9
GENERAL RADIO COMPANY engineering department REPRINT No. A93 Reprinted from MICROWAVE JOURNAL NOVEMBER, 1961 RF LEAKAGE CHARACTERISTICS OF POPULAR COAXIAL CABLES AND CONNECTORS, 500 MC TO 7.5 GC. JOHN ZORZY R. F.,MUEHLB@RGER

A93 Zorzy & Muehlberger, RF Leakage in Cables

Embed Size (px)

Citation preview

Page 1: A93 Zorzy & Muehlberger, RF Leakage in Cables

GENERAL RADIO COMPANY eng inee r i ng d e p a r t m e n t

REPRINT No. A93

Reprinted from MICROWAVE JOURNAL NOVEMBER, 1961

RF LEAKAGE CHARACTERISTICS

OF POPULAR COAXIAL CABLES

AND CONNECTORS, 500 MC TO 7.5 GC.

J O H N Z O R Z Y R. F . , M U E H L B @ R G E R

Page 2: A93 Zorzy & Muehlberger, RF Leakage in Cables

RIF LEAKAGE CHARACTERHSTICS

OF POPULAR COAXIAL CABLES

AND CONNECTORS, 500 MC TO 7.5 GC.

l o H N 0 R Y GENERAL RADlO COMPANY

R, F, M u E H T, B E R G E 13 1 1 West Concord 5 Massachusetts

Reprinted jrom THE MICROWAVE JOURNAL

N o v e m b e r , 1 9 6 1

Intruduction

I n the design and use of coaxial devices, a knowledge of the leakage characteristics of radio-frequency sables and connectors is important, both In measurements and in rhe design of oprrar~onal and test equipment.

The evduarion and measurernenr of elecrromagneric leakage through soIid conductors, braids, screens, slits and other configusar~ons employed to confine the electromag- netic fields in apparatus, has been rhe subject of a great deal of analysis and research. Some investigators have been concerned with the leakage phenomenon ir- sel f , l , : . ( . ~ . - m others with its measurement ",'-'-!"ll'." . The experimental procedure employed is usually chosen in ac- cordance with thc particular manifestation of the electra- magnetic leakage chat i s of interesr. For example, for conducred leakage or coupling, a special direct metaIlic connection ma7 be made between the leakage source and the dctcccor; for induction or near-field leakage, probes or loops are placed in proximity with the leakage source; and, for radiared lcakage, probes, loops, or the more dis- trrbured version oc .hesc, antennas, are placed at what is considered the fa iield of rhrr leakage source. The three are commonly evaluated, in tolo, by surrounding rhc Eeak- age source with a closed coaxial system. The usual prac- tlce is ro cou~le some of the basic lcakage modes to the TEM mode of the coaxlal system

UsualIy the equipment designer is succmsful in ron- fining stray electromagnetic fields within the equlprnent package except, of course, in open systems such as slotted lines. However, the connection of coaxial cables, flexible and sdid, and coaxial components to the equipment in- t rduces a source of leakage. I n the case of immirtance bridges, cable or connector leakage intrduces a spurious signal parh between rl~e source and the derectar, usually resulting in measurement errors. Leakage is a cause of error in prccis~on slottd-line measurements through spuri- ous coupling of the pick-up probe ro the source; in ar- renuation measurements and filter-response measurements,

by spurious coupling between the input and rile output circuirs. In complex electronic systems, as for example in a missile system, the spurious coupling berween the Inter- connecting cables of the separate systems can result in malfunction in rhe operation of an elcrnmt of the system.

I t is the purpose of this paper to demonstrate thc rela- tive shicIding effcctivencss of popuIar flexible cables and connectors, and to describe the measurement technique. Test results are presented in terms of both relarive Peakage - power and surface transfer impedance. The unique fea- ture of h i s work i s the frequency range nf measuremenr. The majority of previous conrributions were concerned wirh the frequency r a n g below 500 Mc.

Measurement Technique

The meesuremenr of the leakage from connectors and cabIes is performed by collecting rhe leakage energy in a coaxinl syszm surrounding rhe leakage source. An out- line of the insrsumenration is shonan in Figures 1 and 2 respectively, and a photograph in Figure 3. Thc device from which leakage is ro be measured, connecror or cabIe, is incorporated in a uniform transmission line which is terminated in a marched load. T31c matched termination simplifies both rllc mcasurcrnenc p r ~ e d u r e and data re- duction. l l i s complcre coaxial. systrm is embodied within a cylinder which forms, externally, a second coaxial system. The second coaxial system is rerminated ar one end in an :tdjusrable short-c~rcuiting plunger and ar the ott~cr in a

CONNECTOR TEST SAMPLE 1

ADJUSTABLE \ ,/ SHORT ClACUlT INTERNAL TERMINATION

Figure 1 - Tri-Axial Connector Leakage Test Unit.

