17
ME340A: Prof. Sameer Khandekar http://home.iitk.ac.in/~samkhan Department of Mechanical Engineering Indian Institute of Technology Kanpur 208016 Kanpur India 1 Sameer Khandekar ME340A: Refrigeration and Air Conditioning Instructor: Prof. Sameer Khandekar Tel: 7038; e-mail: [email protected] Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur 208016 India 1 Heat Exchanger Design Part II Sameer Khandekar ME340A: Refrigeration and Air Conditioning Instructor: Prof. Sameer Khandekar Tel: 7038; e-mail: [email protected] Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur 208016 India 2 In this lecturePart I Types of Heat Exchangers The Overall Heat Transfer Coefficient Fouling factor Part II The Log Mean Temperature Difference Method Counter-Flow Heat Exchangers Multipass and Cross-Flow Heat Exchangers: Use of a Correction Factor The EffectivenessNTU Method Selection of Heat Exchangers

AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 1

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

1

Heat Exchanger Design – Part II

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

2

In this lecture…

Part I

◉ Types of Heat Exchangers

◉ The Overall Heat Transfer Coefficient

◉ Fouling factor

Part II

◉ The Log Mean Temperature Difference Method

◉ Counter-Flow Heat Exchangers

◉ Multipass and Cross-Flow Heat Exchangers: Use of a Correction Factor

◉ The Effectiveness–NTU Method

◉ Selection of Heat Exchangers

Page 2: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 2

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

3

Analysis of heat exchangers

An engineer often finds himself or herself in a position:

1. to select a heat exchanger (Sizing) that will achieve a specified temperature change in a fluid stream of known mass flow rate - the log mean temperature difference (or LMTD) method.

2. to predict the outlet temperatures of the hot and cold fluid streams in a specified heat exchanger (Rating)- the effectiveness–NTU method.

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

4

Design/Analysis of a heat exchanger

◉ To design, or to predict the performance of a heat exchanger, it is essential to relate the total heat transfer rate to quantities of interest such as inlet and outlet fluid temperatures, overall heat transfer coefficient, and the total surface area of the heat exchanger.

◉ The LMTD method, described herein, is a simple approach when the fluid inlet temperatures are known and the outlet temperatures are either specified or readily determined from the energy balance expressions.

◉ It is also used for determining the size of a heat exchanger to realize prescribed outlet temperatures when the mass flow rates and the inlet and outlet temperatures of the hot and cold fluids are specified.

Page 3: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 3

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

5

The Lograrithmic Mean TemperatureThe effective representation of temperature difference

1

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

6

Heat capacity rate (sensible cooling/heating)

◉ The rate of heat transfer in heat exchanger (HE is insulated):

Two fluid streams that have the same capacity rates experience the same temperature

change in a well-insulated heat exchanger.

DTm an appropriatemean (average)temperature differencebetween the two fluids

Page 4: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 4

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

7

Heat capacity rate (phase-change)

◉ The heat capacity rate of a fluid during a phase-change process must approach infinity since the temperature change is practically zero.

�̇� = �̇�ℎ

where, �̇� is the rate of evaporation or condensation of the fluid and hfg is the enthalpy of vaporization of the fluid at the specified temperature or pressure.

Variation of fluid temperatures in a Hxwhen one of the fluids condenses or boils.

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

8

Log-mean temperature difference

Variation of the fluid temperatures in a

parallel-flow double-pipe heat exchanger.

Derivation of LMTD for:Parallel flow heat exchanger

Page 5: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 5

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

9

Log-mean temperature difference

Log Mean Temperature Difference (LMTD)

𝑙𝑛 ∆∆

= −𝑈𝐴𝑇 , − 𝑇 ,

�̇�−𝑇 , − 𝑇 ,

�̇�

Variation of the fluid temperatures in a

parallel-flow double-pipe heat exchanger.

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

10

LMTD: Counter-flow heat exchangers

◉ In contrast to parallel flow Hx, this configuration provides for heat transfer between hotter portions of the two fluids at one end and colder portions at the other.

◉ In the limiting case, the cold fluid will be heated to the inlet temperature of the hot fluid.

