33
AD0A193 428 FEDERAL A VIATION ADMINISTRATION WASHINGTON DC OFFICE -ETC F/6 1/3 C ORRELATION OF HELICOPTER NOISE LEVELS WITH PHYSICAL AND PERFOR -ETC(U) Sep 80 J S NE WMAN UNCLASSIFIED FAA EE - M A22 N

A VIATION ADMINISTRATION WASHINGTON DC OFFICE -ETC F/6 … · 2014. 9. 27. · -IMF el Correlations of He lcopter Noise Levels with USf o.,wd Deoprtmen,o,,o Physical and Performance

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • AD0A193 428 FEDERAL A VIATION ADMINISTRATION WASHINGTON DC OFFICE -ETC F/6 1/3

    C ORRELATION OF HELICOPTER NOISE LEVELS WITH PHYSICAL AND PERFOR -ETC(U)Sep 80 J S NE WMAN

    UNCLASSIFIED FAA EE - M A22 N

  • liii4 1.8 ~ III~III -11111N i IIIlt2.

    111111L25 .lI4 111111.6

    MICROCOPY RESOLUTION I ES CHARI

    WOW N fqA f I l A l'Nf

  • -IMFel Correlations of He lcopterNoise Levels withUSf Deoprtmeno.,wd ,o,,o Physical and PerformanceMminist.fo. CharacteristicsOffice of EnvironmentAnd Energy A Preliminary ReportWashington, D.C. 20591

    o o.

    , I b

    FAA-EE-8042 September 1960 Document is available tothe U. S. public through

    By J. Steven Newman the National Technical

    tL.J Springfield, Virginia 22161

    .H.

  • ACKNOWLEDGMENT

    The author wishes to thank

    Mr. Paul Hamilton

    of Information Planning Associates

    for his invaluable assistance in researching

    input parameters and providing analytical

    and software support.

    iiN

  • _ _ _ _ Technical keport Documentation Peg

    Correlation of Helicopter Noise Levels WithJ / eievb 08'___Physical and Performance Ciaracteristics u . errung, g , -o °.... ... . ... ..... 'DOT/FAA

    8. Performing Oganization Report No.

    ,S e DOT-FAA-EE-80-42- anrforming 57ganizgtio rn e and Address 10. Work Unit No. (TRAIS)

    Department of Transportation, Federal Aviation Admin.Office of Environment and Energy, Noise Div., Tech. Bra lckionreto, GrantNo800 Independence Avenue, S.W.Washington, D.C. 20591

    12. Sponsoring Agency Name arnd Address Prlm9rPrel iminary

    I ~rig gency ode4 FAA

    I. Supplementary Notes

    i16. Abstract

    his report investigates the correlation between physical and performancecharacteristics of helicopters and the noise levels which they generate invarious operational modes. The analysis is generally empirical althoughseveral theoretical functions described in the literature have been examined.The EPNL is the acoustical metric employed in this study. One, two, andthree-step multiple regression analyses are conducted for takeoff, approach,and level flyover operations. Plots are provided for the three best singlevdriable regression models for each mode of flight

    I,

    17. Key Words I sl. Olw flebutIe Sttememt

    Helicopter, Noise, This document is available toNoise Prediction, Correlation, the public through the NationalRegression, Effective Perceived Technical Information Services,Noise Level (EPNL) Springfield, Virginia 22161

    19. Sec mr-ty lessie. (of *is revort) 30. Security Clessilf. (of thia pee) 21. N. of ergs 22. Priee

    Unclasifid)*geutn Unclassifiled 1 _

    Fem DOT F 1700.7 (8-72) Itepreduttle" ef 0*mpeted page oeuthoaod

  • TABLE OF CONTENTS

    Page

    ACKNOWLEDGMENT ...................... * ..................... ..