Page 3: A93 Zorzy & Muehlberger, RF Leakage in Cables

CABLE TEST SAMPLE

"I

L

INPU PUT

ADJU STABILE SHORT CG R C U l T

I I N T E R N A L T E R M I N A T i D N

Ficzire 2 -Tri-Axial Cable Leakage Test IJnit.

r:~ptrcrl rr.~nsirinn to n srilndard connrculr. In c(x-mectnr mc~r<urrrnents, rhc nutcs coaxin! Iine E F rerminsted in n m3rchrl.l tletecror. E x c e p t for r l w ~diusrnblc shnrr-circuit Ic;~rlrrc, this tri-:isi31 .~ystrrn IS b ~ c n employed by tv l i t r5 '-.',-

F l r drr~cr Irak.yc- rncasurcmcnts rhc ndjustahlr. shorr rl scu I r 5 c - r ~ ' ~ ~ sex~cra l purpnscs b(>rl~ in connector and ~:ihlc. n-r~s~.~r~.rnent<. In ronnccror rnc.xsuremenrs, rhe s l ~ n r r - c ~ r c l l t r posititm is nt1ittstr.d rr, ;Issure rh:~r ;In adc- :lu~tc.l\' I L ~ W ~rnl~cti~tncc appears hehind rhc cqui~alcac Ic .~k.yc- grnt.r;lrlor. % rn.~tchcd tcrminarinr~ can he substi- t ~ ~ r r - c ! . hu t tlw r r su l r in ,~ 0-lSh loss cannot be tcllented in some c:icej. I n 3dd1ti:)n. i f r l ~ c Imk.ljic sourcc i s dirc-crionnl, n r i r indccd i s for cables and conncutnrs wit11 rnulciplc 1 c ~ k : i g ~ . i t IS pr?ssrb[e f!?r [ I ~ C Icx1:nge to bc dirccwd to this rcrmin3rir~n 3r 5i~rne frc.qiiencrr's and nor cul l rr tcJ by r t ~ e il~-tc.ctorr. For surfnic trsnsfcr-impednnce measurements

.t rltl C.I !~ICS 4)r ct~nni'c:~>rs wir l l l e - ~ k a , ~ e from more rh:in one p r l ! nr 111 t h e clmnccror. hinvevrr . ;I rn;~rr.hed terminntion is ~ L ' S I T ~ I I ~ I C i n order tu) ~ l rnp l i fy ~ I I c ' tt311rfi>rrnation of the lncnsurcd J.lra tn [r;insfer impedance da ta . This Iarzer con- sicicrarir>n i s rliscussed nr ,Truster length in r l ~ c AppenJix.

T ~ P t:,quivnlenr l eak:~gc generatclr. in general, can have hdr i cclmponcnrs in the m ~ l ~ n l . axinl. and rircumfecentiaIX

direct~ons. Furthcrmore. these cnmponenrs zre no t neces- sarily circnIitrly symmerric. LocnIly. TE, TM. and TFM m d e s ran .dl cxisr, 2nd in f,~cr, for complete le .~k,~gc rne.1- suremcnts, the dftector should couple. to d l l . Thc r x n t a -

tion of the ourrr cmxinl line, however, 15 he l~eved ro br. principally TEM, since the curscnrs In rllc i ~~ te rn :~ l Itnc art pscdom~nantly nsi:iI and symmetric. In the parr~cular test conliguranrjn rrnplvl~cL1 hcrc., only rllc TE,, mnde can he pn?pngsted, ;~nd r l l is only above i . 5 Gc. In rhc [ran- slticm to rht. srna!ler coaxi:J linc, the TEl ! maJe is hlrcrcd out, btlt some of it couples tr, rlw princip:d TEhl rntde, derivering this power t o rhc drtector. Spucicil cnrc r \

taken to assilrc t113r rhr test r n b l ~ or connrcror system is mounted concrntrically, rr, rn~ni rn lze TEl, morlc gcnerliton.