◉ However, the outlet temperature of the cold fluid can never exceed the inlet temperature of the hot fluid.

The variation of the fluid temperatures in a counter-flow double pipe heat exchanger

Page 6: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 6

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

11

Counter flow heat exchangers

◉ The change in temperature difference ΔT = Th - Tc

along the length of the Hx, is in nowhere as large as for the inlet region of a parallel flow Hx.

◉ Note, that the outlet temperature of the cold fluid may now exceed outlet temperature of the hot fluid.

◉ We can show that the definition of LMTD will be identical as the parallel flow case, however

The variation of the fluid temperatures in a counter-flow double pipe heat exchanger

∆𝑇 = 𝑇 , − 𝑇 ,

∆𝑇 = 𝑇 , − 𝑇 ,

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

12

Counter flow heat exchangers

◉ For specified inlet and outlet temperatures, ΔTlm a counter-flow heat exchanger is always greater than that for a parallel-flow heat exchanger.

◉ That is, ΔTlm, CF > ΔTlm, PF, and thus a smaller surface area (and thus a smaller Hx) is needed to achieve a specified heat transfer rate in a counter-flow Hx.

◉ When the heat capacity rates of the two fluids are equal

The variation of the fluid temperatures in a counter-flow double pipe heat exchanger

Page 7: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 7

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

13

LMTD: Multi and cross flow Hx

◉ Use of a correction factor

◉ F correction factor depends on the geometry of the heat exchanger and the inlet and outlet temperatures of the hot and cold fluid streams.

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

14

Multi and cross flow heat exchangers

◉ F for common cross-flow and shell-and- tube heat exchanger configurations is given in the figure versus two temperature ratios P and R defined as

◉ 1 and 2 inlet and outlet

◉ T and t shell- and tube-side temperatures

F = 1 for a condenser or boiler

Page 8: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 8

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

15

Correction factor charts for common Shell-Tube Hx

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

16

Procedure for selecting a Hx

With the LMTD method, the task is to select a Hx that will meet the prescribed heat transfer requirements. The procedure to be followed is:

1. Select the type of heat exchanger suitable for the application.

2. Determine any unknown inlet or outlet temperature and the heat transfer rate using an energy balance.

3. Calculate the LMTD and the correction factor F, if necessary.

4. Obtain (select/calculate) the value of overall heat transfer coefficient U.

5. Calculate the heat transfer surface area As .

6. The task is completed by selecting a heat exchanger that has a heat transfer surface area equal to or larger than As.

Page 9: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 9

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

17

Arithmetic mean temperature difference

◉ The arithmetic mean temperature difference can be evaluated as

◉ LMTD, i.e., ΔTlm is an exact representation of the average temperature difference between the hot and cold fluids.

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

18

Arithmetic mean temperature difference

◉ Note that ΔTlm is always less than ΔTam. Therefore, using ΔTam in calculations instead of ΔTlm

will overestimate the rate of heat transfer in a heat exchanger between the two fluids.

◉ When ΔT1 differs from ΔT2 by no more than 40 percent, the error in using the arithmetic mean temperature difference is less than 1 percent. But the error increases to undesirable levels when ΔT1

differs from ΔT2 by greater amounts.

Page 10: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 10

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

19

The NTU-Effectiveness methodThe rating of a heat exchanger

2

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

20

Effectiveness-NTU method

◉ A second kind of problem encountered in heat exchanger analysis is the determination of the heat transfer rate and the outlet temperatures of the hot and cold fluids for prescribed fluid mass flow rates and inlet temperatures when the type and size of the heat exchanger are specified.

◉ In such situations we use the NTU-Effectiveness method

◉ NTU: Number of Transfer Units = Non-dimensional parameter

Page 11: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 11

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

21

Effectiveness-NTU Method

◉ Heat transfer effectiveness

Cmin is the smaller of Ch and Cc

Max possible heat transfer rate

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

22

Actual heat transfer rate

◉ Actual heat transfer rate

Page 12: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 12

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

23

Effectiveness

◉ The effectiveness of a heat exchanger depends on the geometry of the heat exchanger as well as the flow arrangement.

