12
A Voice Conversion Method Mapping Segmented Frames with Linear Multivariate Regression Hung-Yan Gu Jia-Wei Chang Zan-Wei Wang Department of Computer Science and Information Engineering National Taiwan University of Science and Technology e-mail: {guhy, m9815064, m10015078}@mail.ntust.edu.tw GMM (over smoothing) (linear multivariate regression, LMR) LMR LMR GMM LMR_F GMM LMR_F GMM (voice conversion) (source speaker) (target speaker) : (VQ) (mapping)[1] (formant) [2, 3] (Gaussian mixture model, GMM) [4, 5] (artificial neural network, ANN) [6] (hidden Markov model, HMM) [7, 8] GMM Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012) 3

A Voice Conversion Method Mapping Segmented Frames with

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

A Voice Conversion Method Mapping Segmented Frames with Linear Multivariate Regression

Hung-Yan Gu Jia-Wei Chang Zan-Wei Wang

Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology e-mail: {guhy, m9815064, m10015078}@mail.ntust.edu.tw

GMM(over smoothing) (linear multivariate

regression, LMR)LMR

LMR

GMMLMR_F GMM

LMR_F GMM

(voice conversion) (source speaker)(target speaker)

: (VQ) (mapping)[1] (formant) [2, 3]

(Gaussian mixture model, GMM) [4, 5] (artificial neural network, ANN) [6] (hidden Markov model, HMM) [7, 8]

GMM

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

3

GMM [4] (spectral envelope)(over smoothing)

F2 F4 F6 (formant)

(least mean square, LMS) (linear

multivariate regression, LMR)( LMR )

d×d M dk Sk ( d×1) LMRVk Vk = M Sk Valbret 1992

LMR [9] MM (analytic)

[5, 10]( ) (segmental) (one to

many) [10]( ) (artifact sound)

(segment)LMR

GMM [5]GMM

(discrete

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

4

cepstrum coefficients, DCC)[11, 12] c0, c1, c2, …, c40

41 c1, c2, …, c40

DCC DCC[11, 12]

(harmonic plus noise model, HNM) [12, 13] [12, 13]

LMR

DCC (DTW) ( ) ( )

N : S1, S2, , SN N: T1, T2, , TN d×1 DCC Tk DTW DCC

Sk S = [S1, S2, , SN] T = [T1, T2, , TN]S T d×N d×d LMR

M

M S = T . (1)

N d ME d×N

E = M S T . (2)

M EE d×N M d×d LMS

ε :

t t = ( )( ) , t : transpose.E E M S T M S Tε ⋅ = ⋅ − ⋅ − (3)

ε (trace) 1,1 2,2 ,tr( ) ... d dε ε ε ε= + + + M0 [11, 12]

( ) ttr( )2( ) 0 ,M S T S

Mε∂

= ⋅ − ⋅ =∂

(4)

( )tr( ) / Mε∂ ∂ ( ) ,tr( ) / i jMε∂ ∂ j=1, 2, …, d i=1, 2, …, dM i j ,i jM tr( )ε (4)

M

t t = ,M S S T S⋅ ⋅ ⋅ (5)

t t 1( ) .M T S S S −= ⋅ ⋅ ⋅ (6)

(6) LMS M(a) (1) M

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

5

(b) (c)(a) (b) (6)

S1, S2, , SN Sm Sk Sm Sk T1, T2, , TN Tm

Sm Tm

x

y y=mx

x

y

y=mx

(a) y = m · x (b) y = m · x

x

y y=mx+c

(c) y = m · x + c

(a)(c)

(1) M S T

1, 1

2, 1

, 1

1 2

1, 1, 1

:

1 2

1, 1, 10, 0, ..., 0, 1

...,

...,

...,

...

d

d

d d

M N

M

M N

S S S

T T T

S

TM M

+

+

+

� � � �=� � � �� �� �

� �=� �

� �� � = � �� � � �� �

�� (7)

M (d+1)×(d+1) M� M(d+1) (d+1) (7) S (d+1)

1 S� (d+1)×NT T� M� S� T�

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

6

(6) M� M� (1)

--

M_1 M_2F_1 F_2 375 ( 2,926

) 22,050Hz(a)M_1 M_2 (b)M_1 F_1 (c)F_1 M_1 (d)F_1 F_2

Training segmental LMR

matrix

Labeling

Training sentences of source speaker

Training sentences of target speaker

Labeling

Framing Framing

DTW alignment

Computing DCC

ComputingDCC

Mapping matrices

Estimating pitch param.

