33
GEOTECHNICAL ENGINEERING STUDY  FOR  SATELLITE VIEW DRIVE ROUND ROCK, TEXAS 

AAA16-016-00 Satellite View Drive - Oden Hughes · GENERAL SITE CONDITIONS ... LIME TREATMENT OF SUBGRADE ... analysis for the Satellite View Drive extension in Round Rock, Texas

  • Upload
    buicong

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

GEOTECHNICAL ENGINEERING STUDY  

FOR  

SATELLITE VIEW DRIVE ROUND ROCK, TEXAS 

GEOTECHNICAL ENGINEERING STUDY  

For  

SATELLITE VIEW DRIVE ROUND ROCK, TEXAS 

       

Prepared for  

MN CAPITAL STRATEGIES Birmingham, Alabama 

         

Prepared by  

RABA KISTNER CONSULTANTS, INC. Austin, Texas 

          

PROJECT NO. AAA16‐016‐00  

March 11, 2016

 

 

Project No. AAA16‐016‐00 March 11, 2016   

TABLE OF CONTENTS  

i

INTRODUCTION .......................................................................................................................................... 1 

PROJECT DESCRIPTION ............................................................................................................................... 1 

LIMITATIONS .............................................................................................................................................. 1 

BORINGS AND LABORATORY TESTS ........................................................................................................... 2 

SULFATE TESTING .......................................................................................................................................... 3 

GENERAL SITE CONDITIONS ....................................................................................................................... 3 

SITE DESCRIPTION ......................................................................................................................................... 3 

GEOLOGY ....................................................................................................................................................... 3 

SEISMIC CONSIDERATIONS ........................................................................................................................... 4 

STRATIGRAPHY .............................................................................................................................................. 4 

GROUNDWATER ............................................................................................................................................ 5 

PAVEMENT RECOMMENDATIONS .............................................................................................................. 5 

SWELL/HEAVE POTENTIAL ............................................................................................................................ 5 

SUBGRADE STRENGTH CHARACTERIZATION................................................................................................ 5 

DESIGN INFORMATION ................................................................................................................................. 6 

FLEXIBLE PAVEMENT ..................................................................................................................................... 6 

OPTIONS FOR REDUCING EXPANSIVE SOIL‐RELATED MOVEMENTS ........................................................... 6 

LONGITUDINAL CRACKING CONSIDERATIONS ............................................................................................. 7 Pavement Enhancement Option Utilizing Geogrid ............................................................................... 8 

PAVEMENT CONSTRUCTION CONSIDERATIONS ......................................................................................... 8 

SUBGRADE PREPARATION ............................................................................................................................ 8 

DRAINAGE CONSIDERATIONS ....................................................................................................................... 8 

ON‐SITE CLAY FILL .......................................................................................................................................... 9 

LIME TREATMENT OF SUBGRADE ................................................................................................................. 9 

FLEXIBLE BASE COURSE ............................................................................................................................... 10 

PRIME COAT ................................................................................................................................................ 10 

ASPHALTIC CONCRETE SURFACE COURSE .................................................................................................. 11 

GEOGRID REINFORCEMENT ........................................................................................................................ 11 

MISCELLANEOUS PAVEMENT RELATED CONSIDERATIONS ....................................................................... 11 Utilities .................................................................................................................................................. 11 Curb and Gutter .................................................................................................................................... 12 Pavement Maintenance ....................................................................................................................... 12 Construction Traffic .............................................................................................................................. 12 

CONSTRUCTION RELATED SERVICES ......................................................................................................... 12 

 

 

Project No. AAA16‐016‐00 March 11, 2016   

TABLE OF CONTENTS  

ii

CONSTRUCTION MATERIALS TESTING AND OBSERVATION SERVICES ...................................................... 12 

BUDGETING FOR CONSTRUCTION TESTING ............................................................................................... 13 

 ATTACHMENTS 

 The following figures are attached and complete this report:  Boring Location Map .......................................................................................................................... Figure 1 Logs of Borings .......................................................................................................................... Figures 2 to 4 Key to Terms and Symbols ................................................................................................................. Figure 5 Results of Soil Analyses ...................................................................................................................... Figure 6 MFPS Output File Important Information About Your Geotechnical Engineering Report   

 

 

Project No. AAA16‐016‐00 March 11, 2016   

1

INTRODUCTION  RABA KISTNER Consultants Inc. (RKCI) has completed the authorized subsurface exploration and pavement analysis  for  the  Satellite View Drive  extension  in Round Rock,  Texas.    This  report briefly  describes  the procedures  utilized  during  this  study  and  presents  our  findings  along  with  our  recommendations  for pavement design and construction guidelines.  

PROJECT DESCRIPTION  The roadway being considered  in this study  is Satellite View Drive, to extend from  its  intersection with Campus  Village  Drive  to  its  planned  intersection with  College  Park  Drive  in  Round  Rock,  Texas. We understand  that  the  roadway will be  approximately 900  to 1,000  lineal  ft  in  length. Based on e‐mail correspondence with the Client on March 9, 2016, we understand that the roadway will be classified as a  “Local  Collector”  street  in  accordance with  the  City  of Round Rock  Transportation  Criteria Manual Section 3, Pavement Design.   Typical  design  criteria  for  “Local  Collector”  streets  in  accordance  with  the  City  of  Round  Rock Transportation Criteria Manual Design and Construction Standards are as follows:   

Street Classification Total Equivalent  

18‐kip Single Axle Load Application (ESAL’s) 

Average  Daily Traffic  

(ADT) 

Percent Trucks 

Growth Factor 

Load Field Distribution 

Factor (LFDF) 

Local Collector Streets  150,000 2,000 to 4,000 

vehicles 3%  3.5%  0.90 

 LIMITATIONS 

 This  engineering  report  has  been  prepared  in  accordance  with  accepted  Geotechnical  Engineering practices  in  the  region  of  central  Texas  and  for  the  use  of MN  Capital  Strategies  (CLIENT)  and  its representatives for design purposes.  This report may not contain sufficient information for purposes of other parties or other uses.  This report is not intended for use in determining construction means and methods.  The attachments and report text should not be used separately.  The recommendations submitted in this report are based on the data obtained from 3 borings drilled at this  site, our understanding of  the project  information provided  to us,  and  the  assumption  that  site grading will result in only minor changes in the existing topography.  If the project information described in this report is incorrect, is altered, or if new information is available, we should be retained to review and modify our recommendations.  This report may not reflect the actual variations of the subsurface conditions across the site. The nature and extent of variations across  the  site may not become evident until construction commences.   The construction process itself may also alter subsurface conditions.  If variations appear evident at the time of  construction,  it  may  be  necessary  to  reevaluate  our  recommendations  after  performing  on‐site observations and tests to establish the engineering impact of the variations. 

 

 

Project No. AAA16‐016‐00 March 11, 2016   

2

The scope of our Geotechnical Engineering Study does not include an environmental assessment of the air,  soil,  rock, or water  conditions  either on or  adjacent  to  the  site.   No  environmental opinions  are presented in this report.  If additional mass site grading is performed at the site which results in elevations that vary significantly from  existing  grades  by more  than  plus  or minus  1  ft,  our  office  should  be  informed  about  these changes.  If  needed  and/or  if  desired,  we  will  reexamine  our  analyses  and  make  supplemental recommendations.  

