8

Click here to load reader

Aaa92 new

  • Upload
    i2cat

  • View
    219

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Aaa92 new

Paper presented at the session on "VIRTUAL COMMUNITIES",

sponsored by the Society for the Anthropology of Work and the Society of

Psychological Anthropology in the 91th American Anthropological Association

Congress, hold in San Francisco, Dec.2-6, 1992.

CARNEGIE MELLON : AN AMERICAN

COMPUTER UNIVERSITY.

Arturo Serra, Ph.D. School of Computer Science 4615 Wean Hall Carnegie

Mellon University Pittsburgh. PA 15213 Tel.: (412) 268 6128 Fax: (412) 268

5016 E-mail: [email protected].

ABSTRACT.

By content analysis of interviews and written projects gathered in the

community, this study seeks to understand the kinds of cultural knowledge that

support a computer science culture and their differences with other kinds of

cultural knowledge. It also attempts to analyze the meanings of this culture in an

American high technology university. This study is based on two year fieldwork

at Carnegie Mellon University in 1990-1991 as part of a research project

between technologists at CMU and anthropologists from University of

Barcelona. The Centre Divulgador de la Informatica de la Generalitat,

a Catalan public computer company, sponsored the project.

I. CHANGES IN THE ACADEMIC CULTURE: THE

COMPUTER UNIVERSITY.

The topic of this study is the analysis of a North American research university

called Carnegie Mellon as a " computer intensive campus ".

In February 1990 a team of three anthropologists from Barcelona University,

coordinated by professor Maria J. Buxó, arrived at this community in

Pittsburgh, at the invitation of Professor Angel Jordan, a university professor

Page 2: Aaa92 new

of Electrical and Computer Engineering and, at that time, Provost of the

institution. We were interested in information technology, especially in

academic organizations. The building of CMU as a “computer intensive

campus" seemed very innovative to us.

CMU is actually a networked academic community through the ANDREW

system. In the 80s it was the first academic experiment of its kind in the

country. The Andrew system is a distributed computer network connecting each

college, department, and research team in the university. In 1990 there is about

one computer for each member of the university, faculty, students and staff. 90

per cent of faculty use computers to prepare documents, 68 per cent use

electronic mail and 76 per cent use online library information services.

We have tried to understand the so-called "CMU knowledge

revolution". This change has been developed under the influential work of

several CMU professors: among them, Allen Newell, Alan Perlis, Herbert

Simon, Dick Cyert, Raj Reddy, Nico Habermann, Mary Shaw, Angel Jordan.

The Simon's idea of a "sciences of artificial" or "sciences of design", defined by along the last 20 years, is a good expression of this culture.

For this professor, one of the founding fathers of the Artificial Intelligence, the

design activity is a scientific activity and, the scientist, a designer. From a

European point of view, this statement seems extremely interesting. Usually

science and technology inhabit two different kinds of institutions in Europe, the

humanistic-scientific university and the polytechnic one. "Informatique"

lives mostly in the last one as a technological field.

I have just expent two and one half years doing fieldwork in this university in

three different places: the Engineering Design Research Center (EDRC), the

School of Computer Science and the Andrew network. This "virtual

community" is an INTERNET node, now with more than 5,000 bulletin boards,

many of them dedicated to electronic newsletters, courses, organizations, and

electronic debates, both national and international.

During this time, I made 105 interviews of professors, research scientists,

graduates students and staff from the CMU university community as a whole.

Page 3: Aaa92 new

Progressively , I focused my investigation first in the research area of the

university, and then in the School of Computer Science, its main research

center. Finally, I have arrived at two apparently banal but useful conclusions:

First, that the keystone of a research university is their research projects. And

second, that each research project begins with a simple proposal written by a

research team. Then I have designed a methodology to deal with this problem. I

have called it "project analysis".

The basis of this methodology is to try to understand what the goals of a

research activity are, and to consider these goals as the value system of a

research community. The ethnographic model of this kind of community will be

based in its common research projects. We can consider "project analysis"

as a application of the "content analysis"to the technological

communities.

Thanks to the friendly collaboration of Dr. Jordan and other professors, and

thanks to the end of the Cold War too, I had access to the documentation of 30

years of defense sponsored research in this school, particularly its original

proposals. The result has been the study of 21 large research projects in the

four basic research areas in this School: "Artificial Intelligence",

"Programming Systems", "Computer Systems" and

"Theory", and the selection of 150 papers, technical reports,books, and

dissertations of professors, graduate students and researchers of the institution

referred to this topic.