Despite the possible limiriltions cired alxlve, the tr i - axial system is a s~rnple and effcctivc- svsrem For mt.,Lri!r-

ing r l ~ e net ledkage. I c ir indrrd .r\rrll ruitcd for axial sur- face tnnsfcr-impedance rncnsurernpnts. I t can serve as a sr,tndard merhnd only, Iiorvcver, i f rhe Ic:tk3ge charactcri~- tics or nxinl surfacc transfcs impedance of axinlly svm- metrical cornponenrs :ire to be e ~ ~ a l u ~ t e c l . Accurate rnea- surement of each mode of leakage, each manl!e?tatinn of Ieakage, and tach component of surfncc ~rnpcdance will, in general, require s specific rest configurnti<-m for the par- tlcular measurement.

T / ~ P t.1, r ~ w Ii9: , , t / ,r/ E - / w / d rt ,n>,bn~~~ v ! r r j i f ~ t i , i r i d / ~ p - c r p v ~ The charnctcristic impedance of rhe mrer conxr a l line I ~ I <//>, ( 1 ~ r ) t : ~ t ~ I(. C , J ~ fi,,);~ S r t K l ~ C P U f , 2. of the tri-axla1 system. which i s Former1 with the r;tble

Figure 3 - Tri-Axial Unir and Equipment Setup.

Page 4: A93 Zorzy & Muehlberger, RF Leakage in Cables

braid as the inner condurt.nt, should be matched ro the detector, As 3 mattes of convenience, but with some sacrifice In accuracy and ease of data reduction. one outer conducror size wxs employed for a l l cables. The rharacter- isric impeclance was therefore generally higher than 50 ohms. The steps in cnnductor slze at the cable connectors al~o prmfuce capacirance dismn rinu ~ries. These can he measured {or cnlcuIsrtd" The cffccts of rhe characterlsric impdance dtscantinulty are described In the Appendix.

The leakage power rstio is defined here as the ratio o f the power detected in a 50-ohm detector at rhe output of the rri-axial unit to the powrr tlow~ng titrough the in- ternal 50-ohm mnr?ectr>r or cable system. I t is basically the arrenuxrion through the ai-axial system. T h i s defini- [ion appears nrbitrary in rhe sense rhar 50 ohms is an arbitrary load irnpednnrr. However, since the ledage source irnpedanc~ rs cornparariv~lg low, rhe voltage ar t he derector is essentially thc upen-circuit leakage voltage. The ratio of the input voltage to the leaky cable, to this output voltsee 1s an absolute leakage quanrity. 3s is the r n e ~ u r d power mrio, which IS idenrically equal tn the square of rhis voltage ratin

The surface trnnsfer impedance is obtnioed from rhis ratlo as follows:

The surface rranrfcr impedance is,

where

i, = Cirrrent flowing in inrernal line. t,= Equivnlent leakage vtlltage in external

line.

In the connccror lmkaee crse, consider ins the equiva- lent leakage genemtor tn be e2 with an exfrerne!~ low source impedance, this voltage e2 appears at de~cctvr rer- minds. and tlie adjusrahle shorr cirm~r msures this. For a 50-ohm rransmission-line svsrern, the inpuc power is,

The measured wtput power is,

Tl~c measured power ratio A Y i r therefore.

Substituting and by definition,

In the cabic leskage case, the calculdtinn is nor as srraiphtforward, especially where the outer rri-axial line is nor terminated in its characteristic ~rnpedance. The cd- cularions ccquircd to reduce the measureti results given in r h ~ s paper to transfer impedance per unit l e n p h are not

i included for rhat rmstln. The tri-wiat system cvxs wr UP

principally to assess the relative leakage. I

For rhc mmsurement of surface transfer impedance of cables, che outer coaxla1 line of the tri-wial system ~hould be rerminared in 3~s cI13ncteri~tIc impedance st rhc srmrce end and in a sirn~larly metrhcd detecrnr at rhe output end. In this case tlie relation between the rnmsured I d a g e power ratio, A" and the surface transfer impehnce per unit len,gth IS, in A 50-ohm svstem.

L=leng~h of lmky cable section. d

/3= propagation cnnsranr in the rest cable. P,,= propagation constanr in externaI line of

rri-sxid svstem.

This expression IS obtained firm Equaaion ( 5 ) in the Appendix which describes the forward TEM wave Isunclled by rhe cable.

FREQUENCY, G C

'-'I = ,,.,,, i 5-rrn Long C ~ ~ I F . Fieure 4 - Forward and Backward Wave, Marched Case, - PI 8

Page 5: A93 Zorzy & Muehlberger, RF Leakage in Cables

L- - - ---- - - -1 Figure 5 - Rlnck Diagram of the Measurinp Sw~rcm.