BORINGS AND LABORATORY TESTS  Subsurface  conditions  at  the  site were  evaluated  by  3 borings drilled  at  the  locations  shown on  the Boring Location Map, Figure 1.  Boring locations were documented in the field utilizing a hand‐held GPS device.  The  borings were drilled  to depths of  10  ft below  the  existing  ground  surface using  a  truck‐mounted drilling rig.  During drilling operations, the following samples were collected:  

Type of Sample  Number Collected 

Split‐Spoon  (with Standard Penetration Test)  2 

Undisturbed Shelby Tube  13 

 Each sample was visually classified in the laboratory by a member of our geotechnical engineering staff.  The geotechnical engineering properties of the strata were evaluated by the following tests:  

Type of Test  Number Conducted 

Natural Moisture Content  15 

Atterberg Limits  3 

Sulfate Testing  1 

 The  results  of  all  laboratory  tests  are  presented  in  graphical  or  numerical  form  on  the  boring  logs illustrated  on  Figures  2  through  4.    A  key  to  classification  terms  and  symbols  used  on  the  logs  is presented on Figure 5.  The results of the laboratory and field testing are also tabulated on Figure 6 for ease of reference.  Standard Penetration Test  results are noted as “blows per  ft” on  the boring  logs and Figure 6, where “blows per ft” refers to the number of blows by a falling hammer required for 1 ft of penetration  into the  soil/weak  rock  (N‐value).    Where  hard  or  dense  materials  were  encountered,  the  tests  were terminated at 50 blows even  if one foot of penetration had not been achieved.   When all 50 blows fall within the first 6 in. (seating blows), refusal “ref” for 6 in. or less will be noted on the boring logs and on Figure 6.  Samples  will  be  retained  in  our  laboratory  for  30  days  after  submittal  of  this  report.    Other arrangements may be provided at the request of the Client.  

 

 

Project No. AAA16‐016‐00 March 11, 2016   

3

SULFATE TESTING  Sulfate testing was performed on a selected sample. The purpose of the sulfate testing was to determine the  concentration of  soluble  sulfates  in  the  subgrade  soils,  in order  to  investigate  the potential  for  an adverse reaction to  lime  in sulfate‐containing soils.   The adverse reaction, referred to as sulfate‐induced heave, has been known  to  cause  cohesive  subgrade  soils  to  swell  in  short periods of  time,  resulting  in pavement heaving and possible failure.  

Boring Depth Below 

Existing Ground Surface (ft) 

Type of Soil Sulfate Content 

(ppm) 

B‐2  2 to 4  Tan  Clay  100 

*ppm = parts per million 

 Based  on  the  laboratory  test  results,  the  reported  values  of  sulfate  content  for  the  tested  soils were generally determined to be on the order of 100 ppm. Reported values of sulfate content above 3,000 ppm are known to cause sulfate induced heaving when the soils are mixed with lime. It should be understood that  the  identification  of  sulfates  based  on  discrete  soil  samples  cannot  totally  identify  sulfates  in  all pavement areas.   A quality assurance program should be  implemented to assist  in minimizing the risk of sulfate  induced  heaving,  especially  given  that  the  site  lies  in  the  Eagle  Ford  Formation, which  is more susceptible to having high concentrations of sulfates.  

GENERAL SITE CONDITIONS  SITE DESCRIPTION  The project site is a tract of agricultural land located between College Park Drive and Campus Village in Round Rock, Texas.  The site primarily consists of plowed fields, with a row of trees along Campus Village Drive.  The topography slopes downward toward the west with a vertical relief of about 20 ft across the site.    GEOLOGY  A review of the Geologic Atlas of Texas, Austin Sheet, indicates that this site is naturally underlain with the soils/rock of the Eagle Ford Group.  The Eagle Ford Formation generally consists of dark gray calcareous clay.  It contains sandy and silty flaggy limestone in the mid‐portion and a bentonite bed at the base. The Eagle Ford Group generally consists of dark gray calcareous clays overlying shale or silty limestone.    Key  geotechnical  engineering  considerations  for  development  supported  on  this  formation will  be  the depth to rock and the expansive nature of the overlying clays.     

 

 

Project No. AAA16‐016‐00 March 11, 2016   

4

SEISMIC CONSIDERATIONS  On  the  basis  of  the  soil  borings  conducted  for  this  investigation,  the  upper  100  feet  of  soil may  be characterized as very dense soil and soft rock and a Class C Site Class Definition (Chapter 20 of ASCE 7) has been assigned to this site.  On  the basis of  the United  States Geological  Survey  (USGS) website1 which  utilizes  the  International Building Code (IBC) and U.S. Seismic Design Maps to develop seismic design parameters, the following seismic considerations are associated with this site.  

Ss = 0.063g 

S1 = 0.035g 

Sms = 0.076g 

Sm1 = 0.059g 

SDS = 0.051g 

SD1 = 0.040g  Based on the parameters  listed above as well as Tables 1613.3.5(1) and 1613.3.5(2) of the 2012 IBC, the Seismic Design Category  for both short period and 1 second response accelerations  is A.   As part of  the assumptions required to complete the calculations, a Risk Category of “I or II or III” was selected.  STRATIGRAPHY  The  subsurface conditions encountered at  the boring  locations are  shown on  the boring  logs, Figures 2 through 4.  These boring logs represent our interpretation of the subsurface conditions based on the field logs, visual examination of field samples by our personnel, and test results of selected field samples.  Each stratum  has  been  designated  by  grouping  soils  that  possess  similar  physical  and  engineering characteristics.  The  lines  designating  the  interfaces  between  strata  on  the  boring  logs  represent approximate boundaries.  Transitions between strata may be gradual.  Stratum  I consists of dark brown  to brown  fat clay  (CH). These clays are classified as plastic  to highly plastic based on measured plasticity  indices ranging from 30 to 59. Measured moisture contents range from 25  to 36 percent. Shear  strength  ranges  from 0.4  to 2.3  tsf based on pocket penetrometer  test data.   Stratum  II  consists  of  very  stiff  to  hard,  tan  fat  clay  (CH) with  calcareous  deposits.  These  clays  are classified  as  highly  plastic  based  on  a  single  measured  plasticity  index  of  49.  Measured  moisture contents  range  from  20  to  26  percent.  Shear  strength  ranges  from  1.8  to  2.3  tsf  based  on  pocket penetrometer test data. Standard Penetration Test (SPT) N‐values of 22 blows per ft and 50 blows for 11 inches of penetration were measured in this stratum.  

1 http://earthquake.usgs.gov/designmaps/us/application.php  

 

 

Project No. AAA16‐016‐00 March 11, 2016   

5

Stratum III consists of hard, gray fat clay (CH) with gypsum. A single measured moisture content of 19 percent was determined in this stratum. Shear strength was determined to be 2.3 tsf based on a pocket penetrometer test. This stratum was only encountered in Boring B‐1.  GROUNDWATER  Groundwater was not observed  in  the borings  either during or  immediately upon  completion of  the drilling operations.  All borings remained dry during the field exploration phase.  However, it is possible for groundwater to exist beneath this site at shallow depths on a transient basis, particularly following periods of precipitation.  Fluctuations in groundwater levels occur due to variation in rainfall and surface water run‐off.  The construction process itself may also cause variations in the groundwater level.  

PAVEMENT RECOMMENDATIONS  We understand that Satellite View Drive will be classified as a “Local Collector” street in accordance with the City of Round Rock Transportation Criteria Manual Section 3, Pavement Design.    SWELL/HEAVE POTENTIAL  

The anticipated ground movements due  to swelling of  the underlying soils at  the site were estimated using  the  empirical  procedure,  Texas  Department  of  Transportation  (TxDOT)  Tex‐124‐E, Method  for Determining  the  Potential  Vertical  Rise  (PVR).    PVR  values  ranging  from  4‐3/4  to  5‐1/4  in.  were estimated  for  the  stratigraphic  conditions  encountered  in  our  borings.    A  surcharge  load  of  1  psi (concrete slab and sand  layer), an active zone of 15  ft, and dry moisture conditions were assumed  in estimating the above PVR values.  

