27
Aalborg Universitet Zeebrugge Model wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.; Frigaard, Peter Publication date: 2000 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Jensen, M. S., & Frigaard, P. (2000). Zeebrugge Model: wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current. Hydraulics & Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: May 09, 2020

Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Aalborg Universitet

Zeebrugge Model

wave runup under simulated prototype storms (II) and the influence on wave runupintroducing a currentJensen, Morten S.; Frigaard, Peter

Publication date:2000

Document VersionPublisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):Jensen, M. S., & Frigaard, P. (2000). Zeebrugge Model: wave runup under simulated prototype storms (II) andthe influence on wave runup introducing a current. Hydraulics & Coastal Engineering Laboratory, Department ofCivil Engineering, Aalborg University.

General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright ownersand it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policyIf you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access tothe work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 09, 2020

Page 2: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Aalborg Universitet

Zeebrugge Model

Jensen, Morten Sand; Frigaard, Peter Bak

Publication date:2000

Link to publication from Aalborg University

Citation for published version (APA):Jensen, M. S., & Frigaard, P. (2000). Zeebrugge Model: wave runup under simulated prototype storms (II) andthe influence on wave runup introducing a current. Aalborg: Hydraulics & Coastal Engineering Laboratory,Department of Civil Engineering, Aalborg University.

General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright ownersand it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policyIf you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access tothe work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: October 30, 2014

alex
Gul seddel
Page 3: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

COMMISSION OF THE EUROPEAN

COMMUNITIES

MAST III

o c..

w

THE OPTIMISATION OF CREST LEVEL DESIGN OF

SLOPING COASTAL STRUCTURES THROUGH PROTOTYPE

MONITORING AND MODELLING

OPTICREST MAS3-CT97-0ll6

FINAL EDITION

Zeebrugge model:

- W ave run up under simulated prototype storms (II)

- The influence on wave run-up introducing a current

Morten Sand Jensen Peter Frigaard

September 2000

HYDRAULICS & COASTAL ENGINEERING

LABORATOR Y

AALBORG UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERIN G

SOHNGAARDSHOLMSVEJ 57 DK-9000 AALBORG DENMARK

TELEPHONE +45 96 35 80 80 TELEFAX +45 98 14 25 55

Page 4: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

HYDRAULICS & COASTAL ENGINEERING LABORATORY AALBORG UNIVERSITY

l Intro d uction

DEPARTMENT OF CIVIL ENGINEERING SOHNGAARDSHOLMSVEJ 57 DK-9000 AALBORG DENMARK

TELEPHONE +45 98 35 80 80 TELEFAX +45 98 14 25 55

In the following, results from model tests with Zeebrugge breakwater are presented. The ob­jective with these tests is partly to investigate the infiuence on wave run-up due to a changing waterlevel during a storm. Finally, the infiuence on wave run-up due to an introduced langshore current is investigated.

All model tests are performed in august year 2000 at the 3D wave facilities at the Hydraulks and Coastal Engineering Laboratory, Aalborg University (AAU).

Layout of the scale model in 1:40 and the details aregiven in /1/. Figure l shows the model of Zeebrugge Breakwater during a test.

Figure 1: A pieture oj a run-up event in the laboratory.

Page 5: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

2 Simulation of prototype storms

The storm events recorded at Zeebrugge Breakwater the 6-7 November 1999 are analyzed fol­lowing the specifications given in /2/.

Each storm are divided into five sessions to simulate the changing waterlevel throughout the storm. This results in a total of 10 storm events. The reproduction of the spectra were per­formed with the correct waterdepth and repeated until an acceptable correspondence between the prototype spectrum and model spectrum was obtained.

Foliowing table describes the storm sessions reproduced in the basin. Results from the model tests are given in prototype values. The target waterlevel (TWL) or still-waterlevel simulated is taken as the mean waterlevel (MWL) measuredat the site of the prototype.

Figure l to 4 shows a comparison between the spectra.

PROTOTYPE MODEL Storm no.ltime Hmo[m] Tp[sec.) To1[sec.) Hmo[m] Tp[sec.) Tol[sec.) H.[m] Tm[sec.]