A null in this forwnrd wave Mcun when (P-fi,SL= 2,: ~ n d a m~ximum when ( P - P , , )I.= (Zn - 1 )lr. Rle variatfnn n, f forward wave amplitude with frequency is ~l lown in Fipre 4. Alsn shown IF the backward wave, wi~rch is r h t ~ignnl that would appear In a detector at the snurce end of rhe outer ldne Th~s is obtained from Fqua- tloos ( 5 1 and 19 r in ttte Appndix, employing a poly-

I crhylene-dielectric internal line and air-dielectric external I in?.

f R1 - A X I A L HETERODYNE TEST-UN I T DETECTOR

SOURCE WITH CAL1BRATED ATf ENUATOR

I Messurement Procedure

I /

I I

I n rnensurin~ the Imkqc power ratio, A" bx~ftdly a substitutinn rechniquc rs ernplnyrd A marched detecrclr

Tystem i s installed . A T the output connccrnr of the tri- axial unit, and the u n i t is driven a5 shown in Figure 5 . In this setup, the short c i rcu~r is adjusted to prnduce a maxi- mum ind~catinn at t h t derecror. The detector is rhen con- nected directly r n tlie source rhrm~gh 3 calibrated arteniia- tor. and the attrtnuarinn requited to yield the initial de- tector level is measured.

The sensitiv~ry of this sysrem i s ~bviausly Iirnired by the sensitivity nf rhe rlectector and the power available. A 5cnsirit.e soperheterndyne sysrern rvns employed. and for

b the Eotv-leakage configuration5 about T O rnllliwstrs of potsuer was rq t~ i r ed ,

T h e principal wurces of errur are atrenuacor errors and rnisrnnrch at rhe receiver I mixer 1 tnpuL. Fnr connccmr measurements, the error due ro mismatch is directly pm- purrional r o VSWR since the gguivxlent leakage source

I r rnFedancc is ~rndl. The indicated leakage power can ~ r u y berween the extremes. P x VSWR to P + C'SWR. where P is the power thar wtsuld be delivered rcr a marched sys- tem. A VSWR of 2 will p rduce 27-db error therefore.

In advance nf installing tlie inner conxfal sysrem into the outer cvlinder of the rri-axial system, the inner sysrem msy be excired, and rhe immediate v ~ c ~ n i t p of the Ieitkagc point or asq.r~iare$ connector find atrachrnenr poina probed w ~ t h a small Imp w dipole to establish how critical are [he mating of rhc connector and rahte loinrs.

I Connector L t n l q r nnd Surfme Trlmdet Jmprdoncr

The above prmedure was employed to assess the leak- age rha~~creristic9 OF three widely used connectors, rhe General Radio 874-73. the BNC {Bayonet Coupling 1, and rhe N (Ttireadd Coupling), and in addition, the new General Radio I c C i n g Connector, rhe 87"i-BE which com- prises the basic 874-B Connector with an outer, threaded coupling nur to shield and join rhe mating parts securely.

Leakage results are hown in Figure 6. These resulrs ~ were rransformed to equivalent transfer ~rnpdance. Z-,. and this result is shown in Figures 7 and 8.

f I I d - ! I

I I I

Figure &-Leakage Characteristics o f the Type RNC. N, and General Radin Type R7.I-R, and Tvpe R74-RJ- Cnnn~nora.

Figure 7- Surface Transfer Impedance t j f rhe Type N and General Radin Tvpe 871-RL Crmxial Cnnnerrors.

too

I

0 I 2 3 4 5 6 7

FREQUENCY - t C

Figure R - Surface Transfer Impedance of the Type BNC rtnd General Radirb Type 878-R Gtaxial Connpctor~.

Page 6: A93 Zorzy & Muehlberger, RF Leakage in Cables

I ~ j i ~ ~ r r 11 - L-eaknec Charar.rrrxs~icq nf RG-SH, KG-H, and General r;~dio T,, pes H.'.l-h? and H74-A 7 Flc-ughlr Cnaxial Cables.

