N(u, v) =

(14 cos v cosu)4 cos2 v cosu+ (−2 sin v)(4 cos v sin v) = 56 cos3 v cos2 u− 8 cos v sin2 u.

The parameters u, v vary in the rectangle R : 0 ≤ u ≤ 2π, −π/2 ≤ v ≤ π/2. Now we canwrite and calculate the surface integral:∫

S

∫F · ndA =

∫R

∫F(r(u, v)) ·N(u, v)dudv =

8∫ 2π

0

∫ −π/2−π/2

(7 cos3 v cos2 u− cos v sin2 v)dudv =

8{

72

∫ 2π

0(1 + cos 2u)du

∫ π/2

−π/2cos3 vdv − 2π

∫ π/2

−π/2cos v sin2 vdv

}=

56π∫ π/2

−π/2cos3 vdv − 16π

∫ π/2

−π/2cos vdv sin2 vdv =

8π{

7∫ π/2

−π/2(1− sin2 v)d sin v − 2

∫ π/2

−π/2dv sin2 vd sin v

}=

8π{

7∫ 1

−1(1− t2)dt− 2

∫ 1

−1t2dt

}=

8π[7 · (2− 2/3)− 4/3] = 8π · 4/3 · 6 = 64π.

The values obtained by both methods coincide.

EXAMPLE 2 Applications of the divergence theorem

By the mean value theorem for triple integrals,∫ ∫T

∫f(x, y, z)dV = f(x0, y0, z0)V (T )

where (x0, y0, z0) is a certain point in T and V (T ) is the volume of T .By the divergence theorem,

div F(x0, y0, z0) =1

V (T )

∫ ∫T

∫div FdV =

1V (T )

∫S(T )

∫F · ndA.

Choosing a fixed point P : (x1, y1, z1) in T and shrinking T down to onto P so that themaximum distance d(T ) of the points of T from P tends to zero, we obtain

div F(x1, y1, z1) = limd(T )→0

1V (T )

∫S(T )

∫F · ndA,

which is sometimes used as the definition of the divergence. From this expression, it followsthat the divergence is independent of a particular choice of Cartesian coordinates.

EXAMPLE 4 A basic property of solutions of Laplaces equation

Recall that we can transform the double integral of the Laplacian of a function into a lineintegral of its normal derivative. In the same manner, by the divergence theorem, we cantransform the triple integral of the the Laplacian of a function into a surface integral of itsnormal derivative. Indeed, setting

F = grad f

we have

div F = div grad f =∂2f

∂x2 +∂2f

∂y2 +∂2f

∂z2 = ∇2f.

On the other hand,F · n = grad f · n

is, by definition, the normal derivative of f (the directional derivative in the direction of the

outer normal vector to S, the boundary of T ),∂f

∂n. Thus, by the divergence theorem, the

desired formula for the integral of the Laplacian of f becomes∫ ∫T

∫∇2fdxdydz =

∫S

∫ ∂f

∂ndA.

Thus, if f(x, y, z) is a harmonic function in T (∇2f = 0 in T ), then the integral of thenormal derivative of this function over any piecewise smooth orientable surface S in T whoseentire interior belongs to T is zero.

PROBLEM 9.5.1

Find the normal vector to the xy-plane

r(u, v) = [u, v] = ui + vj

and the parameter curves u = const and v = const.

Solution. Recall that the vector product a × b of two vectors a = [a1, a2, a3] and b =[b1, b2, b3] is a vector v = a×b perpendicular to both a and b so that a, b, v form a right-handedtriple:

v = [v1, v2, v3] = a× b =

∣∣∣∣∣∣∣i j ka1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ = v1i + v2j + v3k,

or

v1 =∣∣∣∣∣ a2 a3

b2 b3

∣∣∣∣∣ , v2 =∣∣∣∣∣ a3 a1

b3 b1

∣∣∣∣∣ , v3 =∣∣∣∣∣ a1 a2

b1 b2

∣∣∣∣∣For the xy-plane

r(u, v) = [u, v, 0] = ui + vj;

ru = [1, 0, 0] = i, rv = [0, 1, 0] = j,

and the vector product of ru and rv gives a normal vector N 6= 0 of the xy-plane

N = ru × rv =

∣∣∣∣∣∣∣i j k1 0 00 1 0

∣∣∣∣∣∣∣ = k.