    1.0 INTRODUCTION .................. . ................ 1

    1.1 Input Data Files ....................................... 1

    2.0 CROSS CORRELATION OF ANALYSIS PARAMETERS .................... 3

    2.1 Cross Correlation Matrix ............................... 3

    2.2 Summary of Best Correlates ............................. 11

    2.3 Plots of Best Single Variable Regression ............... 12

    3.0 STEPWISE REGRESSION ANALYSES ................................ 12

    4.0 DISCUSSION ..................... ... .................. 15

    I'g

    )Accession. tor

    ?NTIS GR&rTICTAno e

    Djst~%t-n

    ID

  • LIST OF FIGURES

    Page

    2.3.1 TAKEOFF: REGRESSION OF EPNL VERSUS LOGTB... ................ 16

    2.3.2 TAKEOFF: REGRESSION OF EPNL VERSUS LOGW .................... 17

    2.3.3 TAKEOFF: REGRESSION OF EPNL VERSUS F3 ...................... 18

    2.3.4 LEVEL FLYOVER: REGRESSION OF EPNL VERSUS F2 ................ 19

    2.3.5 LEVEL FLYOVER: REGRESSION OF EPNL VERSUS LOGW .............. 20 j2.3.6 LEVEL FLYOVER: REGRESSION OF EPNL VERSUS LOGMD ............. 21

    2.3.7 APPROACH: REGRESSION OF EPNL VERSUS LOGTB .................. 22

    2.3.8 APPROACH: REGRESSION OF EPNL VERSUS LOGW ............. ..... 23i

    2.3.9 APPROACH: REGRESSION OF EPNL VERSUS LOGMD .................. 24

  • LIST OF TABLES

    1.1 INPUT DATA FILES ................. ..................... 4

    2.1 CROSS CORRELATION MATRIX .......................... . .* .. 7

    - - .-- -- -- '-. ," - .1- ..*.. ....

  • 1.0 INTRODUCTION

    This report investigates the correlation between physical and

    performance characteristics of helicopters and the noise levels which the

    helicopters generate in various operational modes. The analysis is

    generally empirical although several theoretical functions described in

    the technical literature have been examined. The Effective Perceived

    Noise Level (EPNL) is the acoustical metric employed in this study. It

    is anticipated that subsequent analyses will examine trends for other

    metrics, in particular the Noise Exposure Level (single event, integrated

    A-Weighted Sound Level). This report has been limited to presenting

    statistical analyses. Parameters are tested for correlation with EPNL, asingle event cumulative enerqy noise metric. The units of most analysis

    parameters are not enerqy. However, a limited number of variables

    dimensionally consistent with power, intensity or energy are tested.

    1.1 Input Data Files

    This study utilizes a data file assembled for analyses conducted in

    FAA-AEE-79-3, "Noise Levels and Flight Profiles of Eight Helicopters

    Using Proposed International Certification Procedures (Newman, J. S.,

    Rickley, E. J.). This data file (Table 1.1) has been expanded to include

    a variety of physical parameters which may be expected to Influence

    resulting noise levels. The legend for Table 1 Is presented below:

    NOTE: VH is the speed at maximum continuous power.VNE is the never exceed speed.

    ----

    I • . . . .. "

  • LEGEND FOR CROSS CORRELATION MATRIX

    TYPE - Helicopter designation

    EPNL - Effective Perceived Noise Level, (level flyover) expressedin decibels

    WEIGHT - Test weight, lbs.

    AREA - Total main rotor blade area (square feet)

    MACH - Mach number of advancing blade; sum .9 (lesser of VH or

    VNE) level flyover forward speed qrd rotational tip speed

    SHP - Maximum engine shaft horsepower

    M-DISC - Main disc area, square feet

    BRC - Best rate of climb, feet/minute

    M-FREQ - Main rotor blade frequency. Using main rotor rpm (Jane's)and number of blades (Jane's) units in Blade Passages/Sec.

    * T-BLADE - Total tail rotor blade area (square feet)

    EPNLA - Effective Perceived Noise Level (approach), decibels

    LOGW - Common logarithm of weight

    LOGA - Common logarithm of area

    LOGS - Common logarithm of shaft horsepower

    LOGMD - Common logarithm of main disc area

    DISPLO - Main disc loading, lbs/square feet

    LOGTB - Common logarithm of total tail blade area

    MACH6 - Mach number to sixth power

    TSPEEI) - Rotational tip speed of tail rotor (feet/second)

    MSPEED - Main rotor rotational tip speed (feet/second)

    T-MACH - Tail rotor, rotational tip mach number

    F1 - Loglo ((T-MACH x Weight)2/T-Blade)

    -2

  • F2 - Loglo ((MACH x Weight)2 /AREA)

    F3 - Loglo (SHP x M-DISC/MACH)

    F4 - LoglO (MACH6 x T-BLADE)

    FS - LoglO (T-MACH6 x AREA)

    2.0 CROSS CORRELATION OF ANALYSIS PARAMETERS

    This section examines and discusses the interdependence between the

    parameters used in the regression analyses.