The TxDOT method of estimating expansive soil‐related movements  is based on empirical correlations utilizing the measured plasticity indices and assuming typical seasonal fluctuations in moisture content.  If  desired,  other  methods  of  estimating  expansive  soil‐related  movements  are  available,  such  as estimations based on swell tests and/or soil‐suction analyses.  However, the performance of these tests and  the detailed analysis of expansive  soil‐related movements were beyond  the  scope of  the current study.    It  should  also be noted  that  actual movements  can  exceed  the  calculated PVR  values due  to isolated changes in moisture content or if water seeps into the soils to greater depths than the assumed active zone depth due to deep trenching or excavations.  SUBGRADE STRENGTH CHARACTERIZATION  

For the purpose of this report, RKCI has assigned the following subgrade stiffness coefficients. These values are  based  on  our  experience  in  conducting  laboratory  testing  in  similar  soils  and  correlation with  the engineering properties determined during laboratory testing.  

Material 

 Subgrade Stiffness  

Coefficient 

 

Dark Brown or Brown Clay  0.165 

 

 

Project No. AAA16‐016‐00 March 11, 2016   

6

DESIGN INFORMATION  To determine the required pavement sections for the proposed “Local Collector” streets, RKCI utilized City of  Austin’s  computerized  program  Municipal  Flexible  Pavement  Design  (MFPS‐1),  Version  1.0.    The following design parameters were utilized for the design of flexible pavements  for the proposed type of street:  

Street Classification  Design Life Average Daily Trips 

(ADT) Reliability 

Serviceability Initial/Terminal 

Local Collector Streets  20 years  4,000  90  4.2/1.5 

 Additional design parameters utilized to determine minimum  layer thicknesses for flexible pavements as well as MFPS output files have been provided as attachments to this report.  FLEXIBLE PAVEMENT  Flexible pavement sections recommended for this site are as listed in the table below:  

  

Layer Description  Layer Thickness 

Local Collector Streets 

Type “D” Surface Course, Item 340 Flexible Base, Item 210 Lime Treated Subgrade, Item 202 Combined Total 

 2.0 in. 14.0 in. 10.0 in. 26.0 in. 

 

*This pavement section meets the minimum required pavement sections required in the   City of Round Rock Transportation Criteria Manual Section 3, Pavement Design.  

 The  pavement  section  derived  is  structurally  adequate  for  the  given  traffic  levels  and  existing  clay subgrade strength, but does not consider the long‐term effects of pavement roughness and/or longitudinal cracking due to heave, which can only be addressed by the measures discussed in the following sections.    If mitigation of expansive  soils  is not  implemented  to desirable  limits by  removal and  replacement,  the stakeholders of the project should consider the installation of a geogrid layer in addition to the pavement sections above.  Please refer to the Pavement Enhancement Option Utilizing Geogrid section of this report.  OPTIONS FOR REDUCING EXPANSIVE SOIL‐RELATED MOVEMENTS  Subgrade  soils  that  are highly  expansive  (i.e., highly plastic  soils) will heave when water  is  introduced, causing the pavement to become rough or uneven over time.  Pavement roughness is generally defined as an expression of  irregularities  in the pavement surface that adversely affect the ride quality of a vehicle (and thus the user).   Roughness  is an  important pavement characteristic because  it affects not only ride quality but also vehicle costs, fuel consumption, and maintenance costs.  Pavement heave can be reduced 

 

 

Project No. AAA16‐016‐00 March 11, 2016   

7

through various measures but cannot be totally eliminated without  full removal of  the problematic soil.  Measures available for reducing heave include:  

Soil Stabilization with Lime or Other Pozzolans 

Removal and Replacement of High PI Soils 

Drains or Barriers to Collect or Inhibit Moisture Infiltration  Soil stabilization with  lime  is  typically used  to  reduce  the swelling potential of  the upper portion of  the pavement subgrade containing moderately plastic soils.   Lime and water are mixed with the top 6 to 12 inches  (or possibly more)  of  the  subgrade  and  allowed  to mellow or  cure  for  a period of  time.   After mellowing  the  soil‐lime mixture  is  compacted  to  form a  strong  soil matrix  that  can  improve pavement performance and potentially reduce soil heave.  However, in highly plastic soils, lime stabilization of only the top portion of the expansive subgrade may not provide an acceptable reduction  in PVR.   For a more substantial  reduction  in  PVR,  removal  and  replacement  of  the  high  PI  soil may  be  the  only method available to reduce the potential vertical rise of the pavement to an acceptable level.  As stated previously though, it must be recognized that partial removal of expansive clay soil only reduces the potential (or risk) of the damage swell can cause to a pavement and does not completely eliminate this risk.  In  addition,  capturing  water  infiltration  via  French  drains,  pavement  edge  drains,  or  inhibiting  water through  the use of vertical moisture barriers would reduce  the potential  for heave since one  important component of the heaving mechanism, water, would be reduced.  LONGITUDINAL CRACKING CONSIDERATIONS  Asphalt pavement sections  in highly expansive soil environments, such as those encountered at this site, can develop  longitudinal cracking along unprotected pavement edges.  In  the semi‐arid climate of south central  Texas  this  condition  typically  occurs  along  the  unprotected  edges  of  pavements  where  the adjoining grounds are not developed, i.e. not landscaped/irrigated or otherwise maintained.   The  longitudinal cracking generally occurs between 2 to 4  feet  inside of and parallel  to the unprotected edges of the pavement. Differential drying and shrinkage of the highly expansive clay subgrade between the exposed pavement edge and that beneath the pavement section commonly causes the cracking. This problem  can  best  be  addressed  by  providing  either  a  horizontal  or  vertical  moisture  barrier  at  the unprotected pavement edge.  A horizontal barrier is commonly in the form of a paved shoulder extending 8 feet or greater beyond the edge of the pavement. Other methods of shoulder treatment, such as using geofabric or synthetic sheet liner  beyond  the  edge  of  the  roadway,  are  sometimes  used  in  an  effort  to  help  reduce  longitudinal cracking. Although this alternative does not eliminate the longitudinal cracking phenomenon, the location of the cracking is transferred to the shoulder rather than within the traffic lane.   Vertical  barriers  installed  along  the  unprotected  edges  of  roadway  pavements  are  also  effective  in preventing non‐uniform drying and shrinkage of the subgrade clays. These barriers are typically in the form of a vertical moisture barrier/membrane extending a minimum of 6 feet below the top of the subgrade at the pavement edge. Both types of barriers must be sealed at the edge of the pavement to prevent a crack that would facilitate the drying of the subgrade clays. 

 

 

Project No. AAA16‐016‐00 March 11, 2016   

8

Pavement Enhancement Option Utilizing Geogrid  Our past experience with flexible base pavement sections on highly expansive clay soils indicates that the use of a geogrid base reinforcement provides considerable tensile strength to the pavement section. This tensile strength is achieved without making the section more brittle, as occurs with many other subgrade or base stabilization methods. The added  tensile strength and  flexibility allows  the pavement section  to move and  flex, as  the expansive  clay  subgrade undergoes  the normal  shrink and  swell with  changes  in climatic conditions, with considerably  less cracking and premature deterioration than otherwise typically occurs.   Based on our conversation with the City of Round Rock, the occurrence of longitudinal cracking is the least desirable  effect  of  expansive,  soil‐related movements  as  compared  to  surface  roughness  for  roadway projects.  As such, we recommend the addition of geogrid to the previously stated sections to help reduce longitudinal cracking, extend the life span, and enhance the performance of the pavement.  

