16
Todays Lecture First crack at accretion disks EHT Black holes Ahumada Mena, Tomas Carvajal, Vivian Frances Crnogorcevic, Milena DeMartini, Joseph Dittmann, Alexander Fu, Guangwei Grell, Gabriel Hammerstein, Erica Hinkle, Jason Hord, Benjamin Ih, Jegug Karim, Ramsey Koester, Kenneth 4/18 Marohnic, Julian Mundo Sergio Park, Jongwon Teal, ' Thackeray, Yvette 4/16 Villanueva Vicente Volpert, Carrie Ward, Charlotte Williams, Jonathan Yin, Zhiyu 4/16 Oral Presentations 10 students have not presented or signed up yet...after today we have only 8 lectures; the math is obvious If no one volunteers I will assign talks in reverse alphabetical order; e.g Teal would be next, then Jongwon, Sergio etc. Aiming for 2 per lecture. This will start April 16 and then April 18,mApril 23, April 30, May 2, May 7 and May 9 and the 'last class' I will consider changing this if the next person in line agrees. Red has given talk, green signed up

A680 Accreting sources 2019 - UMD

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A680 Accreting sources 2019 - UMD

TodaysLecture•  Firstcrackataccretiondisks•  EHT•  Blackholes

AhumadaMena, Tomas Carvajal,Vivian Frances Crnogorcevic, Milena DeMartini, Joseph Dittmann, AlexanderFu, Guangwei Grell, Gabriel Hammerstein, Erica Hinkle, Jason Hord, Benjamin Ih, Jegug Karim, Ramsey Koester, Kenneth4/18Marohnic, Julian Mundo Sergio Park, JongwonTeal,' Thackeray, Yvette 4/16Villanueva VicenteVolpert, Carrie Ward, Charlotte Williams, Jonathan Yin, Zhiyu 4/16

Oral Presentations 10 students have not presented or signed up yet...after today we have only 8 lectures; the math is obvious If no one volunteers I will assign talks in reverse alphabetical order; e.g Teal would be next, then Jongwon,Sergio etc. Aiming for 2 per lecture. This will start April 16 and then April 18,mApril 23, April 30, May 2, May 7 and May 9 and the 'last class' I will consider changing this if the next person in line agrees. Redhasgiventalk,greensignedup

Page 2: A680 Accreting sources 2019 - UMD

The winner is Friday May 10 (17 votes) next are Mon May 6 and Wed May 8 with 13 votes- 21/23 total votes. Now we need to pick a time I will send out another poll later today

•  KenK.willpresent2014MNRAS.437.1698X-rayemissionfromstar-forminggalaxies III.CalibrationoftheLX-SFRrelationuptoredshiftz≈1.3Mineo,S.etalonApril16

•  ZhiyuYinwillbepresenting....2014MNRAS.437.1698X-rayemissionApril1

•  YvettewillbepresentingonTuesdayonDone,Gierlinski&Kubota2007A&ARv..15....1DSec1,2April16

•  NextpaperarXiv:1312.6698ObservationalEvidenceforBlackHolesRameshNarayan,JeffreyE.McClintock

Page 3: A680 Accreting sources 2019 - UMD

DownwardstoBlackHoles!-Longair13.11•  aneutronstarhasamaximummass•  Ifthismassisexceededonhasacompletegravitationalcollapsetoa

blackhole

•  Basicanatomyofablackhole•  Observationaldiscoveryofblackholes

Howmuchenergyisreleasedbyaccretionontoacompactobject?

•  Considermatterinanaccretiondiskassumethat…–  Thematterorbitsincircularpaths(willalwaysbeapproximatelytrue)

–  Centripetalaccelerationismainlyduetogravityofcentralobject(i.e.,radialpressureforcesarenegligible…willbetrueifthediskisthin)

•  Energyis..