    2.1 Cross Correlation Matrix

    The matrix displayed as Table 2.1 (four pages) provides insight Into

    the interrelationships between test variables and the relationship of

    each variable to EPNL for takeoff, approach and level flyover. Each

    entry in the matrix includes the correlation coefficient "R," the

    probability that the observed correlation is due merely to chance, and

    the number of observations. Many of the variables correlate equally well

    with the acoustical measures for all operational modes. Therefore, it Is

    possible to develop a large number of single variable regression models

    which predict noise with similar accuracy.

    The "good predictor" family of parameters includes:

    '.I Weight: Helicopter Weight

    - Area: Main Rotor Area

    - SHP: Shaft Horsepower

    - MDISC: Main Rotor Disc Area

    - LOGW: Log Weight

    - LOGA: Log Area

    -3-

  • 4LJj a o, m 0 4DJ m~ 00 m~ -~l P. 016 CA C%j Ln

    a.. - 0% N. n CV Cr kI-j

    *cu~j% , * I LOa til0

    m U r y ) O N co coL. i (71 r % %a 0 NC

    -ca tDrO;,cjL 0... LO)L 400 4 444 c

    LUJ U)-O n 0MMMC I- C c jr *oeLu

    - ~ M. - ~ - - - - ('.1C~

    V)

    CC11T % ~ t . c~i.AC '- . I'-.r Lne 1 lO 14 1 -e.- csJt.LuI CC - .- - C... C'.]-. - - - - - - - - - -

    -1 001U- V O4; nM Mru ~ M- %0~ j A 0 W L nto 0

    o C9

    L4u

    0A (\,I)0 ~ n 9 9 v) m M M 0 0 a-1 C 00. .CMO C 4D ~ LAn4~00LCJ 0 C""O

    WA to1 r* F-ko - m %0k o%0- kD t-

    C\) -c QL

    Cc) QLU 000 C L -

    too C "m-t - L

    3c CC' C7- - m A

    CC? t9000 A ).- ~ L a J ra 9 V) a% P% P% a a

    -~U u,%r- L I-Lu -j

    Cn M %0. CO f 1,0 o" )m: LA V)L VJD-C) V)

    Lu - - CD -

  • I~to

    -j r" C~J C) -a l C 4 r-. -o l . CJi to .-) qT al C .C

    L))

    0kCC) - 0 o -4D0-f, m4 o C O m M O

    LL D V( C z0t c Jrv M0%qr a O n DiCD 9

    Z! 2-1C - 41 4C J 4C 4C 41 z14CLA V

    L/ c- D0 . r. ~ C 0C)Rr0 lr

    ma- coO~ c .-

    C; C;C ;C ;C

    0

    :3c 47 a -rc r- .o .- i r. C" o n % r- r - e. o m0%0.................................................

    C, u) C-) CD 03

    enf.. C>L3-n 0' e T%

    Lo o ^LMc = Lon Z Z~ (A zx

    V)-tLo% - MM0t . wCIcIC)

  • c'J Ca- L NA LA A *1 - P I. c c P co LA CC)'. -c' C CCOrV- m CY CO c" c') - i -c m* C%. P 0 0 %':r C'.4 LA -. r- '

    M nC InMqr OO-10 MC o o ON

    '.0 to W. =I- f LA LA CA 5%. qz0 ON 00f U", '0 L LA M~'.LiiC ; l

    -J 0n e Y hra t nm4rC

    LL.