The Ecakayr c l~a rnc t e r i~ r rcs nf qevernl popular flexible cr~,~xfaI c;iSlcs are shown rn Fisurc 0. The RG- PI and RG-53 :arc rlnqle-brctd r:lblts. The Lcneral R a d ~ o A - l ~ n d A-?l are d o u b l e - h s ~ ~ d cable5 nf nyprnun ln r~ lv rhr snme size :is RCi-9 and RG-58 respect~vclv. The rnrres- pending wrfccc imprddnce per unlr Irngt11. calcu- Jnred from t'le Leakape measurements, vs ~ h o w n in FIQL~TCY 1 0 2nd T 1. Sirnplc thenrv indicnre4 t h ~ r rht: trnns- t'er i ~ n r d s nce 1s pr~nciyalli, inctucrsnct. A Einc~r surface ~rnpedscce v ~ r l ~ t i r ~ n a~irh frroritncy IS. thcrefanrt., prcdlcted .A I ~ n c a r frcqucncv curve i s shnwn in the sraphs in f h i ~ cnnnecrlun. F:>r sinslc-braid cabler, thc Ilnear ttlaraon C S I S ~ F un rn ,l!wr!t 5 Gc, wliile for rhc cinublz-bmtd cables the Itnear r c i n r~nn exist< only up rt, shout 3 Gc

Thr srnqlv-braid I eakap d m indicstr the ~~ricxlicit~ + X P C C ~ ~ ? ! I I I thc fnr.;r,ard wJvr launched 2~ rhe leakv cah l t , and 1s tspL.l~ncd. t l ~ c r e f ~ t t . by ;tn rorsllerl:. xrrangr- n r r : l t n f incrrmcnr;i[ Ira k a p sourcvs.

F R E Q U E N C Y - G C

f ;pure 10 - Sr;rfat.e Transfer rrnnedanre Per Unit Lenpth of RE;- ?R and RG-H Sinclt-Rraid Cables.

The double-hraid darn :ire rte~nic-l of 11:r per i ~ d i c vatiii-

ticln. Perhiipr; t he rl~>ublr-qhielri .sr.rnn,gvmc-nt r;lnncrr b(. represented ;IS n srries of equal incrtrnlcnra! grnrr;:tl:rr J F

well as can [he single-braid. because rhr ctmracr bcin.t:r.n IIIC: outer and inner braids mat; nor b:- a $ r c ~ u l - ~ r a> r s l r n . v > \ i

uf the brad. Subsequent rnr,isur.rmcrrt< nil1 Lx- pcr l t~ rmr . d

to verify ~ h ~ s result, n r d to sc-p.~mtt: :lrr ictrw.lrcl ,~n,! Lick ward rvaves l aun ihcd bj, thc i>blc . Th15 wi l l pcrmir I

more ni rur>te mensurcrnrnt of rrnrrsfcr !rnpcxl.lncu.

The Fowarcl and Rackwdrd \Y',lrmrr I . , ~ ~ n c h e d h\ I.e,~l,x Cableq-A nalysiq

I.IMW cnup l~n ,~ brrwrtn tc! l lc .cnr t r a v r n l L , 5 l l I r i IIIL i~nder marcher1 cond itr13ns has been an:11!:z'd rvpru.~l lv l ~ v

Shell\unr)ff and Od;~rr-nko' '. .ind Junptc,r ' . A r l , ~ n , ~ I w i ~ I-,

qrvt.n hrre fo r rhr ciwplrnr of r h ~ It.?kv rnhlc ~ntr-b r l ~ r

sc-cond,~ry, cxrerniil CO.LXI.I\ Jbnc c > f rhc r r I nxr:ll s\srrrli under pcnrr31 c o n d ~ r i o n ~ of rn.trcl~ L!*he pirt1c~r1.r~ cmtrLJ I I ~

nthich rhc snurcc entl nf rlh: rnrerf1.11 c o l l ~ c r t n ~ linc 17

trrminared in a short-c~rru~r, 2nd rhtd trnrpblt c~lcl ,>F rt:t extern31 l i r e 15 trrrnin,~rrd In . L l i ~ .~c! rl :)r mirct~cd ru [!-I\ linc. ii alrn .~nalyzcd

\'oltag~ ar Output End and Fnm*:lrrl \\: 2 ' c

0.1 0.5 1 2 4 6 8 - FRECIUENCY- GC

F i ~ u r e 11 - Surface Transfer Impedance Per Unit Length nf General Radio Types 874.A2 and H:, f -A+ l+lexihlc Coaxial Dou bk.Braid Cahlrs.