After this search, we learned several interesting things:

First of all, Carnegie Mellon has built a kind of high technology university, or

computer university, based on a core research knowledge in computer science

and technology. This knowledge is extended to the rest of the campus through

education in computer technology skills and a daily practice of networked

research and education.

At a first look, this university seems similar to the traditional American

research university . This dominant model of university was analyzed by Talcott

Parsons and Gerald Platt in a book called "The American University"

published by Harvard University Press in 1973.

Page 4: Aaa92 new

According to these authors, the "American university", or "full

university", is an institution centered on a faculty of Arts and Sciences, that

conceives the research activity as a primary academic function. Research and

education is organized in departments comprised of professors and graduate

students. The Arts and Science faculty is organized in three classical categories:

humanities, natural sciences and social sciences, each of one divided in

well-recognized intellectual disciplines. Usually this kind of university in

America has absorbed the professional schools of law, medicine or engineering,

conceiving them as a kind of applied professional complement to the basic core

knowledge on arts and sciences.

But Carnegie Mellon has different characteristics.

In the first place, during the most part of its existence ,90 years, Carnegie

Mellon has been an institute of technology, not a "full university".

Only from 1967, was the institution born with the union of Carnegie Tech and

Mellon Institute renamed "university". That means that during the most

part of its existence, the arts and sciences have been a complement of technology

to improve the knowledge about the design of new technological systems. In

other words, the relation of science and technology is just the inverse situation

than in the dominant universities of the Ivy League.

Second, the leading faculty at Carnegie Mellon has been engineering, not the

faculty of arts and sciences. That engineering culture has introduced the

“problem solving" mentality as a characteristic feature of this institution.

Nevertheless, after the World War II, an important change happened. The

computer field was organized at Carnegie Tech by mathematicians and social

scientists interested in the new machine, not by engineers. Because of that this

new field was called "Computer Science" in Carnegie Tech.

But, at the same time, this new "science" was very pragmatically oriented

from the beginning. This was one of the reasons why it has been funded for 30

years by a federal entrepreneurial agency, the Advanced Research Project

Agency, now DARPA. For decades this agency has supported a kind of

fundamental technological research in Artificial Intelligence, Programming,

Page 5: Aaa92 new

Computer System and Theory. This field was called Computer Science, but in

fact this community, known as a "Artificial Intelligence ARPA

laboratory" has centered it research in the knowledge about the design of

technological systems, more than in its discovery as in the traditional sciences.

The contradictory term "scientist of design" expresses this paradoxical

situation.

As a result of that context the term "science" has a different meaning in

this community from that in the natural and social sciences.

"Computer Science" at CMU primarily means the creation of knowledge about what kind of computer system the researcher can design and

how he can build it. As an example of it, we will quote the goals of the research

proposal in Artificial Intelligence at CMU called "Basic Research in

Computer Science: Integrated Architectures for Intelligent

Systems"(1990-1993): " The basic scientific results of this research

will be a technical understanding of what types of total system

organizations are capable of integrated intelligent behavior, as well as an understanding of which aspects of the total system belong in

the architecture".(CMU-SCS-Basic Research in CS, 1989:6-1). In other

words, this scientific activity is similar to a technical understanding about new

capabilities of the new systems in construction.

As Allen Newell, one of the founding father of CMU Computer Science

community, said last year in a university conference at the SCS: " Science is

in the techniques... .If a domain cannot get beyond having just

discovering... that science is in fact in a pre-paradigmatic state. It is

in a very early stage. My idea is that discoveries in physics, in

chemistry, in biology all convert routinely into things you can do

later" ("Desires and Diversions", April 12 1991.) Consequently, Newell

spent the last years of his career designing SOAR, a new intelligent architecture.

Discoveries are considered, in the traditional science communities, the

highlights of the discipline. But in Computer Science, at least in CMU,

discoveries are only means to do something different: to increase the knowledge

about what kind of new computer systems are possible and how to design them.

That history began with the invention of the Logic Theory Machine, the first

Artificial Intelligence program in the 50s, and continues now with the design of

Page 6: Aaa92 new

the Mach Operating System in the 80s. In fact, ANDREW was also a CMU

Computer Science project .