PAVEMENT CONSTRUCTION CONSIDERATIONS  SUBGRADE PREPARATION  Subgrade preparation should be conducted  in accordance with the City of Round Rock specifications for preparing subgrade, Item No. 201, Subgrade Preparation.  Areas to support pavements should be stripped of all  vegetation and organic  topsoil.   Exposed  subgrades  should be  thoroughly proofrolled  in order  to locate and densify any weak, compressible zones.  A minimum of 5 passes of a fully‐loaded dump truck or a  similar  heavily‐loaded  piece  of  construction  equipment  should  be  used  for  planning  purposes.  Proofrolling  operations  should  be  observed  by  the  Geotechnical  Engineer  or  his  representative  to document subgrade condition and preparation.   Weak or soft areas  identified during proofrolling should be removed and replaced with a suitable, compacted backfill.  In  areas where  clay will  remain  in place,  the  exposed  subgrade  should be moisture  conditioned.    This should be done after completion of the proofrolling operations and just prior to flexible base placement.  Moisture  conditioning  is  done  by  scarifying  to  a minimum  depth  of  6  inches  and  recompacting  to  a minimum  of  95  percent  of  the  maximum  density  determined  from  the  Texas  Department  of Transportation Compaction Test  (TxDOT, Tex‐114‐E).   The moisture  content of  the  subgrade  should be maintained within the range of optimum moisture content  to 3 percentage points above optimum until permanently covered.  DRAINAGE CONSIDERATIONS  The satisfactory performance of a pavement system is contingent on the provision of adequate surface and  subsurface  drainage.  Insufficient  drainage  which  allows  saturation  of  the  pavement  subgrade and/or the supporting granular pavement materials will greatly reduce the performance and service life of the pavement systems. Surface and subsurface drainage considerations crucial to the performance of pavements at this site include (but are not limited to) the following:  

 

 

Project No. AAA16‐016‐00 March 11, 2016   

9

1) Any  known natural or man‐made  subsurface  seepage  at  the  site which may occur  at sufficiently shallow depths as to influence moisture contents within the subgrade should be intercepted by drainage ditches or below grade French drains. 

2) Final  site  grading  should  eliminate  isolated  depressions  adjacent  to  curbs which may allow  surface  water  to  pond  and  infiltrate  into  the  underlying  soils.    Curbs  should completely  penetrate  base materials  and  should  be  installed  to  sufficient  depth  to reduce infiltration of water beneath the curbs. 

3) Pavement  surfaces  should  be  maintained  to  help  minimize  surface  ponding  and  to provide  rapid  sealing  of  any  developing  cracks.    These  measures  will  help  reduce infiltration of surface water downward through the pavement section. 

 ON‐SITE CLAY FILL  As  previously  discussed,  the  pavement  recommendations  presented  in  this  report  were  prepared assuming on‐site clays will be used for fill grading  in proposed pavement areas.   If used, we recommend that on‐site  soils be placed  in  loose  lifts not exceeding 8  inches  in  thickness and compacted  to at  least 95 percent of the maximum density as determined by TxDOT, Tex‐114‐E.  The moisture content of the fill should  be maintained within  the  range  of  optimum water  content  to  3  percentage  points  above  the optimum water content until permanently covered.  We recommend that fill materials be free of roots and other organic or degradable material.  We also recommend that the maximum particle size not exceed 4 inches or one half the lift thicknesses, whichever is smaller.  If other import fill materials are utilized, RKCI should be notified, as additional CBR testing and thicker pavement sections may be required.  It  is  imperative that the subgrade stiffness coefficient utilized  in the pavement design process be met or exceeded by the fill material. In the event that the clay fill used is different than the existing subgrade, the recommendations  in  this  report  could  be  invalidated  and  the  design  engineer must  be  consulted  to determine if additional CBR testing and thicker pavement sections are required.  LIME TREATMENT OF SUBGRADE  Lime  treatment  of  the  subgrade  soils  should  be  in  accordance with  the  City  of  Round  Rock  Standard Specifications, Item 202, Hydrated Lime and Lime Slurry.  A sufficient quantity of hydrated lime should be mixed with the subgrade soils to reduce the soil‐lime mixture plasticity index to 15 or less.  For estimating purposes, we  recommend  that 8 percent  lime by weight be  assumed  for  treatment.    For  construction purposes,  we  recommend  that  the  optimum  lime  content  of  the  subgrade  soils  be  determined  by laboratory testing.  Lime‐treated subgrade soils should be compacted to a minimum of 95 percent of the maximum density  at moisture  content within  the  range of optimum moisture  content  to 3 percentage points above the optimum moisture content as determined by Tex‐121‐E.  Lime treatment should extend at least 3 ft beyond the curb as required by the City of Round Rock.  It is also recommended to perform additional laboratory testing to determine the concentration of soluble sulfates in the subgrade soils, in order to investigate the potential for a recently reported adverse reaction to lime in certain sulfate‐containing soils.  The adverse reaction, referred to as sulfate‐induced heave, has been  known  to  cause  cohesive  subgrade  soils  to  swell  in  short periods of  time,  resulting  in pavement heaving and possible failure.  

 

 

Project No. AAA16‐016‐00 March 11, 2016   

10

FLEXIBLE BASE COURSE  The  flexible  base  course  should  be  crushed  limestone  conforming  to  City  of  Round  Rock  Standard Specifications, Item 210, Flexible Base. The material should be from a source approved by the City and meet the following gradation.   

Sieve Designation 

% Retained 

1‐3/4”  0 

7/8”  10‐35 

3/8”  30‐50 

#4  45‐65 

#40  70‐85 

 

Other Requirements 

Maximum Plasticity Index  10 

Maximum Wet Ball Mill  42 

Maximum increase in passing #40 sieve from wet ball mill test 

20 

 The minimum compressive  strength of  the material under  triaxial  loading  should be 35 psi with 0 psi lateral pressure and 175 psi with 15 psi lateral pressure.    Base  course  should  be  placed  in  lifts  with  a maximum  thickness  of  6  inches  and  compacted  to  a minimum of 100 percent of the maximum density as determined by Tex‐113‐E, with a moisture content within plus or minus 2 percent of the optimum moisture content.  As required by  the City of Round Rock,  it  is understood  that  the  flexible base materials and stabilized subgrade are specified to be extended 36 inches beyond the back side of the curbs where stabilization is required.    It  is  recommended  to  implement  the placement of an  impermeable  clay  cap overlying  the flexible base overbuild, removal of the flexible base material behind the curb and place an impermeable clay, or have the concrete curb completely penetrate the flexible base materials.  These alternatives are necessary as we anticipate the presence of irrigation and surface water runoff existing behind the curb over the service  life of the roadway.   It  is possible that water could  infiltrate the flexible base beneath the concrete curb and cause the flexible base to saturate and weaken and the underlying clay to expand.  This is especially true on sites sloping downward towards the roadway.  PRIME COAT  The prime coat should conform to the City of Round Rock Standard Specifications, Item 306, Prime Coat.    

 

 

Project No. AAA16‐016‐00 March 11, 2016   

11

ASPHALTIC CONCRETE SURFACE COURSE  The asphaltic  concrete  surface  course  should  conform  to City of Round Rock Standard Specifications, Item 340, Type C or D, Hot Mix Asphalt Concrete Pavement. The asphaltic concrete should be compacted to a range between 91 and 96 percent of the maximum theoretical specific gravity (Rice) of the mixture determined according  to Test Method Tex‐227‐F. Pavement specimens, which shall be either cores or sections of asphaltic pavement, will be tested according to Test Method Tex‐207‐F. The nuclear‐density gauge  or  other methods  which  correlate  satisfactorily  with  results  obtained  from  project  roadway specimens may be used when  approved by  the  Engineer. Unless otherwise  shown on  the plans,  the Contractor shall be responsible for obtaining the required roadway specimens at their expense and in a manner and at locations selected by the Engineer.  GEOGRID REINFORCEMENT  The  geogrid  reinforcement  should  meet  Type  II  geogrid  that  meets  the  Texas  Department  of Transportation  Department  Materials  Specification  DMS  ‐  6240,  Geogrid  for  Base/Embankment Reinforcement. The geogrid should be placed at  the bottom of  the  flexible  (granular) base section  in all cases.  An alternative to the above geogrid should not be considered without approval from RKCI.  