Page 4: A680 Accreting sources 2019 - UMD

totalluminosityliberatedbyaccretingaflowofmatteris

-Longair14.48

Initial energy (at infinity)

Final energy Mass flow rate

• Totalluminosityofdiskdependsoninnerradiusofdissipativepartofaccretiondisk

•  ThematterfallinginfrominfinitypassesthroughaseriesofboundKeplerianorbitsforwhichthekineticenergyisequaltohalfthe

gravitationalpotentialenergy.•  Thematterdissipateshalfitspotentialenergyinfallingfrominfinity

toradiusrandthisisthesourceoftheluminosityofthedisc.•  Whenthematterreachestheboundarylayer,ithasonlyliberated

halfitsgravitationalpotentialenergy.Ifthematteristhenbroughttorestonthesurfaceofthestar,therestofthegravitationalpotentialenergycanbedissipated.

•  Thus,theboundarylayercanbejustasimportantasourceofluminosityasthediscitself.-ofcourseblackholesdonothaveasurfacesotheenergy'disappears'

Page 5: A680 Accreting sources 2019 - UMD

Thin accretion disks

Accretion disks form due to angular-momentum of incoming gas Once in circular orbit, specific angular momentum (i.e., per unit mass) is So, gas must shed its angular momentum for it to actually accrete… Releases gravitational potential energy in the process! Matter goes in, angular momentum goes out!

TheFirstPhysicalDiskModel-Longair14.3.3•  Thefirstphysicalmodelofadiskwas

developedbyShakuraandSunyaevin1973

•  Theymadeasetofassumptionswhichhaveprovedtobereasonable.

•  Thediskisopticallythick•  Thelocalemissionshouldconsistofa

sumofquasi–blackbodyspectra

Page 6: A680 Accreting sources 2019 - UMD

Condition for Thin Disks 14.3.1 Longair It is assumed that the mass of the disc is much less than the mass of the central star; Mdisk<< Mstar .

Conditions for thin accretion discs ∂p/∂z= −GMx ρ sin θ/r2

∂p/∂z ≈ p/H, where H is the thickness of the disc, p=pressure,

=density Thus the condition for hydrostatic support in the z-direction is p/H x /r 3 . H/r≈ cs/vφ ; cs is the sound speed ~P/ so H/r~1/Mach number the thin disc approximation is 'ok' if the rotation velocity of the disc is very much greater than the sound speed.

ASimpleDisk-seeLongair14.48C.DoneIACwinterschool

•  TheunderlyingphysicsofaShakura-Sunyaevaccretiondisc(averysimplederivationjustconservingenergy-ratherthantheproperderivationwhichconservesenergyandangularmomentum).

•  Amassaccretionrate˙MspiralinginwardsfromRtoR-dRliberatespotentialenergyataratedE/dt=Lpot=(GMM/R2)xdR.

•  Thevirialtheoremsaysthatonlyhalfofthiscanberadiated,sodLrad=GMMdR/(2R2).

Page 7: A680 Accreting sources 2019 - UMD

ASimpleDisk-seeLongair14.48C.DoneIACwinterschool

•  Ifthisthermalizestoablackbody(locally)thendL=(dA)xkBT4wherekBistheStephan-Boltzmanconstantandareaoftheannulus

dA=2x2πRxdR(wherethefactor2comesfromthefactthatthereisatopandbottomfaceofthering).

•  ThentheluminosityfromtheannulusdLrad=GMMdR/(2R2)=4πdRkdRT4or–  kT4(R)=(GMM/8πR3)

•  Thisisonlyoutbyafactor3(1-(Rin/R)1/2)whichcomesfromafullanalysisincludingangularmomentum

•  Thusthespectrumfromadiscisasumofblackbodycomponents,withincreasingtemperatureandluminosityemittedfromadecreasingareaastheradiusdecreases.

TemperatureStructureofAccretiondiskLongair14.3.5

•  Energyreleasedbyanelementofmassingoingfromr+drtorGravitationalpotentialenergyisEp=-GMm/2rsoenergyreleasedisEg=-GMmdr/r2.theluminosityofthisannulus,foranaccretionrateM,isdL~GMMdr/r2.