    - Li

    I-ual

    0- 0 '.LL0A( CJ'fI0 J-L '0 O 'f0

    Lin

    '. ~ ~ C~ C- LA LA LA '0.0 0 A LAL M. L '. LM C\0 LA MA ko LOAe

    -LJ

    iii'''.* o J C'c~~nC-)mm mI4m

    00- ? 2 8 % to LAON C 3N--m U F. Rf- 0 w U-1 I % m M0 In

    torl c 0-6- m--.-F "mt nc

  • 0, 0 0 0 0 r- 00 V0 01 0 Cli 0 0 0

    w c- 'O N ~' O 0 00 U- NOD. 0.c *0 .0 .0 C0 *0 *0 .0 *0 *0 .0 .0 .0

    0 0 0 0 0 0 1

    W- -0- 0--00- - -it00N-'-00-04101ci )N ,000-2z IN NO NO 0 ., " 00 0001N) 0 N 004 8

    0. N N0 000-11 CD) 00 (k 1040 OC) 00 t-0 00 0040ri.W 0. MX - 0 0 .0 . . 0' 0. 0. 0. 0z 0 0 0 * ' 0 .0 .0 .;0 .0 .0 -:0 C0

    If) 0 0 0 0 -0 : 0 0 0 , 0 0 : Z 0 0

    _j 6 NZ ( r -0 O'D 00) N' '0 NO V0 110 00 00 0 N 00 0W0. -,0 V 0 00 0 0 0' 0 C'' -0 CDC WM00 100 10 0 N 00 WfW 0'. . . 0. 0.) . 0. 4. N . 0. O. 0.

    6 .0 * . 0 (so .0 (so .0 C;0 .;0 .0 60 .0

    -4 0 0, 0 *N 0 0 0 0 M- 0 0

    -4 0 .0 0 COO 00 NO 0 100 0'-00 00 0 0 NO 0 0-.:W~ a. 0 D0 )0 'ON CD -t0 toO 00 -0 00 00 00 r01 'NOC

    I ..0 .0 0 0 0 0 0 0 .0 0 .0

    0 ")C 0 0 0 0 C 0 0 0 - 00- 0 0 0P,--C

    -1 'O' NO' . p inO o 00 N 0 0 00 C-0. 1'00 N OIL C,0 -' OD T - '00 0) 0M 0 0- OD- 0) 0 -00CDC

    XE . 0 0 's0 (0 0 . 0 .0 .:0 60 .0 .0 .00 0 00 m 0-tLN 0 01 0 0 M 00 - 0 0 00N 170N MQ N-N 0 0,

    0 I '0 0)N 0 ) - CD(0 r04.N - N',00 0- 0IO-44-'10O 0-itLLo r 04 00 -N oo T ~ c N 00 0 -tO O0 (0- 00 N"x ON .0' NO tOO .U 'ON 00 -. 0)00 .0' 00 .0 00

    0 .0 0 0 00 0 0 0 0 0 0

    00 0 0 0 0 0 0 0 0 0

    Q NO O -O iOn 0Cl Q 0 0 N4 30 C)O0 l 0,0 NOD '00 00 0 0100 00 - 1in . r w o v0 . v'0 -D I NO r N O\)r, 00 00 'ON 40 0 00 00 W 0 C. 01 -40

    N. 0' -0'. 0 .0 0 '. 0. ( 0 0 -0.E .0 * .0 (0s0o. 0 C 0 00 60

    - 0 0 0 0 -- 0 0 - 0 V0 0 0 0 0 n

    'A 00 NO Lo0 C- - 00 (n 0 0 N 00 NO r- ' 00 CD000It0O0 NO 0 4*0 00 NN 0-C0 000 WO - - '0 c t0 100 LON r 0'O.7

    rl N. 0. - N .0. 0. . . '). 0. 0. N.- , 0 .0.Dz .0 .0 .. 0 .0 .0 *0 .0 .0 .0 .0 .0 .w 0 0 0 0 0 0 0 0 0 0 0 0

    NA 0 00 c,7, 00,7 CP eCN 0 o a ,0a,0 md9 0, ,- M0 0 NO V - 0LIw 4O N 10 00- Nr- LpN- -00c ON 'ON"-C 110 Lo- 0'O M-- :

    (L 1r N 0 00. 00 G:- 0. 0.t D N. 0. 0. -. 0) 0*.t . . 0 . .0 .0 .0 .0 .0 .0 .0 .0 .