Estimating pitch param.

Pitch param. of target

Pitch param. of source

Segmenting to 57 classes

Segmenting to 57 classes

3.1

( 350 ) HTK (HMM tool kit)(forced alignment)

WaveSurfer

( )57 (21 36 )

3.2 DCC

[11, 12] DCC

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

7

DCC [12] 41DCC 512 (23.2ms) 128

(5.8ms)

3.3 DTW LMR

DTW LMR

( /a/) DTW Sk

DTW(Sk, Tw(k)) k=1, 2, , Kn Kn n

LMR(1) S T

(6) LMR M (7)S T S� T� (6) LMR M�

3.4

(ZCR) ZCR (unvoiced)AMDF (absolute magnitude difference function)

[14 (voiced)

--

2.2512 128

DCC

( )( ) ( )

( ) ( )y

y xt txq pσμ μ

σ= + − (8)

pt(x) (x)

(y) (y)

4.1

LMR LMR

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

8

( )

” ”HTK

HTK HTK HMM 350HMM

HNM based speech synthesis

Pitch adjusting

LMR mapping

Compute DCC

Converted voices

Detect pitch freq.

Test sentences

Framing

Segment recognition

4.2

(HNM)(maximum voiced frequency

MVF)[13] MVF6,000Hz

HNM

[5, 12] HNM

LMR (1) MLMR LMR_B

(7) M�LMR LMR_F

LMR LMR_FC

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

9

”DTW alignment” ”Train LMR matrix””VQ clustering” DCC

(joint vector, 80) K-means L DCCL DCC LMRM� L 4

”LMR mapping” ”Select mapping matrix” L

DCC ( 40) L 40LMR

5.1

375 350 LMRDCC DCC ( 350 )

( 25 209 ) R = R1, R2, , RN

DCC T = T1, T2, , TN R DCC,

1

1( , ) ,avg k kN

k ND dist R T

≤ ≤= � (9)

(9) dist( )

LMR(LMR_F) (LMR_B)

( 1.6% 1.7%)VQ LMR

(LMR_FC) 0.49560.4672 5.7% 0.5382 0.5493

2.1% LMR_FC 0.46720.5

LMR_B 0.5038 LMR_B0.5

GMMDCC GMM [4]

GMM (Segmental GMM) [5] GMM 128GMM 8

GMM

GMMGMM

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

10

LMR (LMR_F) LMR_FLMR_F

7.1%( GMM ) 4.5%( GMM )1.5% 0.7% LMR

LMR LMR_B LMR_F LMR_FC

M_1=> M_2 0.4890 0.4794 0.4475 M_1=> F_1 0.4782 0.4705 0.4451 F_1 => M_1 0.4967 0.4881 0.4612 F_1 => F_2 0.5514 0.5443 0.5149

0.5038 0.4956 0.4672 M_1=> M_2 0.5467 0.5331 0.5398 M_1=> F_1 0.5174 0.5106 0.5188 F_1 => M_1 0.5388 0.5307 0.5413 F_1 => F_2 0.5867 0.5782 0.5973

0.5474 0.5382 0.5493

GMM GMM (128 mix.) Segmental GMM (8 mix.)

M_1=> M_2 0.5058 0.5096 M_1=> F_1 0.5012 0.4910 F_1 => M_1 0.5412 0.5095 F_1 => F_2 0.5853 0.5673

0.5334 0.5194 M_1=> M_2 0.5346 0.5403 M_1=> F_1 0.5147 0.5146 F_1 => M_1 0.5551 0.5361 F_1 => F_2 0.5806 0.5766

0.5463 0.5419

5.2

6X1 X2 Y1 Y2 Z1 Z2 X1 X2 GMM

[4] Y1 Y2 LMR_F Z1 Z2LMR_FC X1 Y1 Z1 1

M_1 M_2 X2 Y2 Z2 2M_1 F_1 6

: http://guhy.csie.ntust.edu.tw/VCLMR/LMR.html

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

11

6 X1 Y1A B A B

B A Y1 Z1A B X2 Y2 A

B Y2 Z2 A B15

2 (-2) B (A)A (B) 1 (-1) B (A) A (B)