◉ Therefore, different types of heat exchangers have different effectiveness relations.

◉ We illustrate the development of the effectiveness relation for the double-pipe parallel-flow heat exchanger.

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

24

Effectiveness relationship for double pipe-parallel flow Hx

Page 13: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 13

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

25

Effectiveness relationship for double pipe-parallel flow Hx

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

26

Number of Transfer Units (NTU)

◉ Effectiveness relations of the heat exchangers typically involve the dimensionless group UAs /Cmin.

◉ This quantity is called the number of transfer units NTU.

◉ For specified values of U and Cmin, the value of NTU is a measure of the surface area As. Thus, the larger the NTU, the larger the heat exchanger.

◉ The effectiveness of a heat exchanger is a function of the number of transfer units NTU and the capacity ratio c.

Capacity Ratio

Page 14: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 14

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

27

Effectiveness for HX

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

28

NTU relations for HX

Page 15: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 15

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

29

Comments on NTU & LMTD methods

◉ When all the inlet and outlet temperatures are specified, the sizeof the heat exchanger can easily be determined using the LMTD method.

◉ Alternatively, it can be determined from the effectiveness – NTU method by first evaluating the effectiveness from its definition and then the NTU from the appropriate NTU relation.

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

30

Observations from the effectiveness relations and charts

◉ The value of the effectiveness ranges from 0 to 1.

◉ It increases rapidly with NTU for small values (up to about NTU = 1.5) but rather slowly for larger values. Therefore, the use of a Hx with a large NTU (>3) and thus a large size cannot be justified economically, since a large increase in NTU in this case corresponds to a small increase in effectiveness.

◉ For a given NTU and capacity ratio c = Cmin /Cmax, the counterflow Hxr has the highest effectiveness, followed closely by the cross-flow Hx with both fluids unmixed. The lowest effectiveness values are encountered in parallel-flow Hx.

Page 16: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 16

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

31

Observations from the effectiveness relations and charts

◉ The effectiveness of a heat exchanger is independent of the capacity ratio c for NTU values of less than about 0.3.

◉ The value of the capacity ratio c ranges between 0 and 1.

◉ For a given NTU, the effectiveness becomes a maximum for c = 0 (e.g., boiler, condenser) and a minimum for c = 1 (when the heat capacity rates of the two fluids are equal).

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

32

Selection of HX

◉ The uncertainty in the predicted value of U can exceed 30 percent. Thus, it is natural to tend to overdesign the heat exchangers.

◉ Heat transfer enhancement in heat exchangers is usually accompanied by increased pressure drop, and thus higher pumping power.

◉ Therefore, any gain from the enhancement in heat transfer should be weighed against the cost of the accompanying pressure drop.

◉ Usually, the more viscous fluid is more suitable for the shell side (larger passage area and thus lower pressure drop) and the fluid with the higher pressure for the tube side.

Page 17: AÕ² < & WËñ² ëÕ 0 Õ 4õë |² 0 < EEhome.iitk.ac.in/~samkhan/ME340A/Lecture_7_Heat_Exchangers_Part_2_OK.pdf · 0( $ 3uri 6dphhu .kdqghndu kwws krph llwn df lq avdpnkdq 'hsduwphqw

ME340A: Prof. Sameer Khandekarhttp://home.iitk.ac.in/~samkhan

Department of Mechanical EngineeringIndian Institute of Technology Kanpur208016 Kanpur India 17

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

33

Selection of HX

◉ The proper selection of a heat exchanger depends on several factors:○ Heat Transfer Rate○ Cost○ Pumping Power

◉ The rate of heat transfer in the prospective heat exchanger

◉ The annual cost of electricity associated with the operation of the pumps and fans

○ Size and Weight○ Type○ Materials

Sam

eer

Kha

ndek

ar

ME340A: Refrigeration and Air ConditioningInstructor: Prof. Sameer KhandekarTel: 7038; e-mail: [email protected]

Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpur 208016 India

34

Any questions ?

You can find me at

[email protected]

Thanks!