    000-0 0 0 0 0 0 0 0 0

    -C l00 00 MN 010 -0- jN 0 Q 00 NO NN 40.J -X 00 -7,0 0 0 ir)0 CD NO N0 woIQ 0 00 NOL 00

    0: .0 .0 . 00 .0 *0 *0 .0 .0 . 0 .0 .i~0 -00 0 0 0 0 000

    00 0 41r 01 NVO 0 0 0 01 r 0M 0 -0 0 0 NQ 0 - 0C.0 00 Y. 0 NM 0 - N -' 0. a- -0 NO Z 0 W - NO

    W ' N o in. CD. 0.-.q.-. U. 0. 0 . 03~~~~~ .0 ..o *? . .0 '0 . 0 .0 .0 .0w0 C 0p 0 0 l 0 It 0 0 0 0

    0 O' -'0 N-O C.'-0 0 N '0 0 - -0 -0 ' -0 '

    ~i 0 0' 3' 6 TO NO D 0 ON M 0) N MN. N. 0 .4 '. 0. W

    La 0,6 -5 in (0,* 0' r, '0 N. N. 0 . .... 0 . .0 .0 0(s 0 s 0 s 0 o C' 0 60 .0 60 0 0 0s 0o

    w 'C iC -

    u w a: -. L A E 0 r 1.1 L

    w ~~7-rmr

  • q*C QD0 V 0 C' U! M'' It. 00 -I'. 0 oi C00 r- 00 M~ m m 0 0 @C'IN-

    *0 ~ ~ ~ C 0 0 0 .0 . .0 . 0 0 .0 .0 *0 II N 0 0 1 0 . N 0Ik 0, 0 0 0 0, 0

    Li. ~ ~ ~ C ":17 -. ' -' C;0 W 0-t-t~-. Q-N .- C'C0 '- 00 4C 0.' 0" .OD Or(1 O

    - .4 0 - ,V Z t- 0 - CD 0- 01 - V IN

    o ~CDCoo. O NO-C VO -CN wO QC. ?I 'l CD r- C 0 M M0 IN0 V 0, C.

    0 0 C. C 0 0 0 0 0

    T C %" VP 47,) 4 0 - -t 0'0 CC *10 f> 0 NC0 00 DD 0 fl) V CC; CILL V C 'N 0. a. ...Z .o, N. - .0 0 - 0~ -. - .

    r o *e iCn 0 0 0 0 Iv0 C.0 t,0 0 .C0 0 0 0 . 0 0 C. 0V 0 0 - 0 0 0 10

    o "' .0 . .(X .- 0OD . .00' C;* .- 0 0-0cl~L C.0 ': C,' 4; '0 0 o0 Co - ,O0 00

    W~C C; ~' 0 U'' '0 - - 00 00 C;o 0 00.IN 0. -r . N. - .(?, 0*rn ?C. -0 0. 0 NC. - '.

    o . t. o .0 0 r LO 1 0 .-0 .0 0 .0 00 1.0 0 cr .0-4 0 0 0 0 o 0 0 C; 0 '0 0

    z

    *: -:c N- .r',C "-C N- -N (0 C* 0 t-. 'ON ,0 N 04 r'-xI *0 "~C 0. ro .' N'0 -- -0 N 0 t. . N0' 0.. ". I

    .0~C 0' .o * *c *o . * 0 *0

    X ns.C .. 0.'D0V c'). '' K 4 0 ,0 -0 0.0 4t0 . ' 00 .0. t-CLZ i0 a-0 0 a- .)0) - 0 ,w0 -0 0I C..-0 0 .0 v .N 0 - 0

    , 0 0 0 C. 0. 0 - 0 0 0 0 . 0 . 0

    -u 0 0 ,0. NO f tlIN0,u tI' NO. *n ii -C,0 n 0 0 00 t, 0 0 'r U0 0 01- - -cN:

    No IWC-' '0ro NOD~ aNO IT v~ 0)0 v01 Cc 9 t". I)0 ' N0) - 0 n 0. P. 4tV 0) 0. PI 00- N N

    0 . .. . . . . . . .0 . *0 .NC. 0 0 0, 0 0 0 0 0 0 0 0 0 0

    0f N t 0W 01CN' 0 01 I'- (0 0 00 0-* 0, 0 0 0 0 DD 0 M - 0 01_j' NO - c0 0 * M4-- -,* N -0 it N IN M 00 0 )0 -I.*r, 0

    N~ ~ . t- 0 . 0 '0 DO W It 0.II '0. wo Lf'I. M, 0NIZ . 0 0 r0 0 N. 0 .0 I *0 .)0 M 0 D* Itr OD .0

    Wi 0 0 0S 0; 0 0 0 0 0; 0 0 e.