The general consensus in CMU defined Computer Science as " the study of the

phenomena surrounding computers". Some professors, such as Herbert Simon,

call it a "science of the artificial". For others it is an "experimental

science". But the problem is that in this so-called "science" the computer

scientist must figure out the new system before discovering its empirical

characteristics. He must be a designer before a scientist. In other words, in

computer science the empirical science comes after, not before, the design

activity.

In this sense, this cultural knowledge is a technological one in its nature, not a

scientific one. Knowledge is design more than discovery, in the

computer intensive campus.

II. IMPLICATIONS: A NEW KIND OF RESEARCH MODEL.

In this kind of university, the computer design activity precedes the science in a

new kind of innovation cycle, driven by the technological activity.

Usually, the traditional innovation cycle defined by the R&D policy experts is

based in the so called Science &Technology system. This cycle begins with the

Science, as the "basic research", and the Technology is conceived as an

"application" of it.

This model was established by Vanevar Bush and adopted by the National

Science Foundation after the World World II. It has been useful for the period

where the physicists had the leadership in academic research. But the Cold War

is over now and in Computer Science this model does not fit very well.

In this computer culture, fundamental or basic design research has been

growing for decades independent of basic science. The innovation process

begins with this design activity and empirical science follows it. In other words,

the computer technology at CMU is not a mere application of the natural or

social sciences, but increasingly its own foundation.

Page 7: Aaa92 new

At the beginning the computer was a simple machine built by mathematicians,

like Pascal or Babbage, as a tool to do calculations. But now mathematicians,

physicists, cognitive psychologists, linguistics, indeed the natural and social

science community are increasingly becoming designers, helping the computer

scientists in building the Universal Machine.

This new research model is redefining what knowledge means in an advanced

information society. In 1988 the Computer Science and Technology Board, a

section of the National Research Council, in a rapport called " The National

Challenge in Computer Science and Technology" said: " Since

computer science is an artificial science (Simon 1981) theoretical computer science plays a very different role within computer

science than, say, theoretical physics plays within physics. Theoretical physics seeks to understand the physical universe, which

exists independently. Theoretical computer scientists seek to

understand all possible architectures or algorithms, which computer

scientists create themselves."

This change in the cultural meaning of a key cultural knowledge of Western

civilization, scientific knowledge, could have enormous consequences in the next

future. We are changing from a natural scientific vision of the world, the world

as a “natural order", to a technological one in which the world is

conceived as a man-made machine, as an artifact.

This presents a great danger and a great challenge to anthropologists. The final

goal of the Computer Science and Technology community is to design the

Universal Machine. In this sense, the new "artificial world" can have the

appearance of a world of sophisticated machines served by human beings.

Usually, anthropology in computer fields is used to help the engineer in

designing a better system.

But we have seen in CMU that, before a machine exists, a human being plans

for it, designs it, projects for it. The computer as a technology comes certainly

before an empirical science of it, but the computer scientist as a human designer

comes before his computer. The anthropologists can show that machines are

human designs done by human designers. In this sense, the artificial world can

have a different meaning: it is not the machine, but the community that builds

Page 8: Aaa92 new

that machine, the world of designers.

As for the applied mathematicians as Turing developed the Universal Machine

model, the applied anthropologists working in computer cultures could develop

a Turing new one we could call: Multicultural Virtual Community . Our goal

would be helping to build new kind of computer-based communities .

Until now the anthropology has adopted the empirical approach of the natural

sciences. Working in the computer cultures, we need now changing to a

computational approach trying to understand, as the theoretical computer

scientists do, not only the cultures that live independently but the possible

virtual communities which the computer anthropologist can promote by itself.

In this sense, the anthropologist working in the computer communities can

become a different kind of designer, a designer of cultural communities.

Arturo Serra.

Pittsburgh, November 30th, 1992.

Some references: Serra,A . 1992. "Design Culture, An ethnographic study on the research projects of the

School of Computer Science of CMU, an American Computer-Intensive Campus". Universitat de Barcelona. Doctoral Dissertation.

Simon,H. 1981, The Sciences of the Artificial. 2n.ed.Cambridge MA. The MIT Press. Simon, H. 1990. Personal interviews. Department of Psychology. (May 1st, Nov 30th, Dec.

17). CMU.