8l9h30-10h30 2.31 7.2 5.6 2.43 7.2 6.0 2.35 6.1

8l10h30-llh30 2.75 7.2 5.9 2.76 7.2 6.1 2.70 6.1

8 l llh30-13h30 2.99 7.2 6.3 3.12 8.0 6.6 3.10 6.7

8 l 13h30-14h30 2.90 7.2 6.2 2.88 7.2 6.7 2.82 6.6

8l14h30-15h30 2.49 7.2 6.1 2.38 7.2 6.3 2.37 6.5

9 l21h45-22h45 2.49 8.9 6.0 2.42 7.2 6.2 2.42 6.2

9l22h45-23h45 2.60 7.2 6.1 2.52 7.2 6.4 2.44 6.4

9l23h45-01h45 2.59 7.2 6.1 2.61 8.9 6.4 2.51 6.4

9 I01h45-02h45 2.54 8.9 6.1 2.40 8.9 6.4 2.35 6.1

9 I02h45-03h45 2.14 8.9 5.7 2.08 8.0 5.9 2.05 5.9

These wave characteristics are measured at the position of Waverider l. In total 79 tests were performed until acceptable correspondence with the spectra of the 10 storm events were obtained. Later in this report the results from these tests will be presented.

2.1 Presentation of run-up results

The stepgauge yielded almost identical run-up values from the "Sum" and "Max" signal. In the foliowing the results are based on the "Sum" signal. The run-up is related to the MWL as deseribed in /1/. It is noted that the corrections due torelating the run-up to the MWL was no morethan 0.2 m in prototype value. In the foliowing table the run-up results for 2% exceedence probability are given. Run-up and run-down results at other characteristic levels of exceedence probabilities aregiven in the end of this report.

2

Page 6: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

~ ., :!! -~ "' 5 "O

]

l

12

IO

2

Storm 8: Nov. 6, 1999 09:30-10:30

---------- -------- ------- --- -- -- ---- -- -- -- -- -- ---1 l l

l l l l l

--- - -- ---L---- - --- - L----- --- -L---------L---------1

l

l

------- -- L-- -

l l 1 - Prototype 1

l : - Laboratory f - ----L---------L- ----- ---L-------- -

1

l l

-- - - -----L-- ---- -L----- - - --L- ------ --L--- - - - - - -

l

l l l l

- ---- ----L- - - --- L--- - --- -- L-------- -L ---------1 l

l

--- ---- --L -1

l

o+-----~~----+-~~~=s~--~----~ 0.00

12

10

6

6

4

2

0. 10 0.20 0.30 0.40 0.50

Frequency [Hz)

Storm 8: Nov. 6, 1999 l 0:30-11 :30

-------- --- --- --- -- ----- -- ----- ------ ------------1

l '

--- ------L--- ---- --L----- --- -L--- - - -- -- L------- -- 1 l l t 1

l

---------L.- -1

l

l

- - - ---- --l.- -l

l

- ----- ---L-

l

-- -- -----L l

, - Prototype ,

' ; - Laboratory :

- - -- -L--- --- - -- L--- - --- -- L- --------1 l l

' ---- -L----- ----L --------- L-- ----- --1 l

l l '

-- -L---------L------ ---L ---- - -- -- 1

' --- -- - ---L------ -- -L------ -- -1 l

0~=---~------~--~~~~==~------~ 0.00 0 .10 0 .20 0.30 0 .40 0.50

Frequency [Hz)

Storm 8: Nov. 6, 1999 11:30-13:30

12 - ---------- - - -- - ------ ----- --- --- - -- - - -------- - -

l l l l

IO -- --- -- -- l- -l

- ----L---- -- -- - L---- -----L----- - -- - 1 l l

1 - Prototype 1

l ; - Labaratory :

6 ------- --L- - -----L-------- -L----- - --- L---------1 l l l

l l

l

6 ------ ---L ----L----- - --- L------ ---L- ------- -1 l l l l

l

4 ----- ----L ---L-- - -- --- -L------- - -L------- --1 l l

' t l l l

2 -L---- -- - --L------- --L -------- - 1 l l l l

o~~~~------+-~~~~~==~----~ 0.00 O. IO 0.20 0.30 0 .40 0.50

Frequency [Hz)

Figure 2: Simulatedspectrum and prototype spectrumfor storm 8- 09h30-13h30.