    LL 0 a0 '00 Nr * 0, 0 -t- ' C')- ,0 0 N 0f'0 NV cl,.Q1JC ro -> e 0 D'" -' NO -'O 0 11) NO O0 IN ~ r '0

    .L ,-t0 0 *0 C. V,'N V0 .0 LOel0 *0 * 0 0 I0 *l,0 0

    0 ': c 0 0 0 80 60 0 0 80zI

    M- t' 0 .D 0 V -NO- C. -0 0I'40 0- 0- 000 00 D, ''I0 I'0 NO0N.0 ~ 0.J C .' 0 -0 0 - - ' r r

    IT . 0 0 .-P,0 .0 INf) ,0 0 0,7 " 0 f.0 - 0 0 .0 .0 VIr. 0 0L , ( 0 04 OD M 0 0 0 0 0n M

    .00 NC' 0?' r. 00 -0 ON 0* N0 0 c '

    00*NKV-0 C, Co 0) IN 0. 0. tr. 0) .Ln ., o 0 001r: 0 .> 0 .0 . 0 o * 0 . . , * O .0

    . 0 .0 .0 .0 *0 0 .0 0 *0 00: 0 , 0' '. 7

    C w

    j i' 4 4,

  • 0-0 MO0 NO 0"O 0 N 04 OD~ 2l r 8 ,o

    0 0 0 o 0 0 o 00

    oN C' 0,' U0 C. N (0 01 0 V0- 0' N U) 0, 000 0 ) 0. (11 * - '0 4p '00)M.0' 00 U) 0 0,

    W' #) 0)N N00 UW '0N 00 0#N 00) NDw

    ~-.0 0 .0 .0 *0 C.0 .:0 .0 .0 .0I0.0 .r 0 0 CC. C.0

    O.N0 UC' 0- 00 00 a I '00 '0 k*V NW C' 1C '0G WC4?c' 00 0. 0*0 . 0 '0 '0 rU 0 .0'.( 0 .

    V . . O '- 0 *0 . 0 . 0 . . . 0 0 0 . 0Z00 0 ; 0 0 . .0 0 0 0 0 C.

    >k- 4 0 0 Ir M La 2 Z. N-.O'-0N.0 0u0 O 0 .3) r,-0 0 C, t CN- 00OD.W . a, 0 -4 N 0 A) . NO I*, - t- - 4l N U . - 0 C. N 0 - 00- 0

    ~Z Z I0 NO 00 o0 o. 0) 0) - '0 0 o) 0La0 -~ w 0 NCar l ,O 0 'O N 0N w N 0' 0 0 , O NO 0.

    a0.. .0 OD0 r0 * ~~ 0 .0 . 0 .0 . 0 .0 0 0 0 0 00 0r 0 04 0 0. 01- 0 0z I

    O RU 0, - 0 0- '00-N 00- M N 0 0 0 N - ,O U, U) -0 --. 0Y N " 0- 0 -* 0' a0 ' 00* I N O -0 t 00 o w MO '00 -0 NO 0 0 6 n 0 01N-WJO LLT 0- '0 NO0 ()0 '0. '0U N' 0 0.0 N 0 N 0 N N 0, 0. N0 . '.-. -. -W '0 W0 N.U6

    'soo C0 *0 ' '6 06C; 4

    8 0N ; Nl 0N 9 N - C sNN N K trdJ a) o: N) -. -0 0,U N0 0 ,0.0 0 .06 .0o .0 .0 . . 0 0 0 .0

    0 0 0 0 0 01 0N0o 0 0 0 0D

    ~~-4-.3 ~~ ~ g v NNC' )- O V . U) 0 E'. ) . 0, 0' N ' U .000 0 00 4 ' 0'~~ 0-N 0-E0

    9L.0 NO NO N' (1 9r, 0.010 r 0NO -P 0' 00 N01 -. 0 N' 0) 0 N

    C' i Q. -, N ) 4'.J ~ ~ ~ ~ _ I14 49 . . U . U

  • 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ c-~ N '00 01 .7N03 1-' V 0 : ,N ,oU. ~ ~ 0QN- N -C ON -' N- N C - 0 M

    .0 o 4w0 .0 . 0 . 0 0 . 0 . 0 C.'