•  dE/dt=(3GMM /4πr3)[1−(r /r) ]Longair14.47seederivationonpages456,457

•  Theenergyreleaserateisthehalfofthegravitationalpotentialatr=r*.Thisisbecausetheotherhalfofthegravitationalpotentialenergyisconvertedtothekinematicenergy(Keplerianmotion.ThisisexactlywhatexpectedfromtheViraltheorem

Page 8: A680 Accreting sources 2019 - UMD

TemperatureStructureofAccretiondiskLongair14.3.5

assumingtheannulusradiatesitsenergyasablackbodyFora•  blackbody,L=σAT4.Theareaoftheannulusis2πrdr,andsince•  L=MMdr/r2wehave•  T4~MMr-3,or

•  T~(MM/r3)1/4;e.g.T~r-3/4;T~M1/4M-1/4

•  IfoneputsintheconstantsT~(3GMM/8πσr3)1/4.

TotalSpectrum-seeLongaireqs14.54-14.57•  Ifeachannulusradiateslikeablack

bodyandthetemperaturescalesasT~r-3/4

•  TheemissivityscalesoverawiderangeofenergiesasI(ν)~ν1/3

•  AtlowerfrequenciesthespectrumhasaRaleigh-Jeansν2shapeandathigherenergieshasaexponentialcutoffcorrespondingtothemaximumtemperature(e-hν/kTinner)

•  Thusthespectrumfromadiscisa

sumofblackbodycomponents,withincreasingtemperatureandluminosityemittedfromadecreasingareaastheradiusdecreases.

Page 9: A680 Accreting sources 2019 - UMD

TotalSpectrum•  Ifeachannulusradiateslikeablack

bodyandthetemperaturescalesasT~r-3/4(Longair14.54)

•  TheemissivityscalesoverawiderangeofenergiesasI(ν)~ν1/3

•  AtlowerfrequenciesthespectrumhasaRaleigh-Jeansν2shapeandathigherenergieshasaexponentialcutoffcorrespondingtothemaximumtemperature(e-hν/kTinner)

•  Thusthespectrumfromadiscisa

sumofblackbodycomponents,withincreasingtemperatureandluminosityemittedfromadecreasingareaastheradiusdecreases.

the emission spectrum of an optically thick accretion disc. The exponential cut-off at high energies occurs at frequency ν = kTI/h, where TI is the temperature of the innermost layers of the thin accretion disc. At lower frequencies the spectrum tends towards a Rayleigh–Jeans spectrum I ν2.

If the disk 'cuts off' at some radius rinner then the temperature profile is T (r ) =3GMM/8πσr 3[1 − (rinner/r )1/2]1/4

eq in 14.7.1.

•  Inmorefriendlyunits•  T=2x107(MNS/M¤)1/4(M/M¤/yr)-1/4(r*/1014cm)-3/4K•  NoticethisisclosetothesimpleestimateofaNStemperaturewe

hadbeforeandthismaximumtemperatureisinthex-raybandforNSandstellarmassBHs.

•  Alsonotethatthe'effective'temperatureshouldtracktheaccretionrateandthustheluminosity

•  ornormalizingtheaccretionratetotheEddingtonlimitm: m � /�� � � m •  = . x m / ¤ / •  orin'x-ray'units•  58 4M - if

Page 10: A680 Accreting sources 2019 - UMD

VaryingParameters•  Kristin

aSalgado

DoTheyReallyLookLikeThat

•  X-rayspectrumofaccretingNeutronstaratvariousintensitylevels

•  RightpanelisT(rin)vsflux-followstheT4law(ifftheradiusisconstant

T (keV)

Flux

Page 11: A680 Accreting sources 2019 - UMD

FittoRealData

The data is of very high signal to noise Simple spectral form fits well over a factor of 20 in energy Emitted energy peaks over broad range from 2-6 kev

Data presented in 'detector space' Counts vs energy

Best fitting model

ActualNeutronStarX-raySpectra•  LowMassx-raybinaries(NSwitha'weak'

magneticfield)havea2componentspectrum–  Thelowenergycomponentiswell

describedbyamulti-colordiskblackbodyspectrum

–  Andthehottertemperatureblackbodyisrelatedtotheboundarylayer

•  Howevertheobservedtemperaturesdisagreewithsimpletheoryduetothreeeffects

–  Generalrelativity–  The'non-blackbody'natureoftheradiation

–  Reprocessingoftheradiationofthecentralregionsbytheouterregionsandthenre-emission

Page 12: A680 Accreting sources 2019 - UMD

summary•  X-raybinariesexhibitawiderangeofbehaviors,butmuchoftheinterestingphysics/astrophysicsiscommontoall

•  Understandingofaccretiondisks,accretionflows,X-rayinducedwinds,compactobjectevolutionareallinaveryactivestateofresearch.