3

Page 7: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

1f "' :!! ~ ·~

.::!

l m

12

JO

o

6

4

Storm 8: Nov. 6, 1999 13:30-14:30

' ' --- ---- --~ -- - ----- -'------- ---'--- -------'--- -- -----'

. l

--- ----- -'--

l l l 1 - Prototype 1

: - Labaratory :

----- '------- --- '- -- --- - -- -'-- --------1 l

' l l _ _ - - -L . - • - - _ __ _ l. - ••• ___ __ L _ • - _ •• - _ -

l l

l

-- --'------ --- -'----------'- - --------' l

1

L -----· -- '- ----- -- -- ~

o+-~~~~-------r--~~~~a---~------~ 0 .00 0 .1 0 0 .20 0 .30 0.40 0.50

Frequency [Hz]

Storm 8: Nov. 6, 1999 14:30-15:30

12 -- --- ---- ----- ---------- ---- --- ---------- -- -- ----1 l

l l

10 ---- --- ·- '- --- --'---- ----- '- -----' l ' - Prototype l

; - Laboratory : ' l '

- --------'-- -- - -- ---'---- -- -- - -~------ ---'----------1

l ' l

6 --- ------ 1 -'---------- '- ----- -- --L ---------1

' l

-----'------ -- - -~---- - - -- - '- ---- --- --1

l ' l

2 -- - '------- -- -'----- ---- - '---------- ' l l

0 .20 0.30 0.40 0.50

Frequency [Hz]

Figure 3: Simulated spectrum and prototype spectrumfor storm 8 - 13h30-15h30.

4

Page 8: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

u .., "' :! .~ 5

-o

l Cl)

u .., "' !l ·~ <l ., -o ] 3 o.

Cl)

~ "' 1! .~ 5 -o

] !l o.

Cl)

Storm 9: Nov. 6, 1999 21:45-22:45

6 --- -- ------- ---------- ----- -- ---- ----- ----- ---- --1 l

l l

5 - ---- -- --L---- -----L- --- -----L----- --- - L-------- -1 l l l l l

1 1 - Prototype 1

1 : - Labaratory : 1

4 -- ---L---------L-- ----- - -L - -------- 1 l l l l

l

3 - ----L---------L---------L --- ----- - 1 l l l

l l

2 -L- -- - -- --- L-- -------L----- -- - - 1 l l

l

o~==~~~-------1--------+-~==~~==~--~ 0.00

6

5

4

3

2

0. 10 0.20 0.30 0.40 0 .50

Frequency [Hz)

Storm 9: Nov. 6, 1999 22:45-23:45

----------- - -------------------------------------1 l l

l l l l l l

---------L- --- ---- - L-- - --- ---L- ----- -- -L ------ ---1 l l l l

1 - Prototype r 1

: - Labaratory : --- - L------ ---L------- --L- ------ -- 1

l l l l l

l ' -- -L-- ------ -L--- ---- - -L--------- 1

l l l

l l

-L-- - --- -- -L -- ---- - - - L-- - - -----1 l l l

-----L---------L---------1 l

o~==~~~------~------~~~~~~~----~ 0 .00 0.10 0.20 0.30 0.40 0.50

Frequency [Hz)

Storm 9: Nov. 6, 1999 23:45-01:45

6 ------------------- ----------------------------- -1

l

5 --- ---- -L- ------ -- L----- ----L--- --- ---1 l l l

1 - Prototype 1

; - Labaratory : - ----L - ----- - - -L---------L--------- 1

l l 4

l l l l

3 --------- - - - L--- ------L-------- - L- -- ------1 l l

' 2 L- - --- -- - - L--- - -----L---------1

l

---- - L---- -- - - -L---- - -- - -1 l l

0~==~~~-----+----~~~~~F=~--~ 0.00 0.10 0.20 0.30 0 .40 0.50

Frequency [Hz]

Figure 4: Simulated spectrum and prototype spectrumfor storm 9 - 21h45-01h45.