The corresponding unit normal vector

n =1|N|

N =11k = k.

The parameter curves u = const and v = const are straight lines.

PROBLEM 9.5.3

Find the normal vector to the cone

r(u, v) = u cos vi + u sin vj + cuk = [u cos v, u sin v, cu]

and the parameter curves u = const and v = const.

Solution. The cone is given by the representation z = c√x2 + y2. We have

ru = [cos v, sin v, c], rv = [−u sin v, u cos v, 0],

and a normal vector N 6= 0 of the cone

N = ru × rv =

∣∣∣∣∣∣∣i j k

cos v sin v c−u sin v u cos v 0

∣∣∣∣∣∣∣ = −cu cos vi− cu sin vj + uk = −u[c cos v, c sin v,−1].

The parameter curves u = const are circles x2 + y2 = u2, z = cu and v = const are straightlines y = x tan v.

PROBLEM 9.5.13

Find a parametric representation of the plane 3x+ 4y + 6z = 24.

Solution. We have z = 4 − (1/2)x − (2/3)y. Therefore, setting x = 8u and y = 6v, weobtain a parametric representation

r(u, v) = [8u, 6v, 4(1− u− v)] = 8ui + 6vj + 4(1− u− v)k.

Another parametric representation can be obtained by setting x = u and y = v

r̃(u, v) = [u, v, 4− (1/2)u− (2/3)v] = ui + vj + (4− (1/2)u− (2/3)v)k.

Take a parametric representation

r(u, v) = [8u, 6v, 4(1− u− v)]

of the plane 3x+ 4y + 6z = 24. Then

ru = [8, 0,−4], rv = [0, 6,−4],

and a normal vector N 6= 0

N = ru × rv =

∣∣∣∣∣∣∣i j k8 0 −40 6 −4

∣∣∣∣∣∣∣ =

24i + 32j + 48k = 8(3i + 4j + 6k) = 8[3, 4, 6].The corresponding unit normal vector

n =1|N|

N =1√61

(3i + 4j + 6k).

PROBLEM 9.5.15

Find a parametric representation of the ellipsoid x2 + y2 + (1/4)z2 = 1.

Solution. Setting

x = cos v cosu, y = cos v sinu, z = 2 sin v.

we see that x2 + y2 + (1/4)z2 = 1, which yields the parametric representation of the ellipsoid

r(u, v) = cos v cosui + cos v sinuj + 2 sin vk,

Then

ru = − cos v sinui + cos v cosuj, rv = − sin v sinui− sin v cosuj + 2 cos vk.

The normal vector N 6= 0

N = ru×rv =

∣∣∣∣∣∣∣i j k

− cos v sinu cos v cosu 0− sin v sinu − sin v cosu 2 cos v

∣∣∣∣∣∣∣ = 2 cos2 v cosui+2 cos2 v sinuj+sin v cos vk.

PROBLEM 9.5.24

Find the unit normal vector to the ellipsoid 4x2 + y2 + 9z2 = 36.

Solution. We have g(x, y, z) = 4x2 + y2 + 9z2 − 36 = 0. Find the partial derivatives

∂g

∂x= 8x,

∂g

∂y= 2y,

∂g

∂z= 18z.

Thengrad g = 2[4x, y, 9z], |grad g| = 2

√16x2 + y2 + 81z2,

and the unit normal vector is given by

n =1

|grad g|grad g =

12√

16x2 + y2 + 81z2grad g =

1√16x2 + y2 + 81z2

[4x, y, 9z] =1√

16x2 + y2 + 81z2(4xi + yj + 9zk).

PROBLEM 9.5.25

Find the unit normal vector of the plane 4x− 4y + 7z = −3.

Solution. We have z = 1/7(−3− 4x+ 4y). Therefore, setting x = u and y = v, we obtaina parametric representation

r(u, v) = [u, v, 1/7(−3− 4u+ 4v)] = ui + vj + 1/7(−3− 4u+ 4v)k.

Thenru = [1, 0,−4/7], rv = [0, 1, 4/7],

and a normal vector N 6= 0

N = ru × rv =

∣∣∣∣∣∣∣i j k1 0 −4/70 1 4/7

∣∣∣∣∣∣∣ =

(4/7)i− (4/7)j + k = (1/7)(4i− 4j + 7k) = (1/7)[4,−4, 7].

The corresponding unit normal vector

n =1|N|

N =19

(4i− 4j + 7k).