    0-C 0 0 0 0 -0 0 0 0 0

    L6 '' 09- '0 .O'00' '0 00,' 0 0'C ' 0C' so0 0'0 C

    0'.~~~0 10~ . O~ . 0

    C, 0 0 .4-7 m~ .0, 0 7 c0 * . i U.lj G 08 - 0 0 0

    in OD0 -0 OD0 ;;0 V! 00W' D(0 0'. 0 0 *. N .4 . 0~'

    Z . .0 ..0 0 .0 .0 .0 .0 0 * 0

    0 , 0 0 0 0 0 0 v 0l -r

    I.'QN-0 0 9 V cm N9

    0 0 0 ~

    P) eq 0 N0 CIX N 0 CO 0 o 10mr

    uJ 0 CD0 I,0 ,NCM . A. 0C! 0 .

    0 . 0 0 .0 140 . 0* 0

    0 0 0 0 v0wQ,1 0 0 0 0 coo0 0, 0 O No.

    .~0 a 0.9 1,- 0 ur 0 00 0 0 w N m,N m O ON N' 00 P'( 9N NN z! NO 9'

    -. ~~~~ N. E .-, 1 v' * . 3 .. .. . 9lu0 0 0 0 0 0 0 0

    Nm 0 0 0 N 0 M 0,N .. Zq(~~~~C4 N~4N lW . C!~ 8 '90

    0; .0 0 -0 .0 .0 .0 0 C; 0 0 .0 .0

    x 0 0 0 ON,0o m 0, 0 ~0 0 ,0- , -t~ 0 N-0 C 0-0'. 80 0W 0.0W' P.4 V 0 0 -.. C -

    m'' N 0, 100 0DI9 NO C. 91- l N V) 0OD(n r-0w.' L v9 '9 N 4W LO 0N 0 'N~r. 11N 0! N0

    -~~~ . -l . '. - . 01 m . 9.~0 0 . 0 0 .0 .0 .;0 0 . .. * 0

    0 0, 0N 01 N 0, 0 m 0

    5-. 0'N-.O-N0'0 ~ 0 V5 9'0'~'~'(000 'CO~0 AO 0 N -r ) '.9 v 0 9 S o '

    z 00

    0 801 01 0 N N 0 o 0 v 10 40k *I 0 0stN 0

    .0 *0 00 .0 00 .0 N0 W0 N0 n0oC

    2 0 0 C- 0 0 0 0

    0 P, -(l%. 0,0 0 0'.9N .'0N m , 9001 0 a '0.'N-0, 0,"0 0

    ON9 Re ~ 0 9 C~O P4 e ~ f) O e0 ~ o )) 0( * '0 * 0

    W O'. 0'* 0.0'4* 0. . ('* 6. . 0..0 0 . .0 .0 10 .0 .0) .O .0 .0

    0o so -0 so 0C 0 0 0 0

    0' -0 .' -0k'0.0''0 ,00 0 ' t 0N.0-. 'P 4'0 -'~'l

    t -* 2 .0 '60- 4i i@ 4; 0 N6

    10 ~ U 0~10 10 OO~

  • - LOGTB: Log Tail Blade Area

    - LOGS: Log Shaft Horsepower

    - LOGMD: Log Main Rotor Disc Area

    - DISLO: Main Rotor Disc Loading

    Other quantities which are linearly independent of these parameters

    can be expected to play the roles of second and third variable in the

    multiple regression analyses. However, it is possible to see more than

    one of these variables appear in a multiple regression if the two

    variables are largely independent of each other.

    2.2 Summary of Best Correlates

    The table provided below identifies those single parameters which

    best correlate with EPNL for the various operational modes.