5

Page 9: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Stonn 9: Nov. 7, 1999 01:45-2:45

6 ------------- ------------------ --- ------ ------ ---

5

3

2

l l l l

-- -- -----L -- ---- - - -L -------- -L- - - -- - - --L - --- - ----

' l

1 l 1 - Prototype 1

: - Labenotory : --------~---------L---------L---------

l

l l l

---L---- ----- L---------L---------1 l

l l

l l

L--- ------L -------- - L - - --- ----

l l

L --- __ --- - L ---------1

o ~==~C--r-------+------~~~~=:r===~~ 0.00 O. IO 0.20 0 .30 OAO 0 .50

Frequency [Hz]

Stonn 9: Nov. 6, 1999 2:45-3:45 6 ------------------- -------- ---- ---- -- ----------- -

l

5 -- - -- - ---L---- -----L---------~---- - - - - -L - -------- 1 l

1 1 : - Prototype 1

4 - - ---- ---~ - -- - --- --~ - -- - ---- -~ =-=-- :-a~~to_?'_ ~ - - - - - - - - - :

' 3- - --- - - -- - - L ---- .. • -L----- - -- _l_ - -- -- ----- '

l

2

' l '

--- ---L ----- --- -L--------- ' l l

o -1-~--c~-+--­

o.oo 0.10 0 .40 0.50

Frequency [Hz]

Figure 5: Simulated spectrum and prototype Spectrum for storm 9 - 01h45-03h45.

6

Page 10: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Storm no./time TWL[m) Ruru,2%[m) Ruru,2%/ Hmo [-)

8/9h30-10h30 3.45 4.13 1.70

8/10h30-11h30 4.53 4.14 1.50

8/ 11h30-13h30 5.28 4.24 1.36

8/13h30-14h30 5.01 4.15 1.44

8/14h30-15h30 4.28 3.93 1.65

9 / 21h45-22h45 3.26 4.11 1.70

9 /22h45-23h45 4.16 4.23 1.68

9/23h45-01h45 5.11 63.34 1.28

9 / 01h45-02h45 4.71 3.53 1.47

9 /02h45-03h45 3.89 3.49 1.68

The Hydraulic Labaratory in Aalborg and Flanders Hydraulic (FCFH) have both simulated the prototype storms 8 and 9. Themodel at FCFH was made in 1:30. Figure 6 shows themodel results for 2% wave run-up compared with the prototype measurements.

3.0

2.5

2.0 ......, ~

~· 1.5 ~

~4 p::

1.0

0.5

0.0 2

• •

• •

• Zeebrugge - prototype results

.. Laboratory - FCFH

• Laboratory - AAU

3

Storm 8 & 9

• • • •

• • • .. .. l ..

4

Target waterlevel [m]

• • • •

.. • • ..

• •

5

Figure 6: Relative run-up results measured in labaratory and in prototype.

6

It is observed that the labaratory tests at AAU and FCFH yields results at the same level of relative run-up. The prototype values are significant larger than the results from the models. The tendency of larger relative run-up for lesser waterdepth is seen in themodel from AAU and in the prototype results.

It should be noted that the correspondence between prototype tests and model test is best in the range of a relatively high target waterlevel.

7

Page 11: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

2.2 Comparison to former tests at AAU

Schlutter et al. 1999 reproduced the storms l to 5 at the peak event in the labaratory at AAU. The condusion was that these run-up measurements came very dose to the run-up results done at Zeebrugge. A condusion which can not be made from figure 6.

The model was originally build in march 2000 and not rebuild prior to these current tests. Differences could be expected due to small changes in the breakwater geometry or change of piacement of the rubble mound units in the breakwater. In arder tovalidate the tests performed under this subtask the prototype storm recorded the 7 February 1999 is reproduced.

Figure 7 shows the spectrum simulated in the labaratory compared to the spectrum of the prototype storm of the 7 February 1999. In total 8 tests were simulated befare an acceptable spectra and Hmo was obtained.

Storm l: Feb. 7, 1999 16:00-18:00

12 ---- - - ------- --- -- ----------- -- ----------··---- -

IO

2

1 l l

l

l l l

---- --- -~----- -- --L------- -- L-- - ------ 1

- '-1

l l l

1 - Prototype 1

: - Labaratory ; ~ -L

l

__ l ____ __ __ __ l

l

- -------L------ - - -L------- - -L--------- 1 l l l

l

l

- -- - -L - - -- --- - - ----------L-------- - l l l l l

l l

- -L - --- - --- ' l

l l

o ~==~~------~--~~~~---+----~' 0.00 0 .10 0.20 0 .30 0.40 0.50

Frequency [Hz]

Figure 7: The reproduced spectrum o f the peak storm event 7 February, 1999 16h00-18h00.

A comparison of the relative run-up plotted against Hm0 , measuredat the position of Waverider I, is seen in figure 8.

8

Page 12: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

2 tSI

1!