Page 7: A93 Zorzy & Muehlberger, RF Leakage in Cables

~ , l . l c c ~ l .kt thr ourp~rr end 1d the r r i+; rx i ,~ l urllr under rn:~tch~d L ! c , ~ > - [e: ( x -- I > ( Y ) z*. ( >: ) 1 C t A [/jq, 1- -- x 1 -

inndlrrdrn<. T l i c !or,rl v r> t r ,~g~ LC the output t n ~ l 1s fib- rninctI as f r ~ l t o w ~ - j [ i : t x ~ ZIh2] 5 1 n [ , H * , [ I , , - x ) ]

I n Fjpurc 1" wr r rn t . i l , fowrng inrernall!' 13 lit. - r.1Llc yrndurcs r ltc v n l c i p r2 J I ~11e surface ~rn~ecfxnce. i I ] L [ ! I - x 1 1 t '0" J Y

l'lnrs 6 t ~ t t , ~ g e ;rppc;~rc cxtcrnnlly in series w ~ r t ~ t t ~ c cable

-

Z2( :? j

outer cond~rcrl lr . ~ r ~ c \ p r o d ~ r ~ ~ ~ 3 CLITFL-III .\; P , i l l the I ~ u t r r I ~ n c . ~ 1 ~ 1 [ , 3 , , i i , - r ~ ] r . 1 8 " d r ( 3 )

l ' t~c rv;l\c 1 1 , thc rl!:J~r pli>dtrccll 1,)) i:fx) is ubt.ttned as follnws. l n t r g r a r ~ c , ~ ~ of i 3 j ~ v h ~ c l i I S rhr- surnrnar~c~n OF the cun-

'I h r ~ncrc~nc-rlt.tl vrbl:,~pe v- a t x 1s rrihutions trom tkr w r i e s r,f i n ~ r e r i ~ r n t n l leakagc grnr- rntt ir5, yrelds r l ~ e t r l t ~ l villtagc ~ C ~ U S S ZIJr., that i s ,

c ? ( X ) = I l b 2 1 C - j ps JX { I1

Icngt;l

,B=ptopa#,ition cotisLdnr i n cable.

T'l\t ~ncrerncnral current i n rhc cxtcrnnl 11ne I , . ~ t phne x ( 4 )

Norr tll,tt wtlcn rllc ~xtcrr l~ l i y s t t m 1s rnatcl~rd j t horh cnd.c. I ) rcctucl-s tu the i~jrlv:ircl \tf.tvr.

\vllesc.. Z2( x ) = the series cornbinatinn crf tr3nstormcd to plane x, a ~ l d Zr.1: t ranqiormcd

ZLrl ' jZl12 ran p,.s ZA{X) = Ell*:

Z,,? -- I Zl,r: ran

G,P- j Zl,:rnn Lfl,,.(L-x)] Z t - ( x ) = zrr2-

%:,I: - j Z,.F ran [p,, ( - x 4

The incremenral I ~ I rage ,icrr)ss t lie cxrrr nal l ~ n e :ct x . L,,os ocrtss Zl,F 5,

Fr)r rhc r r ~ - , ~ x ~ a l conr~ei~iorir c1escriSrr.d In tllv text, r!~c r>utl~urwlhrngr w.15 the .;urn r ~ f rhr cnrnplex vr~lt~iger id r t ~c f ~ > r w : ~ r ~ t .in4 buckwitrd w.ivc.s ohtatned bv Intcgrarlcn of Equarrrm 1 r 1 .

For thts .ietzrp. Zr +: wtt> a shurt-circu1tc.d Icngtl. of C~MX-

~ a l llne t ~ f chnr.rctcr~st~c irnprd~ncc. Z, ,. In rh~s casc,

F r l ,~cld~tlrm. t f ~ c 1o.d Kt,, wtl> nut r n a r ~ l ~ e d t t ~ Zl12, rl~ercforc, Equ.tritm I 4 J ,ipplIes, employrng thr- ahawr sub. stlrurtoll Icr Z1.l, 111 ZI, ( x 1. w h e r r ~ n L2-,( x 1 =Zrl ( x ) -+-

Z I ~ ( X , . In rkt. exprrrmtntnl proccrlurc LI , , tile Ic-nptl~ of rhr

shorr circurl t q :~dlusrcd t * ) prndu~e .t rn:Lxlmum In the total vulmgc ,Lrrt,ss Z,,, , thc- detector i r r l jxd~nce Tl~e rr- su i t ot Inlrgratmol of ( 4 , for t h ~ s genernl cnsc 1s complex

Page 8: A93 Zorzy & Muehlberger, RF Leakage in Cables

Therefore, in order ro illustrate t ) ~ wmmarrnn of the fur- L, ward nnd b:~ck\\~nrd wave. when :I short i l rcu i r ts used, <,,,, , I Zl e x ) I ctss r/,',,x, c - YCJX ~oos~cier rhe case rvherr. the exrcrnal l i r ~ c - i s term1n;lted in a