MISCELLANEOUS PAVEMENT RELATED CONSIDERATIONS  

Utilities  

Utilities which project through slab‐on‐grade, slab‐on‐fill, or any other rigid unit should be designed with either  some  degree  of  flexibility  or with  sleeves.    Such  design  features will  help  reduce  the  risk  of damage to the utility lines as vertical movements occur.  

Our experience  indicates  that  significant  settlement of backfill  can occur  in utility  trenches, particularly when trenches are deep, when backfill materials are placed in thick lifts with insufficient compaction, and when water can access and  infiltrate the trench backfill materials.   The potential for water to access the backfill  is  increased where water can  infiltrate  flexible base materials due  to  insufficient penetration of curbs, and at sites where geological features can  influence water migration  into utility trenches  (such as fractures within a rock mass or at contacts between rock and clay formations).  It is our belief that another factor which can significantly impact settlement is the migration of fines within the backfill into the open voids in the underlying free‐draining bedding material.  

To reduce the potential for settlement  in utility trenches, we recommend that consideration be given to the following:  

All backfill materials  should be placed and compacted  in controlled  lifts appropriate  for the type of backfill and the type of compaction equipment being utilized and all backfilling procedures should be tested and documented.  Trench backfill materials should be placed in loose lifts not exceeding 8 inches in thickness and compacted to at least 95 percent of maximum density as determined by TxDOT, Tex‐113‐E, Compaction Test.   The moisture content of the fill should be maintained within the range of 2 percentage points below to 2  percentage  points  above  the  optimum moisture  content  for  non‐cohesive  soils  and 

 

 

Project No. AAA16‐016‐00 March 11, 2016   

12

maintained within the range of optimum to 3 percentage points above optimum moisture content for cohesive soils until final compaction.  

Curbs should completely penetrate base materials and be installed to a sufficient depth to reduce water infiltration beneath the curbs into the pavement base materials. 

Consideration should be given to wrapping free‐draining bedding gravels with a geotextile fabric  (similar  to Mirafi  140N)  to  reduce  the  infiltration  and  loss  of  fines  from  backfill material into the interstitial voids in bedding materials. 

 

Curb and Gutter  

It is good practice to construct curbs such that the depth of the curb extends through the entire depth of the granular base material to act as a protective barrier against the infiltration of water into the granular base.  Pavements that do not have this protective barrier to moisture tend to develop longitudinal cracks 1 to 2 ft from the edge of the pavement.  Once these cracks develop, further degradation and weakening of the underlying granular base may occur due to water seepage through the cracks.  Pavement Maintenance  Regular pavement maintenance  is critical  in maintaining pavement performance over a period of several years.   All  cracks  that develop  in asphalt pavements  should be  regularly  sealed.   Areas of moderate  to severe fatigue cracking (also known as alligator cracking) should be sawcut and removed.  The underlying base should be checked for contamination or loss of support and any insufficiencies fixed or removed and the entire area patched.   Other  typical TxDOT or Williamson County maintenance  techniques should be followed as required.  Construction Traffic  Construction  traffic on prepared subgrade, granular base or asphalt  treated base  (black base) should be restricted as much as possible until the protective asphalt surface pavement is applied. Significant damage to  the underlying  layers  resulting  in weakening may occur  if heavily  loaded vehicles are allowed  to use these areas.  

CONSTRUCTION RELATED SERVICES   CONSTRUCTION MATERIALS TESTING AND OBSERVATION SERVICES  As presented in the attachment to this report, Important Information About Your Geotechnical Engineering Report, subsurface conditions can vary across a project site.   The conditions described  in this report are based on  interpolations derived  from a  limited number of data points.   Variations will be encountered during  construction,  and  only  the  geotechnical  design  engineer  will  be  able  to  determine  if  these conditions are different than those assumed for design.    Construction  problems  resulting  from  variations  or  anomalies  in  subsurface  conditions  are  among  the most prevalent on construction projects and often  lead  to delays, changes, cost overruns, and disputes.  These  variations  and  anomalies  can  best  be  addressed  if  the  geotechnical  engineer  of  record,  RKCI  is 

 

 

Project No. AAA16‐016‐00 March 11, 2016   

13

retained to perform construction observation and testing services during the construction of the project.  This is because:    

RKCI has an intimate understanding of the geotechnical engineering report’s findings and recommendations.    RKCI  understands  how  the  report  should  be  interpreted  and  can provide such interpretations on site, on the client’s behalf. 

RKCI knows what subsurface conditions are anticipated at the site. 

RKCI  is  familiar with  the  goals  of  the  owner  and  project  design  professionals,  having worked with them in the development of the geotechnical workscope.  This enables RKCI to  suggest  remedial measures  (when  needed)  which  help meet  the  owner’s  and  the design teams’ requirements. 

RKCI  has  a  vested  interest  in  client  satisfaction,  and  thus  assigns  qualified  personnel whose principal concern is client satisfaction.  This concern is exhibited by the manner in which contractors’ work is tested, evaluated and reported, and in selection of alternative approaches when such may become necessary. 

RKCI cannot be held accountable  for problems which  result due  to misinterpretation of our findings or recommendations when we are not on hand to provide the interpretation which is required. 

 BUDGETING FOR CONSTRUCTION TESTING  Appropriate budgets need to be developed for the required construction testing and observation activities.  At  the  appropriate  time before  construction, we  advise  that RKCI  and  the project designers meet  and jointly develop the testing budgets, as well as review the testing specifications as it pertains to this project.  Once  the construction  testing budget and  scope of work are  finalized, we encourage a preconstruction meeting with the selected contractor to review the scope of work to make sure  it  is consistent with the construction means and methods proposed by the contractor.   RKCI  looks forward to the opportunity to provide continued support on this project, and would welcome the opportunity to meet with the Project Team to develop both a scope and budget for these services.    

*    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *  

 

 

ATTACHMENTS 

 

 

!?

!? !?

University Boulevard

College Park Drive

Campus Village Drive

Satellite View Drive

B-3B-2

B-1

BORING LOCATION MAPSATELLITE VIEW DRIVEROUND ROCK, TEXAS

PROJECT No.:AAA16-016-00DRAWN BY:ISSUE DATE:

REVIEWED BY:CHECKED BY:

KRB03/10/2016

YGTRTS

NOTE: This Drawing is Provided for Illustration Only, May Not be to Scale and is Not Suitable for Design or Construction Purposes

µ

Austin

GeorgetownGeorgetown

§̈¦35

§̈¦35§̈¦35

£¤79

Williamson

TravisSITE LOCATION MAP

S I T E

FIGURE1WILLIAMSON

COUNTY

TBPE Firm Number 3257

8100 Cameron Road, Suite B-150Austin, Texas 78754(512)339-1745 TEL(512)339-6174 FAX

www.rkci.com

LEGEND!? BORING

PROPOSED RIGHT OF WAY0 100 20050

FEET1 INCH = 200 FEET

CLAY (CH), Fat, Firm to Hard, Dark Brown

CLAY (CH), Fat, Hard, Tan

CLAY, Fat, Hard, Gray, with gypsum

Boring Terminated

59

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-1

PLA

STIC

ITY

IND

EX

Straight Flight Auger

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.56651; W 97.66132

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Satellite View DriveRound Rock, Texas