~/

Storm l 2.0 ..,..------------ ------------,

1.5

••

1.0

0 .5

• Test performed by Scblutter et al. 1999

• Cwreat tests - september 2000

• •

• • -•

0.0 +---..----,,-----r---,---.----,---..,.------1 2.0 2.5 3.0

H.".(m]

3.5 4.0

Figure 8: Comparison o f the relative run-up between current and former tests performed at AAU.

About 10 % smaller run-up is obtained compared to the former tests. The same method of analysis has been carefully followed as well as the same software used. This difference is not significant and most likely due to small changes in the breakwater model or the simulated spectrum. Furthermore, the parameter 2% run-up is a sensitive parameter.

This stormevent has a target waterlevel at 5.07 m. A relatively high level, where the difference between prototype and model is less significant .

2.3 Sensitivity related to permeability of the rubble mound slope

In the foliowing the infl.uence of "permeability" of the slope was investigated. Test l is performed under the same conditions as the originally breakwater. In test 2 the spaces between the units under the stepgauge is partly filled with smaller stones. During test 3 all the units are placed so practical no space between the units was present . The wave elimate at Waverider l can be deseribed with the foliowing spectral values Hm0 =2.35 m, T11= 8.00 sec. and To1 = 6.15 sec .. The target waterlevel was 5.28 m. The tests were performed twice and all with the same stored wavegenerating signal.

Test no. Ruru,2%/ Hmo [-]

l 1.39

l 1.38 2 1.60 2 1.60

3 1.79

3 1.81

9

Page 13: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

As expected an increase in run-up is observed. Clearly, run-up is very sensitive to the "perme­ability" of the slope. An increase of 30 % is observed from test l to test 3. Adjusting the run-up results depicted in figure 6 by increasing them with 30 % and figure 9 can be made.

Storm 8 & 9

3 .0 ....----------------------------,

::::::: ~l

~ _,l ~

2.5

• • • • • • 2.0 • • l

• 1.5

• Zeebrugge- prototype

• Laboratory • AAU

1.0 -1----.-----,..-··--~- ·--,--3 4 5

Target waterlevel [m]

. •

6

Figure 9: The "adjusted" relative run-up measured in labaratory compared to prototype results.

A good agreement between prototype data and "adjusted model" data is now observed.

2.4 Further analysis of wave run-up

In total 87 tests were performed during this subtask. This data are basis for the foliowing graphs showing the relative run-up results plotted against the spectral width parameter and the Irribarren number.

The spectral width and Irribarren parameter are calculated on basis of the wave Spectrum measured close to the breakwater (wavegauge Ze7) and not the position of Waverider l. For calculation of the Irribarren number the wave parameters Hmo and To1 are used.

The results are seen in figure 10 and figure 11.

lO

Page 14: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

~ ~a

Il &,J.

2.5

2.0

1.5

1.0

0.5

0.0 3.0

• • • •• •

• • • • • • • • • • • • • • • .. .. . ... • • • • • • • • -•• • • • • •• . .. , • • • • • • •• • • • l • • • • •

• Runup measurements - september 2000

3.5 1.0

lrribarren number [-]

•• • • • •

1.5

Figure 10: The relative wave run-up versus the Irribarren number.

2.5

2.0 -

1.5

1.0 -

0.5

0.0 0.2

• •

• • • •

• • • •• • ••• . :,•: . . ~ .. ·~ . l. . -:. . . . , .. . . ., . . .

• • •

• l

• • •

• Runup measurements - september 2000

0.3 0.1 0.5

Spectral width [-)

• • • •

• • • •

0.6

5.0

0.7

Figure 11: The relative wave run-up versus the spectral width parameter.

11

Page 15: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

3 Run-up tests with a simulated current

A langshore current was simulated in the labaratory with the aim to investigate the effect on wave run-up. A pumping system were instalied in the laboratory, see figure 12.

Figure 12: A system of pumps generated the current in the laboratory.

In total 10 test were performed. The wave direction of the waves and strength of the current were varied. The current is a mean averaged value and measured by two propeller. A realistic profile was made by directing the flow of water through some baskets filled with stones. A Jonswap Spectrum with the parametres Hmo = 3.0 m and T p = 7 sec. was used and the MWL was 3.0 m. In the foliowing table the results are given and figure 13 shows the results from the test. Both H mo measured at waverider l and close to themodel (wavegauge ze7) are given.