0 marched derector ar the ourput end, and ZtI.:-Z,,2. Tire

roral voltage across Z,.+-. sirnpl~fies to, t .(

When the short crrcuit, i s :~~l;usrcd for rndximurn outpiit This rs the toral volrngc. acruss Zldli. vtllragc this re2ures rn- N4.w cI13r whcn rht external sybtcrn 1. ~ n ~ r c l ~ r d ,I[ hxl~

'I?w first term 1s rccug11izc.d 11s rht. f(>rw:lrd w n v c for the marched uiae, Equnrion ( S ! The second term 1s rec- ogn~red as rhe backwmd w:rue fo r the m:itchtd case. Equa- tion (0) brlowr.

. -

mtlr, (: X i reduces In the bnckward wave.

VO! tage a[ Inl~trt End and Backward Wa, e

'The wnve propagating toward the source rjr Input is givrn as the h;fckward w:hve I r i q the signal appearing ; ~ r a detector placed at rhe Irlpur end of the rr i -ax~al unit under matched conditic~ns. The total vulrxge ar rhe rapur tnd is obra~ned in [lie samr miinnet as fur the forward wave, yreldlng the f~!l(lwillg result:

T ~ C S C ~ q u d t I O ~ T ttrscribe the ~ T L J ~ L I L ' I I ~ ~ hr l l . ~v io r 06 I I I ~ ~ ~ E - J X I . L I unit lenkage uutput voEtnge. and rclatc thrs t o tl ic surf'ice transfer impdance. The rnensured result is tlre r.itlo of pr~wer 3t output to power lnpur ~ncidcnt on in- ternat cahle, and is directlv reiarcrf ru el. i,. Thr transfer impedance, z,,, ts calculartd from this rnc~sured rresult, employing the value fnr G, vbtnirled by p l ~ y s t ~ d rnrdsure- menr and from knrrwn o r mma~svrrd values OF rhe propaga- tion cotlstnnrs /3 and P,,.

1 K I k r d f h . "LCJ k.ig~- f ~ f l - I t ,cc ro~ l i~~gnet~ t ktwrgv f r ~ ~ ~ n Crrax- i . ~ l C.ihlr 5truttures." P r t ~ clf t l i c !:tlurtt~ C : c m f , un Kaclio I n r c r t c ~ ~ n r r Kcdutnr+rn ~ n d I : l r c t r i ~ n ~ r Cornpiltibility. pp. 5 1 I - :? - , oc;, I-.. i 9 5 R .

? D. P. K.trrr. l,lk+~.r ~ n d 1-. C. Peach, "7 11e P ~ r ~ ~ ~ r t n ~ n t ~ art Sh~r l t i ing h'~trrial .; ." Pror, uf thc Fifth CunC. on K a d i l l lntertrtcncr Ucrl~lcrr~)n ;1rrLl l i l c < t r o n ~ c Ciln~p.~t ih~kl ty. pp 3rt , - ; . i i , OC!, 6 7 , H? t 9 7 0 .

.+. I D, hf t~nd l ~IILI I:. Il ~ L ~ . I I / . ''-1'11r k ! x ~ t r n ~ ~ l Elrt t rd~. m.i,<nctlL ! - i ~ l d ~ <*I \hlrldrd Tr.ln~lni51r1u11 I.I~c$." PIIIC. uf t h r 51utll (-tgnl' crn K n ~ l j t ~ Inr~rtrrt.nrr- l lerluct~on ,~tial El~crrarr~rc Cr.tnpar~h~llty, pp. i8H-.ltlF3 Ocr, 4 , 5, 6 , IV60.

1 H Kadtn. W'rrhclrrrornc urjd 5chlirnt1ng In der Kach- r rch t tn~vr l ln~k . h p r ~ n ~ e r - V ~ r 1 . t ~ : Hcrlrn, pp 27:-2R2. I I 1 l 5 V )

7. ) A Atlcn, ''A Proyl~\cd 5fandard f l l r Te*tinp the hh~e ld- Ing F:ffctr~vt.n~r*bf CI~~$I ; I I Cihlts dnd thrcldtnr: M.1-

ver1~15. I'rl+c ( $ 1 t l ie 51urll Crmt. on R~rlrrr Sntertrrcnlc Rc- duttrtrn dnd klectrfmrr C.nmp~t ih~l l ty, pp. 372.387. Oct 1. 5 . (h, I O ~ ~ t ~