On the other hand, we have the representation of the plane in the form g(x, y, z) = 4x −4y + 7z + 3 = 0. Find the partial derivatives

∂g

∂x= 4,

∂g

∂y= −4,

∂g

∂z= 7.

Thusgrad g = [4,−4, 7], |grad g| =

√162 + 162 + 49 = 9,

and the unit normal vector is given by

n =1

|grad g|grad g =

19

(4i− 4j + 7k)

which coincides with the previous result.

PROBLEM 9.6.1

Compute the surface integral for F = [3x2, y2, 0] and S being a portion of the plane

r(u, v) = [u, v, 2u+ 3v], 0 ≤ u ≤ 2, −1 ≤ v ≤ 1.

Solution. We haveru = [1, 0, 2], rv = [0, 1, 3];

a normal vector

N = ru × rv =

∣∣∣∣∣∣∣i j k1 0 20 1 3

∣∣∣∣∣∣∣ = −2i− 3j + k = [−2,−3, 1].

The corresponding unit normal vector

n =1|N|

N =1√14

(−2i− 3j + k).

On SF(r(u, v)) = F(S) = [3u2, v2, 0] = 3u2i + v2j).

HenceF(r(u, v)) ·N(u, v) = [3u2, v2, 0] · [−2,−3, 1] =

−6u2 − 3v2 = −3(2u2 + v2).

The parameters u, v vary in the rectangle R : 0 ≤ u ≤ 2, −1 ≤ v ≤ 1. Now we can write andcalculate the surface integral: ∫

S

∫F · ndA =∫

R

∫F(r(u, v)) ·N(u, v)dudv = −3

∫R

∫(2u2 + v2)dudv =

= −6∫ 1

−1dv∫ 2

0u2du− 3

∫ 1

−1v2dv

∫ 2

0du == −12

∫ 2

0u2du− 6

∫ 1

−1v2dv =

−6[2 · (8/3) + 2/3] = −32− 4 = −36.

PROBLEM 9.6.5

Compute the surface integral for F = [x− z, y − x, z − y] and S being a portion of the cone

r(u, v) = u cos vi + u sin vj + uk, u, v in rectangleR : 0 ≤ v ≤ 2π, 0 ≤ u ≤ 3.

Solution. We have

ru = [cos v, sin v, 1], rv = [−u sin v, u cos v, 0],

and a normal vector N 6= 0 of the cone

N = ru × rv =

∣∣∣∣∣∣∣i j k

cos v sin v 1−u sin v u cos v 0

∣∣∣∣∣∣∣ = −u cos vi− u sin vj + uk = −u[cos v, sin v,−1].

On SF(r(u, v)) = F(S) = [u cos v − u, u sin v − u cos v, u− u sin v] =

u[(cos v − 1)i + (sin v − cos v)j + (1− sin v)k].

Hence

F(r(u, v)) ·N(u, v) = u[cos v − 1, sin v − cos v, 1− sin v] · (−u)[cos v, sin v,−1] =

−u2[cos v(cos v−1)+sin v(sin v−cos v)+sin v−1] = −u2(1−cos v− sin v cos v+sin v−1) =

−u2(sin v − cos v − sin v cos v).

The parameters u, v vary in the rectangle R : 0 ≤ v ≤ 2π, 0 ≤ u ≤ 3. Now we can write andcalculate the surface integral:∫

S

∫F · ndA =

∫R

∫F(r(u, v)) ·N(u, v)dudv =

−∫R

∫u2(sin v − cos v − sin v cos v)dudv =

= −∫ 2π

0(sin v − cos v − sin v cos v)dv

∫ 3

0u2du =

(−1/3)(∫ 2π

0sin vdv −

∫ 2π

0cos vdv −

∫ 2π

0sin v cos vdv) = (−1/3)(0 + 0 + 0) = 0.

PROBLEM 9.7.1

Find the total mass of the mass distribution of the density

σ = x2 + y2 + z2

in the box T : |x| ≤ 1, |y| ≤ 3, |z| ≤ 2.