Cur.[m/s] Dir. [deg] Hmo,wt[m] Hmo,ze7[m] Ruru,2%[m] Ruru,2%/ Hmo,wl[-] Ruru,2%/ Hmo,ze7[-] l. O o 2.90 3.38 4.73 1.63 1.40

l. O o 2.98 3.42 4.68 1.57 1.37

l. O 15 3.24 2.95 4.31 1.33 1.46

l. O 15 3.34 3.20 4.74 1.42 1.48

0.5 15 2.90 2.63 3.44 1.19 1.31

0.5 15 2.90 2.54 3.46 1.19 1.36

0.5 o 2.92 2.61 3.44 1.18 1.32

0.5 o 2.97 2.62 3.48 1.17 1.33

0.0 o 2.95 3.58 4.30 1.46 1.20

0.0 o 2.96 3.55 4.44 1.50 1.25

It is observed that the relative run-up is affected by the current, see figure 13. If one concentrates on the relative run-up events close to the breakwater an increase in the relative run-up is seen. Also from the sparse data the angle of attack seems to have no significant effect.

12

Page 16: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

2.0

1.5

.......

...!...

e:;• 1.0

~ ;:l .:f

ø:::

0.5

0.0

8

• • l ~

o o

o H .. measured at WRl, dir.: O deg.

o H .. measured at WRl , dir.: 15 deg.

• H .. measured at Ze7, dir.: O deg.

• H .. measured atZe7, dir.: 15 deg.

,-·---,--·--, ----.------,-----.---1 0.0 0.5 1.0 1.5

Mean current velocity [m/sec.]

Figure 13: Run-up results with a simulated current.

The relative run-up of reference, i.e tests with no introduced current, were expected to be somewhat higher than 1.5. If figure 6 is observed with a waterlevel of 3 m avalue of 1.7 seems likely. A reason for this could be that some wave breaking was observed. The target waterlevel was slightly lower than compared with the storm events.

/1/ Frigaard, P., et al., October 1999. "Bremen Workshop, Run-up". OPTICREST, MAS3-CT97-0116.

/2/ Frigaard, P., Schlutter, F. , June 1999. "Labaratory Investigations - Methodology. ". OPTI­CREST Research report, Aalborg University, MAS3-CT97-0116, Final version.

13

Page 17: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

4 Results of run-up and run-down for the simulated storms

Storm no./time TWL(m] Hmo [m] Ruru,2%[m] Ruru,5% (m] Ruru,lO% (m] Ruru,50% (m] 8/9h30-10h30 3.45 2.31 4.13 3.75 3.68 1.59

8/10h30-11h30 4.53 2.75 4.14 3.75 3.52 2.53

8 l 11h30-13h30 5.28 2.99 4.24 3.78 3.39 2.50 8/13h30-14h30 5.01 2.90 4.15 3.76 3.51 2.08

8 l 14h30-15h30 4.28 2.49 3.93 3.69 3.02 2.04

9/21h45-22h45 3.26 2.49 4.11 3.92 3.54 1.46

9 /22h45-23h45 4.16 2.60 4.23 3.95 3.28 2.21

9/23h45-01h45 5.11 2.59 3.34 3.17 2.98 1.86

9 /Olh45-02h45 4.71 2.54 3.53 3.34 3.06 2.11

9 /02h45-03h45 3.89 2.14 3.49 3.37 3.26 1.89

Storm no.ftime TWL(m] Hmo [m] Rurd,2%[m] Rurd,5% (m] Rurd,lO% (m] Rurd,50% (m] 8/9h30-10h30 3.45 2.31 1.18 1.16 1.13 0.91

8/10h30-llh30 4.53 2.75 2.06 1.92 1.74 1.35

8 l llh30-13h30 5.28 2.99 2.43 2.14 2.06 1.28 8/13h30-14h30 5.01 2.90 2.47 2.42 2.23 1.82 8/14h30-15h30 4.28 2.49 2.22 2.04 1.86 1.28 9/21h45-22h45 3.26 2.49 2.31 2.19 2.01 1.14

9 /22h45-23h45 4.16 2.60 1.82 1.75 1.66 1.06 9 l 23h45-0 l h45 5.11 2.59 2.21 2.07 2.02 1.51

9 /01h45-02h45 4.71 2.54 1.99 1.88 1.80 1.39 9 /02h45-03h45 3.89 2.14 1.57 1.54 1.37 0.74

14

Page 18: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100

~ o

= .ci 10 o ...