' 1 R. I' I(r$hl ,inJ F K . S c h ~ t l ' A l-ryr-5pdir hlrthc%~l frbr Flr.iwrrn,c r o , i ~ ~ n l C.dhlr- \ h ~ r . l ~ l ~ n y : EFr t t~vcn r~s . ' Prtsr of thc Tcrurth Ccint nri Kdrlqu In t~r r rbenre Reductinn and F lccr r r r~ i l~ Cornp.it~hrY~rv pp. 3 7 2 - i ~ h , Olt l h 2. I:~>H,

I0 A. H Anderson, 'Cvlrndr~c.3l Shirlr l~nfi a t ~ ~ l I T + Mensurc- rircnt .it Rad~t l Frtrlurncli4r. Prikr. TR1:. i.1. 5 , pp 412-317. M a y , IP4(,.

I I. T. K r l l ~ c l , " h l e l l r f . ~ ~ I ~ s t l l ~ r r c ~ u n ~ FI rx~h I r r K r> .~x~a l Kahel , ' Tr lc fwr~krn-Zc l tun~. J G I r ) , pp. ! u 7 - ! 1 4 + \rprrmher. 1077. h e f r 1 1 7 .

I 2 7', hlntcnt), M ~ L rcIwd\w ~* I : ~~ IS IK 15511 In Uc;~pn Data. 1 h1 El l . , ilZ1-C~;nu~-Mi11 l i ~ u ~ k ( I t ) . . Enr., N r w I'ork, p. LIr*, (1948 )

I 3 S A 5r t~ tk l~r ro t i drld 'r M . f>+lart.~~ktr. 'Cr iwta lk Hctwrcn CdlnxrnV 'Trnn.;n~r.;s~c>n Liner." Hell Sys. Ttc11. 1.. V~r l . XVI, So. 2, pp. l . l4-lr;,4, Aprr l , 1037 .

I, R P U~rtrtlt ~ n d 1 R i C)~E.lrrnk~~. ' ' S I ~ ~ S C L I ~ ~ l+etwt.rn (:o3%16! (.unkfu~turs In Cabfr . 8cl l Sv5 'I'cch. J . 18, ?)R, (10'111)

L ) 5 A. >helkt~nuH. ' Elcrtrnnlagnrt+c WJVCF," D Yrn Nos. t r . ~nd fnt.. Pr~ncc-tdjn. N J , ( f Q * j z 1 ( < r e pdgc 228. 5ur Iarr l ' r ~ n ~ f r r Ilnped.~nce)

) C G Vnntprrnrr), " T t c t ~ n t ~ u r nt hlr<rtlwave Me.uure n ~ m t . ' 15t Erl ( lLW7) M c G r ~ r H~l l Lhirk C n . Inc , , Nea \'urk, 41947) .

Page 9: A93 Zorzy & Muehlberger, RF Leakage in Cables

GENERAL R A D I O C O M P A N Y * W E S T CONCORD, M A S S A C H U S E T T S

*NEW YORK: Broad A v n n v t at Linden *WASHINGTON: Rorkvi l le Pike a t Waf t Lafie FLORIDA: 113 East Colon ia l Dr ivs

Ridgefield, N e w Jersey Rorkwi lle, Mary lond Q r l o n h , Flor ida

SYRACUSE: P i rkord Buildinp, East Mol l oy Road CLEVELAND: 5579 Pearl Rood

Syracuse 11, New Ycrrk Cleveland 29, Oh io DALLAS: 2501 - A West Mockingb i rd lone

Dallns 35, Texas

PHltADEtPHIA: 11SOYork Rood Abinglon, Pennsylvania

*CHICAGO: 6605 West Nor lh Avenue *LO5 ANGEPES: lOMl Norlh Sewwtd Streef Oak Park, I I I ino i r 1 0 s Angeler 38, Cal i fo rn ia

TAN FRANCISCO: 1106 Lor Altos Avenue *TORONTO: 99 Floral Parkwoy MONTREAL: ORlce 395 1255 'Laird Boulevard

10s Altos, Eolifornia Tolonto 15, Ontar io Tow0 of Moun t Royal, Quebst, Canada

*Repair services are ava i lab le ot fhase offices.

GENERAL RADIO COMPANY (Overseorl, Zurich, Switzerland

Representatives in Prinripal Overseas Counfries Printed i n U.S.A.