Thisisavastfield-herearesomereferencesforfurtherreading

•  Dippers:Smaleetal.1988MNRAS232647•  Blackholetransientlmxbs:RemillardandMcClintock,2006ARAA44,49•  Color-colordiagramsforatoll/Zsources:HasingerandVanderKlis1989•  MicroquasarGRS1915+105:MirabelandRodriguez1995PNAS9211390•  ADCsources:WhiteandHolt1982Ap.J.257318•  IronlinefromCygX-1:Milleretal.2003Ap.J.578,348•  Cyg X-3 Chandra HETG: Paerels et al. 2000 Ap. J. 533, 135 •  Accretion disk corona modeling: Jimenez-Garate et al. 2002 Ap. J. 558, 458 •  4U1822-37 spectrum :Cottam et al., 2001 Ap. J. 557, 101 •  Accretion power in Astrophysics Frank, King and Raine •  Catalog of X-ray Binaries, Liu Van Paradijs and Lewin 2007 A&A 469, 807 •  GRO J1655 chandra spectrum: Miller et al., 2006 Nature 441, 953 •  Hydrodynamics of HMXB winds: Blonding 1994 Ap. J.

Page 13: A680 Accreting sources 2019 - UMD

(H. Spruit) Viral temperature Tviral=GM/kr; for a NS M~1.4Msun, R~10 km T~1012k

DownwardstoBlackHoles!

•  The maximum mass of a neutron star

•  Complete gravitational collapse to a black hole

•  Basic anatomy of a black hole

•  Observational discovery of black holes

Page 14: A680 Accreting sources 2019 - UMD

HowCanWeObserveBlackHoles

•  Ifablackholeisa'place'whereradiationcannotescapetoinfinityhowcantheybeobserved?

•  Dynamicaleffectson'nearby'material

•  Shining blackholes-ablackholecanbeaplacewhereaccretionoccursandaswehaveseentheprocessofaccretionaroundacompactobjectcanproducehugeamountsofenergyandradiation-makingtheblackhole'visible'

MaximumMass(Cont)•  NoneoftheobjectsthoughttobeNS

haveamass>2.4MsunbutobjectsexistintheMilkyWaywaywithamassupto19Msun

Vertical lines are density in units of nuclear matter

Page 15: A680 Accreting sources 2019 - UMD

MassesofCompactObjects•  Massesof

neutronstarsclusteraround1.4M(1isnear2M)

•  othersourcesaregalacticblackholes

BlackHoles•  Whatdoyoumean'black

holes'?

•  Weknowofobjectswhosemass(derivedfromobservationsofthelinesfromthecompanionobjectsandNewton's(Einstein)laws)whicharelargerthanpossibleforaNSorwhitedwarf.

•  Theyhaveotherunusualproperties(relatedtotheirx-rayspectrumandtimingbehavior)

•  Bigdifferences-nosurface,nomagneticfield,highermass,strongerGReffects.

Page 16: A680 Accreting sources 2019 - UMD

Generalpropertiesofemissionfromblackholesystems

•  Emissionusuallyvariableonwidevarietyoftimescales–  Galacticblackholebinaries:millisecondandup–  AGN:minutesandup–  Mostrapidvariabilityapproacheslight-crossingtimescalelimitofphysicalsize

ofobject(τ~R/c)

•  Significantemissionoververybroadspectralrange(radiotohardX-rayorgamma-rays)-NSandWDstendtohave'thermal'likespectra(relativelynarrowinwavelength)

•  Lackofasignatureofasurface-notapulsar,noboundarylayeremission(nox-raybursts),no'afterglow'fromcooling