Dry2/18/2016

DEP

TH, F

T

10.0 ft2/18/2016

AAA16-016-002

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

CLAY (CH), Fat, Very Stiff, Dark Brown toBrown

CLAY (CH), Fat, Hard, Tan, with calcareousdeposits

Boring Terminated

49

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-2

PLA

STIC

ITY

IND

EX

Straight Flight Auger

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.56675; W 97.66028

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Satellite View DriveRound Rock, Texas

Dry2/18/2016

DEP

TH, F

T

10.0 ft2/18/2016

AAA16-016-003

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

CLAY (CH), Fat, Hard, Dark Brown toBrown

CLAY (CH), Fat, Very Stiff to Hard, Tan

Boring Terminated

30

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-3

PLA

STIC

ITY

IND

EX

Straight Flight Auger

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.56678; W 97.65928

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Satellite View DriveRound Rock, Texas

Dry2/18/2016

DEP

TH, F

T

10.0 ft2/18/2016

AAA16-016-004

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

55

22

PROJECT NO. AAA16-016-00

CLAY-SHALE

SAMPLE TYPES

NO INFORMATION

BLANK PIPE

ASPHALT

IGNEOUS

LIMESTONE

FILL

GEOPROBESAMPLER

TEXAS CONEPENETROMETER

DISTURBED

METAMORPHIC

MARL

MUDROTARY

NORECOVERY SPLIT BARREL

SPLIT SPOONNX CORE

SHELBY TUBE

CALCAREOUS

CLAY

CLAYEY

GRAVEL

GRAVELLY

WELL CONSTRUCTION AND PLUGGING MATERIALS

SILTSTONE

CALICHE

CONGLOMERATE

AIRROTARY

GRABSAMPLE

DOLOMITE

BENTONITE

CORE

SOIL TERMS OTHER

NOTE: VALUES SYMBOLIZED ON BORING LOGS REPRESENT SHEARSTRENGTHS UNLESS OTHERWISE NOTED

BASE

KEY TO TERMS AND SYMBOLS

CUTTINGS

SAND

SANDY

SILT

SILTY

CHALK

STRENGTH TEST TYPES

CEMENT GROUT GRAVEL

SAND

POCKET PENETROMETER

TORVANE

UNCONFINED COMPRESSION

TRIAXIAL COMPRESSIONUNCONSOLIDATED-UNDRAINED

TRIAXIAL COMPRESSIONCONSOLIDATED-UNDRAINED

BRICKS /PAVERS

SCREEN

MATERIAL TYPES

VOLCLAY

SANDSTONE

SHALE

ROCK TERMS

WASTE

CONCRETE/CEMENT

PEAT

BENTONITE &CUTTINGS

CONCRETE/CEMENT

CLAYSTONE

ROTOSONIC-DAMAGED

ROTOSONIC-INTACT

PITCHER

FIGURE 5aREVISED 04/2012

PROJECT NO. AAA16-016-00

KEY TO TERMS AND SYMBOLS (CONT'D)

TERMINOLOGY

RELATIVE DENSITY PLASTICITYCOHESIVE STRENGTH

PenetrationResistance

Blows per ftDegree ofPlasticity

PlasticityIndex

RelativeDensity

ResistanceBlows per ft

0

4

10

30

-

-

-

-

>

4

10

30

50

50

Very Loose

Loose

Medium Dense

Dense

Very Dense

ConsistencyCohesion

TSF

-

-

-

-

>

-

-

-

-

-

>

Benzene

Toluene

Ethylbenzene

Total Xylenes

Total BTEX

Total Petroleum Hydrocarbons

Not Detected

Not Analyzed

Not Recorded/No Recovery

Organic Vapor Analyzer

Parts Per Million

2

4

8

15

30

30

Very Soft

Soft

Firm

Stiff

Very Stiff

Hard

0

2

4

8

15

0

0.125

0.25

0.5

1.0

-

-

-

-

-

>

0.125

0.25

0.5

1.0

2.0

2.0

0

5

10

20

5

10

20

40

40

None

Low

Moderate

Plastic

Highly Plastic

=

=

=

=

=

=

=

=

=

=

=

ABBREVIATIONS

Qam, Qas, Qal

Qat

Qbc

Qt

Qao

Qle

Q-Tu

Ewi

Emi

Mc

EI

Kknm

Kpg

Kau

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Kef

Kbu

Kdr

Kft

Kgt

Kep

Kek

Kes

Kew

Kgr

Kgru

Kgrl

Kh

Quaternary Alluvium

Low Terrace Deposits

Beaumont Formation

Fluviatile Terrace Deposits

Seymour Formation

Leona Formation

Uvalde Gravel

Wilcox Formation

Midway Group

Catahoula Formation

Laredo Formation

Navarro Group and MarlbrookMarl

Pecan Gap Chalk

Austin Chalk

=

=

=

=

=

=

=

=

=

=

=

=

=

Eagle Ford Shale

Buda Limestone

Del Rio Clay

Fort Terrett Member

Georgetown Formation

Person Formation

Kainer Formation

Escondido Formation

Walnut Formation

Glen Rose Formation

Upper Glen Rose Formation

Lower Glen Rose Formation

Hensell Sand

B

T

E

X

BTEX

TPH

ND

NA

NR

OVA

ppm

Terms used in this report to describe soils with regard to their consistency or conditions are in general accordance with thediscussion presented in Article 45 of SOILS MECHANICS IN ENGINEERING PRACTICE, Terzaghi and Peck, John Wiley & Sons, Inc.,1967, using the most reliable information available from the field and laboratory investigations. Terms used for describing soilsaccording to their texture or grain size distribution are in accordance with the UNIFIED SOIL CLASSIFICATION SYSTEM, as describedin American Society for Testing and Materials D2487-06 and D2488-00, Volume 04.08, Soil and Rock; Dimension Stone;Geosynthetics; 2005.

The depths shown on the boring logs are not exact, and have been estimated to the nearest half-foot. Depth measurements maybe presented in a manner that implies greater precision in depth measurement, i.e 6.71 meters. The reader should understandand interpret this information only within the stated half-foot tolerance on depth measurements.

FIGURE 5bREVISED 04/2012

PROJECT NO. AAA16-016-00

KEY TO TERMS AND SYMBOLS (CONT'D)

TERMINOLOGY

SOIL STRUCTURE

SAMPLING METHODS

Having planes of weakness that appear slick and glossy.Containing shrinkage or relief cracks, often filled with fine sand or silt; usually more or less vertical.Inclusion of material of different texture that is smaller than the diameter of the sample.Inclusion less than 1/8 inch thick extending through the sample.Inclusion 1/8 inch to 3 inches thick extending through the sample.Inclusion greater than 3 inches thick extending through the sample.Soil sample composed of alternating partings or seams of different soil type.Soil sample composed of alternating layers of different soil type.Soil sample composed of pockets of different soil type and layered or laminated structure is not evident.Having appreciable quantities of carbonate.Having more than 50% carbonate content.

SlickensidedFissuredPocketPartingSeamLayerLaminatedInterlayeredIntermixedCalcareousCarbonate

RELATIVELY UNDISTURBED SAMPLING

NOTE: To avoid damage to sampling tools, driving is limited to 50 blows during or after seating interval.

STANDARD PENETRATION TEST (SPT)

Cohesive soil samples are to be collected using three-inch thin-walled tubes in general accordance with the Standard Practicefor Thin-Walled Tube Sampling of Soils (ASTM D1587) and granular soil samples are to be collected using two-inch split-barrelsamplers in general accordance with the Standard Method for Penetration Test and Split-Barrel Sampling of Soils (ASTMD1586). Cohesive soil samples may be extruded on-site when appropriate handling and storage techniques maintain sampleintegrity and moisture content.