Q. Q) o c: Q)

"C Q)

B >< w 1

!Ji\ -f o ~ve vt.l'i-

-3 -2

Data file

Incident Hmo (m)

Peak oove period (s)

Z101a.006

2.43

7.2

Mean incident angle (deg)

Energy spreading angle (deg)

Number of ooves

1- wa-..egauge. -steP{3~: M8ximum - Step gauge: Sum l

Il ~ -~ ~

\ ~ j

f \, l

-1 o 1 2 3 4 5 6 Ru or Rd (m)

Hydraulics and Coastal Engineering Laboratory

Department of Ci~l Engineering

Aalborg Uni-..ersity

Project tit/e ---Dra'M'tby ---Date --Remarks

OPTICREST

11- 1()..00

o o 589

7 8

Page 19: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100

~

= .c:i 10 o ... a. Cll o c Cll

"C Cll Cll

~ w

lit::% "'O~o~ye "1?-l'i.

Data file

Incident Hmo (m)

Peak oove period (s)

Z101b.013

2.76

7.2

Mean incident angle (deg)

Energy spreading angle (deg)

Number of ooves

1- W ave gauge - Step Gauge: Maximum - Step gauge: Sum l

-3 -2 -1 o

Hydraulics and Coastal Engineering Labaratory

Department of Ci\11 Engineering

Aalborg Universily

2 Ru or Rd (m)

Project tit/e

DralMl by

Date

Remarks

3 4 5 6

OPTICREST

11-10-00

o o 552

7 8

Page 20: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100

~ o 1: 10 .å o ... c.. Q) o r: Q)

"C Q) Q) o )(

1

w

0.1

'(' .......

<{ "' {(/.0~G UNI\f€'~1!'

...

<1o NYE vE.lt.

Data file Z101c.007

Incident Hmo (m) 3.12

Peak wave period (s) 8.0

Mean incident angle (deg)

Energy spreading angle (deg)

Number of waves

o o 1089

1- W ave gauge - Step Gauge: Maximum - Step~: Sum l

v v

J )

:/ l-/

li -3 -2 -1 o

Hydraulics and Coastal Engineering Labaratory

Department of Ci\11 Engineering

Aalborg University

~

"' ~

\~ 1---

~ 1---. 2 3 4 5 6

Ru or Rd (m)

Project tit/e OPTICREST

Dra'M'! by

Date 11- 10-00

Remarks

7 8

Page 21: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100 --

<t. c:

.å 10 o ...

a.. -Q) () c: Q)

"C Q)

B >< w 1

-3

11-0~gG UN/vi;'~<l'

" ...... ... "' '{ ...

""0 NYE vE.)~

l f

v

l

Data file Z101d.012

Incident Hmo (m) 2.88

Peak wave period (s) 7.2

Mean incident angle (deg)

Energy spreading angle (deg)

Number of waves

1- W ave gauge - Step Gauge: Maximum - Step gauge: Sum l

C-tr ~

~ ~ \

1\ ~ ~

o o 523

-----2 -1 o 1 2 3 4 5 6

Hydraulics and Coastal Engineering Laboratory

Department of Ci\11 Engineering

Aalborg Universily

Ru or Rd (m)

Project lille --

DraM by ---Date ---Remarks

OPTICREST

11- 10-00

i

7 8

Page 22: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100

~ .~

.c 10 o ....

o.. Q) o c Q) 'O Q) Q) o >< w

----

w:.\ -1o NYE y~ l~

Data file Z101e.004 Mean incident angle (deg)

Incident Hmo (m) 2.38 Energy spreading angle (deg)

Peak wave period (s) 7.2 Number of waves

1- W ave gauge - Step Gauge: Maximum - Step gauge: Sum ~

-3 -2 -1 o

Hydraulics and Coastal Engineering Labaratory

Department of Ci-.11 Engineering

Aalborg University

2 Ru or Rd (m)

Project tit/e

Drawnby

Date

Remarks

3 4 5 6

OPTICREST

11-10-00

o o 564

7 8

Page 23: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100

?;'!.