Solution. The required total mass M is given by the triple integral

M =∫ ∫

T

∫σ(x, y, z)dxdydz =

∫ 2

z=−2dz∫ 3

y=−3dy∫ 1

x=−1(x2 + y2 + z2)dx =

∫ 2

−2dz∫ 3

−3dy∫ 1

−1x2dx+

∫ 2

−2dz∫ 3

−3y2dy

∫ 1

−1dx+

∫ 2

−2z2dz

∫ 3

−3dy∫ 1

−1dx =

= 4 · 6 · 23

+ 4 · 2 · 2 · 32 + 6 · 2 · 163

= 16 + 144 + 64 = 224.

PROBLEM 9.7.13

Evaluate the surface integral for F = [x2, 0, z2] over the surface of the box T : |x| ≤ 1, |y| ≤3, |z| ≤ 2.

Solution. We haveF1 = x2, F2 = 0, F3 = z2.

Hence the divergence of F = [F1, F2, F3] is

div F =∂F1

∂x+∂F2

∂y+∂F3

∂z= 2x+ 2z.

By the divergence theorem, the desired surface integral equals a triple integral over the boxT ∫

S

∫F · ndA =

∫ ∫T

∫div FdV =

2∫ ∫

T

∫(x+ z)dxdydz = 2

∫ 2

z=−2dz∫ 3

y=−3dy∫ 1

x=−1(x+ z)dxdydz =

∫ 2

−2dz∫ 3

−3dy∫ 1

−1xdx+

∫ 2

−2zdz

∫ 3

−3dy∫ 1

−1dx = 0.

PROBLEM 9.7.15

Evaluate the surface integral for F = [cos y, sinx, cos z] over the surface of the cylinder Sconsisting of the cylinder x2 + y2 = 4 (|z| ≤ 2) and the circular disks z = −2 and z = 2(x2 + y2 ≤ 4)

Solution. We haveF1 = cos y, F2 = sinx, F3 = cos z.

Hence the divergence of F = [F1, F2, F3] is

div F =∂F1

∂x+∂F2

∂y+∂F3

∂z= − sin z.

Introducing the polar coordinates

x = r cos θ, y = r sin θ (cylindrical coordinates r, θ, z)

we havedxdydz = rdrdθdz,

and by the divergence theorem, the surface integral is transformed to a triple integral over theclosed region T in space whose boundary is the surface S of the cylinder of radius 2 and height4,∫S

∫F · ndA =

∫ ∫T

∫div FdV = −

∫ ∫T

∫sin zdxdydz = −

∫ 2

z=−2sin zdz

∫ 2

r=0

∫ 2π

θ=0rdrdθ = 0.

PROBLEM 9.8.1

Verify basic property of solutions of Laplaces equation for f(x, y, z) = 2z2 − x2 − y2 and S thesurface of the box T : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 4.

Solution. SetF = grad f = [−2x,−2y, 4z].

Then

div F = div grad f =∂2f

∂x2 +∂2f

∂y2 +∂2f

∂z2 = ∇2f = −2− 2 + 4 = 0,

so that f(x, y, z) = 2z2 − x2 − y2 is a harmonic function.Now calculate directly the surface integral over the sixe successive sides of the surface of the

box T beginning from its upper side parallel to the x, y-plane and situated in the plane z = 4,then taking the opposite side in the plane z = 0 etc.:∫

S

∫ ∂f

∂ndA =

∫S

∫ ∂f

∂z

∣∣∣∣∣z=4

dxdy −∫S

∫ ∂f

∂z

∣∣∣∣∣z=0

dxdy+

∫S

∫ ∂f

∂x

∣∣∣∣∣x=1

dydz −∫S

∫ ∂f

∂x

∣∣∣∣∣x=0

dydz+

∫S

∫ ∂f

∂y

∣∣∣∣∣y=2

dxdz −∫S

∫ ∂f

∂y

∣∣∣∣∣y=0

dxdz =

4 · 4 · 2− 0 + (−2) · 8− 0 + (−4) · 4− 0 = 0.

PROBLEM 9.8.3

EvaluateI =

∫S

∫F · ndA, F = [x, z, y]

over the hemisphere S : x2 + y2 + z2 = 4, z ≥ 0 by the divergence theorem.

Solution. We have

F = [x, z, y], F1 = x, F2 = z, F3 = y.

The divergence of F is

div F =∂F1

∂x+∂F2

∂y+∂F3

∂z= 1 + 0 + 0 = 1,

and, by the divergence theorem,

I =∫ ∫

T,one half of ball

∫div FdV =

∫ ∫T

∫dxdydz =

12· 4

3π23 =

16π3.