Description

25 blows drove sampler 12 inches, after initial 6 inches of seating.50 blows drove sampler 7 inches, after initial 6 inches of seating.50 blows drove sampler 3 inches during initial 6-inch seating interval.

Blows Per Foot

2550/7"Ref/3"

FIGURE 5c

A 2-in.-OD, 1-3/8-in.-ID split spoon sampler is driven 1.5 ft into undisturbed soil with a 140-pound hammer free falling 30 in.After the sampler is seated 6 in. into undisturbed soil, the number of blows required to drive the sampler the last 12 in. is theStandard Penetration Resistance or "N" value, which is recorded as blows per foot as described below.

REVISED 04/2012

SPLIT-BARREL SAMPLER DRIVING RECORD

B-1 0.0 to 2.0 30 82 23 59 CH 1.00 PP

2.0 to 4.0 36 0.35 PP

4.0 to 6.0 25 2.10 PP

6.0 to 8.0 20 2.25 PP

8.0 to 10.0 19 2.25 PP

B-2 0.0 to 2.0 28 1.50 PP

2.0 to 4.0 25 70 21 49 CH 2.25 PP

4.0 to 6.0 25 2.25 PP

6.0 to 8.0 26 2.25 PP

8.0 to 10.0 26 2.25 PP

B-3 0.0 to 2.0 28 47 17 30 CL 2.25 PP

2.0 to 4.0 23 1.75 PP

4.0 to 6.0 25 2.25 PP

6.0 to 8.0 55 21

8.0 to 10.0 22 22

PlasticityIndex

LiquidLimit

PP = Pocket Penetrometer TV = Torvane UC = Unconfined Compression FV = Field Vane

PlasticLimit

WaterContent

(%)

Dry UnitWeight

(pcf)

PROJECT NAME:

FILE NAME: AAA16-016-00.GPJ

USCS % -200Sieve

ShearStrength

(tsf)

StrengthTest

BoringNo.

3/11/2016

UU = Unconsolidated Undrained Triaxial

SampleDepth

(ft)

CU = Consolidated Undrained Triaxial

Satellite View DriveRound Rock, Texas

RESULTS OF SOIL SAMPLE ANALYSES

Blowsper ft

FIGURE 6

PROJECT NO. AAA16-016-00

sview.TXT� MFPS-1 MUNICIPAL FLEXIBLE PAVEMENT DESIGN SYSTEM, VERSION 1.0, 8/83 ADAPTED FROM TEXAS SDHPT FPS-11 PROGRAM FOR CITY OF AUSTIN RABA-KISTNER-BRYTEST CONSULTANTS, AUSTIN, TEXAS

PROBLEM TITLE (DESCRIPTION) SATELLITE VIEW DRIVE (LOCAL COLLECTOR)

***** PAVEMENT *****

TOTAL NUMBER OF LANES IN FACILITY . . . . . . . . 2 TOTAL NUMBER OF CURBS IN FACILITY . . . . . . . . 2 NUMBER OF LAYERS CONSIDERED IN THIS PROBLEM . . . 3 LANE WIDTH (FEET) . . . . . . . . . . . . . . . . 18.50 CURB HEIGHT (INCHES). . . . . . . . . . . . . . . 6.00 CONCRETE CURB CONSTRUCTION COST ($/LF). . . . . . 4.50 THICKENED EDGE FIXED COST ($/LF). . . . . . . . . .00 THICKENED EDGE INCREMENTAL COST ($/IN/LF) . . . . .00

***** LAYER *****

MIN. MAX. THICK. SALV. LAYER LAYER LAYER DEPTH DEPTH INCR. COST COST VALUE STIFF. NO. CODE DESCRIPTION (IN.) (IN.) (IN.) ($/CY) ($/SY) (%) COEF. ----- ----- --------------- ----- ----- ------ ------ ------ ----- ------ 1 A HMAC 2.00 2.50 .50 123.00 .00 30.0 .960 2 B BASE 12.00 16.00 1.00 15.00 .00 20.0 .500 3 C LIME 10.00 14.00 1.00 30.00 .00 20.0 .320

***** SUBGRADE *****

SWELLING PROBABILITY. . . . . . . . . . . . . . . 1.00 SWELLING RATE CONSTANT. . . . . . . . . . . . . . .11 POTENTIAL VERTICAL RISE (INCHES). . . . . . . . . 5.30 SUBGRADE EXCAVATION COST ($/CY) . . . . . . . . . 4.50 SUBGRADE COST ($/SY). . . . . . . . . . . . . . . .00 SUBGRADE STIFFNESS COEFFICIENT. . . . . . . . . . .165

***** AC OVERLAY *****

MINIMUM AC OVERLAY THICKNESS (INCHES) . . . . . . 1.00 MAXIMUM ACCUMULATED OVERLAY THICKNESS (INCHES). . 3.00 AVERAGE LEVEL-UP THICKNESS (INCHES) . . . . . . . .50 OVERLAY COST ($/CY) . . . . . . . . . . . . . . . 123.00 OVERLAY COST ($/SY) . . . . . . . . . . . . . . . .00 OVERLAY SALVAGE VALUE (%) . . . . . . . . . . . . 30.00 AC OVERLAY STIFFNESS COEFFICIENT. . . . . . . . . .960 OVERLAY EDGE TAPERING COST ($/LF) . . . . . . . . 1.23 OVERLAY EDGE MILLING COST ($/LF). . . . . . . . . 6.54 AC OVERLAY PRODUCTION RATE (CY/HR). . . . . . . . 40.0

� MFPS-1 MUNICIPAL FLEXIBLE PAVEMENT DESIGN SYSTEM, VERSION 1.0, 8/83 ADAPTED FROM TEXAS SDHPT FPS-11 PROGRAM FOR CITY OF AUSTIN RABA-KISTNER-BRYTEST CONSULTANTS, AUSTIN, TEXAS

PROBLEM TITLE (DESCRIPTION) SATELLITE VIEW DRIVE (LOCAL COLLECTOR)

Page 1

sview.TXT

***** DESIGN CONSTRAINTS *****

CONFIDENCE LEVEL (%). . . . . . . . . . . . . . . 90.00 LENGTH OF ANALYSIS PERIOD (YEARS) . . . . . . . . 20.0 MINIMUM TIME TO FIRST OVERLAY (YEARS) . . . . . . 20.0 MINIMUM TIME BETWEEN OVERLAYS (YEARS) . . . . . . 5.0 MAXIMUM THICKNESS OF INITIAL CONSTR. (INCHES) . . 50.00 MAXIMUM FUNDS AVAILABLE FOR INITIAL CONSTR. ($) . 50.00 DISCOUNT RATE (%) . . . . . . . . . . . . . . . . 5.00

***** PERFORMANCE *****

SERVICEABILITY INDEX AFTER INITIAL CONSTRUCTION . 4.20 TERMINAL SERVICEABILITY INDEX . . . . . . . . . . 1.50 SERVICEABILITY INDEX AFTER OVERLAY CONSTRUCTION . 4.00

***** MAINTENANCE *****

FIRST YEAR COST OF ROUTINE MAINTENANCE. . . . . . .00 ANNUAL INCREMENTAL INCREASE IN MAINTENANCE COST . 150.00

***** TRAFFIC *****

AVERAGE DAILY TRAFFIC GROWTH RATE (%) . . . . . . 3.50 DIRECTIONAL DISTRIBUTION FACTOR (%) . . . . . . . 50.00 LANE DISTRIBUTION FACTOR (%). . . . . . . . . . . 90.00 PERCENT TRUCKS IN AVERAGE DAILY TRAFFIC . . . . . 3.00 18-KIP EQUIVALENCY FACTOR FOR STD. CITY TRUCK . . .48 INITIAL ADT ON FACILITY (VPD) . . . . . . . . . . 4000.