= .ri 10 e a.. Q) () c Q)

"O Q) Q) () )(

w

'il.\ ~o Nye vE.l~

-3

Data file Z102a.007

Incident Hmo (m) 2.42

Peak wave period (s) 7.2

Mean incident angle (deg)

Energy spreading angle (deg)

Number of waves

1- Wa-..e gauge - Step Gauge: Maximum - Step gauge: Sum~

~ ----..

·~ ~ ~

J \ ~

l ' ~ l

-2 -1 o 2 3 4 5 6 Ru or Rd (m)

Hydraulics and Coastal Engineering Laboratory

Department of Cillil Engineering

Aalborg Uni-..ersity

Project ti t/e

Drawnby

Date

Remarks

OPTICREST

11- 10-00

o o 546

7 8

Page 24: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100 ---

-

-<fl. c:

--.ci 10

o .... Q. -Q) -() c: -Q) 'O Q) Q) ()

>< w 1

" Il'..-..... ..: (<\ ri-

0'?-G l!Ntv~'l'

...

""oNve ~E.l~

Data file

Incident Hmo (m)

Peak wave period (s)

Z102b .OOB

2.52

7.2

Mean incident angle (deg)

Energy spreading angle (deg)

Number of waves

1- W ave gauge - Step Gauge: Maximum - Step gauge: Sum l

r ......_

~

~ ( 1\

l ~

~ ~

~ ' ' ' . '

o o 546

::-------........... l l

-3 -2 -1 o 2 3 4 5 6 7

Hydraulics and Coastal Engineering Labaratory

Department of Ci-..11 Engineering

Aalborg Universi ty

Ru or Rd (m)

Projec t tit/e

Drav.n by

Date

Remarks

OPTICREST

11-10-00

8

Page 25: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

~ o

c:

..ci e a.. Q) (.) c: Q)

"O Q)

~ w

Input

100

10 --

1 ----

0.1 -

!Ji\ "'O NYE vE.l~

~ p J

!

Data file Z102c.OOS

Incident Hmo (m) 2.61

Peak wave period (s) 8.9

Mean incident angle (deg)

Energy spreading angle (deg)

Number of waves

[ - W ave gauge - · -St~U"Qe: Maximum - Stepugauge: Sum u--J

v J ~ 1\

. ~ \_ ~ ""' -------

o o 1039

~ -3 -2 -1 o 2 3 4 5 6

Hydraulics and Coastal Engineering Laboratory

Department of Ci'vil Engineering

Aalborg University

Ru or Rd (m)

Project tit/e

Drawnby

Date

Remarks

OPTICREST

11- 10-00

7 8

Page 26: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100 --

";!.

= ..ci E

10 --a.. -Q) o c: Q)

"C Q) Q) o )( w

!Jl\ -1o NYE "~l~

Data file Z102d.008 Mean incident angle (deg)

Incident Hmo (m) 2.40 Energy spreading angle (deg)

Peak v..ave period (s) 8.9 Number of v..aves

1- Wa\oe- gauge- --=step~e: M~fT1~m _::_:_ Step gauge: SurT! --~

--::::?"

---~ ~

~ Ir

~

l

( -3 -2 -1 o

Hydraulics and Coastal Engineering Labaratory

Department of Civil Engineering

Aalborg Uni'Ærsity

1 2 3 Ru or Rd (m)

Project tit/e ---Dra'Ml by ---Date ---Remarks

\

1\ 4 5 6

OPTICREST

11-10-00

o o 550

7 8

Page 27: Aalborg Universitet Zeebrugge Model wave runup under ... · wave runup under simulated prototype storms (II) and the influence on wave runup introducing a current Jensen, Morten S.;

Input

100

---

-;;e.

= .c 10 o ... a. Q) u 1:: Q)

't:l Q) Q) u >< w 1

w:.\ " 0 NYE "E.lt.

Data file

Incident Hmo (m)

Peak ~M~ve period (s)

Z102e.010

2.08

8.0

Mean incident angle (deg)

Energy spreading angle (deg)

Numberof~M~ves

1- Wa-.e gauge - Step Gauge: Maximum - Step gauge: Sum l

r '---

l l

-3 -2 -1 o

Hydraulics and Coastal Engineering Labaratory

Department of Ci\.11 Engineering

Aalborg Uni-.ersity

~ ~

\

\

2 3 4 5 6 Ru or Rd (m)

Project lille OPTICREST

Dra'MI by

Date 11- 10-00

Remarks

o o 578

7 8