0 A B

( 0.867 0.467) GMM

LMR_F( 0.267 0.000) LMR_F LMR_FC

LMR_FCLMR_F

GMM (128mix.) vs LMR_F LMR_F vs LMR_FC

M_1 => M_2 AVG (STD) 0.867 (0.640) 0.267 (0.915)

M_1 => F_1 AVG (STD) 0.467 (0.704) 0.000 (0.378)

(spectrogram)GMM (“

”) (a) LMR_FC(b) (a) (b) (b)

(formant) (a) “ ”(b) ( ) (a)

(b) (a)

(a) GMM

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

12

(b) LMR_FC

/jie-3 jyei-2 fang-1 an-4/(“ ”)

(LMR)LMR DCC

LMR_F

GMM GMM7.1% GMM

1.5%LMR_F GMM

LMR_F

GMM LMR_FCLMR_FC LMR_FC

LMR_FC LMR_FLMR_F

LMR_FC

[1] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice Conversion through Vector Quantization,” Int. Conf. Acoustics, Speech, and Signal Processing, New York, Vol. 1, pp. 655-658, 1988.

[2] H. Mizuno and M. Abe, “Voice Conversion Algorithm Based on Piecewise Linear Conversion Rules of Formant Frequency and Spectrum Tilt,” Speech Communication, Vol. 16, No. 2, pp. 153-164, 1995.

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

13

[3] ”” (ROCLING 2009) 319-3322009

[4] Y. Stylianou, O. Cappe, and E. Moulines, “Continuous Probabilistic Transform for Voice Conversion,” IEEE Trans. Speech and Audio Processing, Vol. 6, No. 2, pp.131-142, 1998.

[5] H. Y. Gu and S. F. Tsai, “An Improved Voice Conversion Method Using Segmental GMMs and Automatic GMM Selection”, Int. Congress on Image and Signal Processing, pp. 2395-2399, Shanghai, China, 2011.

[6] S. Desaiy, E. V. Raghavendray, B. Yegnanarayanay, A. W Blackz, and K. Prahallad, “Voice Conversion Using Artificial Neural Networks,” Int. Conf. Acoustics, Speech, and Signal Processing, Taipei, Taiwan, pp. 3893-3896, 2009.

[7] E. K. Kim, S. Lee, and Y. H. Oh, “Hidden Markov Model Based Voice Conversion Using Dynamic Characteristics of Speaker,” Proc. EuroSpeech, Rhodes, Greece, Vol. 5, 1997.

[8] C. H. Wu, C. C. Hsia, T. H. Liu, and J. F. Wang, “Voice Conversion Using Duration-Embedded Bi-HMMs for Expressive Speech Synthesis,” IEEE Trans. Audio, Speech, and Language Processing, Vol. 14, No. 4, pp. 1109-1116, 2006.

[9] H. Valbret, E. Moulines, J. P. Tubach, “Voice Transformation Using PSOLA Technique,” Speech Communication, Vol. 11, No. 2-3, pp. 175-187, 1992.

[10] E. Godoy, O. Rosec, and T. Chonavel, “Alleviating the One-to-many Mapping Problem in Voice Conversion with Context-dependent Modeling”, Proc. INTERSPEECH, pp. 1627-1630, Brighton, UK, 2009.

[11] O. Cappé and E. Moulines, “Regularization Techniques for Discrete Cepstrum Estimation,” IEEE Signal Processing Letters, Vol. 3, No. 4, pp. 100-102, 1996.

[12] H. Y. Gu and S. F. Tsai, “A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation,” International Journal of Computational Linguistics and Chinese Language Processing, Vol. 14, No. 4, pp. 363-382, 2009.

[13] Y. Stylianou, Harmonic plus noise models for speech, combined with statistical methods, for speech and speaker modification, Ph.D. thesis, Ecole Nationale Supèrieure des Télécommunications, Paris, France, 1996.

[14] H. Y. Kim, et al., “Pitch detection with average magnitude difference function using adaptive threshold algorithm for estimating shimmer and jitter,” 20-th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1998.

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

14