***** TRAFFIC DELAY *****

INDEX TO DETOUR MODEL . . . . . . . . . . . . . . 2 NO. OF OPEN LANES THROUGH OVERLAY ZONE IN OVERLAY DIRECTION . . . . . . . . . . . . 1 IN NON-OVERLAY DIRECTION . . . . . . . . . . 1 AVERAGE APPROACH SPEED TO OVERLAY ZONE (MPH). . . 40. AVERAGE SPEED THROUGH OVERLAY ZONE (MPH) IN OVERLAY DIRECTION . . . . . . . . . . . . 15. IN NON-OVERLAY DIRECTION . . . . . . . . . . 40. DISTANCE OVER WHICH TRAFFIC IS SLOWED (MILES) IN OVERLAY DIRECTION . . . . . . . . . . . . 1.00 IN NON-OVERLAY DIRECTION . . . . . . . . . . .00 DETOUR DISTANCE (MILES) . . . . . . . . . . . . . 1.00 NO. OF HOURS PER DAY OVERLAY CONSTRUCTION OCCURS. 7.00 ADT ARRIVING EACH HOUR OF CONSTRUCTION (%). . . . 6.00

� MFPS-1 MUNICIPAL FLEXIBLE PAVEMENT DESIGN SYSTEM, VERSION 1.0, 8/83 ADAPTED FROM TEXAS SDHPT FPS-11 PROGRAM FOR CITY OF AUSTIN RABA-KISTNER-BRYTEST CONSULTANTS, AUSTIN, TEXAS

PROBLEM TITLE (DESCRIPTION) SATELLITE VIEW DRIVE (LOCAL COLLECTOR)

Page 2

sview.TXT SUMMARY OF THE BEST DESIGN STRATEGIES IN ORDER OF INCREASING TOTAL COST

1 2 3 4 5 ******************************************************** MATERIAL ARRANGEMENT ABC ABC ABC ABC ABC ******************************************************** SUBGRADE EXC. COST 3.25 3.25 3.19 3.19 3.38 CURB CONSTR. COST 2.19 2.19 2.19 2.19 2.19 THICKENED EDGE COST .00 .00 .00 .00 .00 ******************************************************** TAPERING COSTS .00 .00 .00 .00 .00 MILLING COSTS .00 .00 .00 .00 .00 ******************************************************** INIT. CONST. COST 26.44 26.86 27.67 28.09 28.23 OVERLAY CONST. COST .00 .00 .00 .00 .00 USER COST .00 .00 .00 .00 .00 ROUTINE MAINT. COST 1.43 1.43 1.43 1.43 1.43 SALVAGE VALUE -1.84 -1.87 -2.00 -2.03 -1.97 ******************************************************** TOTAL COST 26.03 26.41 27.10 27.48 27.69 ******************************************************** LAYER DEPTH (INCHES) D(1) 2.00 2.00 2.50 2.50 2.00 D(2) 14.00 13.00 13.00 12.00 12.00 D(3) 10.00 11.00 10.00 11.00 13.00 ******************************************************** OVERLAY POLICY(INCH) (INCLUDING LEVEL-UP) ******************************************************** PERF. TIME (YEARS) T(1) 21.25 20.00 21.76 20.39 20.16 ******************************************************** SWELLING CLAY LOSS (SERVICEABILITY) SC(1) 1.60 1.58 1.61 1.59 1.58 ********************************************************

THE TOTAL NUMBER OF FEASIBLE DESIGNS ENCOUNTERED WAS 69

Page 3

Geotechnical-Engineering Report

Geotechnical Services Are Performed for Specific Purposes, Persons, and ProjectsGeotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a civil engineer may not fulfill the needs of a constructor — a construction contractor — or even another civil engineer. Because each geotechnical- engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. No one except you should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. And no one — not even you — should apply this report for any purpose or project except the one originally contemplated.

Read the Full ReportSerious problems have occurred because those relying on a geotechnical-engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

Geotechnical Engineers Base Each Report on a Unique Set of Project-Specific FactorsGeotechnical engineers consider many unique, project-specific factors when establishing the scope of a study. Typical factors include: the client’s goals, objectives, and risk-management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical-engineering report that was:• not prepared for you;• not prepared for your project;• not prepared for the specific site explored; or• completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical-engineering report include those that affect: • the function of the proposed structure, as when it’s changed

from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;

• the elevation, configuration, location, orientation, or weight of the proposed structure;

• the composition of the design team; or• project ownership.

As a general rule, always inform your geotechnical engineer of project changes—even minor ones—and request an

assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

Subsurface Conditions Can ChangeA geotechnical-engineering report is based on conditions that existed at the time the geotechnical engineer performed the study. Do not rely on a geotechnical-engineering report whose adequacy may have been affected by: the passage of time; man-made events, such as construction on or adjacent to the site; or natural events, such as floods, droughts, earthquakes, or groundwater fluctuations. Contact the geotechnical engineer before applying this report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional OpinionsSite exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ — sometimes significantly — from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide geotechnical-construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report’s Recommendations Are Not FinalDo not overrely on the confirmation-dependent recommendations included in your report. Confirmation-dependent recommendations are not final, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report’s confirmation-dependent recommendations if that engineer does not perform the geotechnical-construction observation required to confirm the recommendations’ applicability.

A Geotechnical-Engineering Report Is Subject to MisinterpretationOther design-team members’ misinterpretation of geotechnical-engineering reports has resulted in costly

Important Information about This

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

problems. Confront that risk by having your geo technical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team’s plans and specifications. Constructors can also misinterpret a geotechnical-engineering report. Confront that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing geotechnical construction observation.

Do Not Redraw the Engineer’s LogsGeotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical-engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

Give Constructors a Complete Report and GuidanceSome owners and design professionals mistakenly believe they can make constructors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give constructors the complete geotechnical-engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise constructors that the report was not prepared for purposes of bid development and that the report’s accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure constructors have sufficient time to perform additional study. Only then might you be in a position to give constructors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions CloselySome clients, design professionals, and constructors fail to recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled “limitations,” many of these provisions indicate where geotechnical engineers’ responsibilities begin and end, to help

others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

Environmental Concerns Are Not Covered The equipment, techniques, and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical-engineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. Do not rely on an environmental report prepared for someone else.

Obtain Professional Assistance To Deal with MoldDiverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold-prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, many mold- prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical- engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer’s study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your GBC-Member Geotechnical Engineer for Additional AssistanceMembership in the Geotechnical Business Council of the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you GBC-Member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910Telephone: 301/565-2733 Facsimile: 301/589-2017

e-mail: [email protected] www.geoprofessional.org

Copyright 2015 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, or its contents, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA’s specific written permission. Excerpting, quoting, or otherwise extracting wording from this document

is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document as a complement to or as an element of a geotechnical-engineering report. Any other firm, individual, or other entity that so uses this document without

being a GBA member could be commiting negligent or intentional (fraudulent) misrepresentation.

Austin, TX

Brownsville, TX

Corpus Christi , TX

Dallas , TX

El Paso, TX

Houston, TX

McAllen, TX

Mexico

Salt Lake City, UT

San Antonio, TX

CONSULTANTS • ENVIRONMENTAL • FACILITIES • INFRASTRUCTURE

R A B A K I S T N E R