    Level Flyover Takeoff Approach

    Parameter R2 Parameter R2 Parameter R2

    LOG TB .889

    'I F2 .774 LOG TB .910 LOG W .867, LOG W .769 LOG W .891 LOG MD .863

    LOG MD .764 F3 .852 F3 .856

    F4 .765 LOG A .850 LOG A .828

    F3 .739 LOG S .826 F2 .821

    LOG TB .727 LOG MD .826 M DISC .778

    LOG A .727 T BLADE .819 LOG S .778

    AREA .774

    T BLADE .774

    11-

    il I Il l I I " - . . . . . . . . . . .. . ... .

  • The most apparent trend one observes is the much higher correlation

    for takeoff and approach EPNL values as compared with level flyover

    EPNL. One plausible reason for this is that the level flyovers are

    conducted at a higher speed than the approaches or takeoffs. It is

    reasonable to assume that forces generating noise in higher speed

    operation are subject to more variant and anomolous aerodynamic

    influences.

    Another observation is the decline of LOG TB to "fifth place" for the

    higher speed level flyover. This can be attributed to the diminished

    tail rotor counter-torque load as the speed increased. This occurs as

    unbalanced airframe slip stream forces tend to counter the main rotor

    torque.

    2.3 Plots of Best Single Variable Regression

    The three best single variable regression models are plotted in

    Figures 2.3.1 through 2.3.3 for takeoffs, in Figures 2.3.4 through 2.3.6

    for approach, and in Figures 2.3.7 through 2.3.9 for level flyover. Each

    plot includes identification of helicopter type and the line of

    regression.

    3.U STEPWISE RE(WRESSION ANALYSES

    This analysis investigates the improvement In prediction accuracy

    associated with adding a second and third variable to the single

    parameter regression equation. For the correlation coefficient to

    12

    ... . .. -

  • improve the added variables (or steps) must be largely independent of

    previous step(s) but still related to the level of noise. Three-step

    models are presented below for takeoff, approach, and level flyover.

    Approach

    1 Step

    EPNL a 10.2 log (TB) + 85.9

    R2 . .89

    2 Step

    EPNL = 7.1 log (TB) + .0007 (M DISC) + 86.9

    R2 = .93

    3 Step

    EPNL = 7.9 log (TB) + .005 (T SPEED) + .0006 (N DISC)

    R2 = .94

    Level Flyover

    1 Step

    'I EPNL - 9.4 (F2) + 37.4R2 = .76

    2 Step

    EPNL - 10.4 log (ND) + 3.6 (F5) + 59.5

    R2 = .84

    3 Step

    EPNL a 10.7 log (MD) + 17 (MACH) + 3 (FS) + 44.9

    R2 .85

    13

    * _ _ _ _ _ _ _ _ _ _

  • Takeoff

    1 Step

    EPNL = 9.6 log (TB) + 83.87

    R2 = .91

    2 Step

    EPNL = 9.55 log (TB) - 7.3 (MACH)6 + 86.1

    R2 = .93

    S3 Step

    EPNL = 6.3 log (TB) + 5.5 log (MD) -9.6 (MACH)6 + 71.97

    R2 = .95

    The following table provides a summary of parameters and correlation

    coefficients associated with each step of the multiple regression

    analyses for the various operational modes:

    Takeoff

    Step R2 Parameter (s

    1 .91 Log TB

    2 .93 Log TB, (MACHi)6

    3 .95 Log 1B, (MACHI6 , Log (MB)

    Approach

    Step R2 Parameter(s)

    1.89 Log TB

    2 .93 Log TB, M DISC

    3 .94 Log TB, M DISC, T SPEED

    -14-

    -

  • e~iI ew. I F lyover-,. Parameter c

    .84 F5, Log MO

    3 .85 Log MD, MACH, F5

    4.0 UISCUSSION

    The empirical noise prediction techniques presented above provide a means

    to estimate single event cumulative noise exposure for helicopters whose

    technology and operational characteristics are similar to the helicopters used

    in this analysis. The obvious advantage of the strictly empirical approach

    (using the single event cumulative energy metric EPNL) is the averaging out of

    source directionality, ground interference effects, anomolous air in-flow

    characteristics, and speed effects. All of these considerations pose

    significant difficulties in the theoretical approach. On the other hand, the

    theoretical approach can be more successful in predicting the change in noise

    level associated with a design change for a specific helicopter.

    The parameters appearing (or not appearing) as significant correlates to

    noise in this study raise some interesting questions. For example, the strength

    of LOG TB was not anticipated nor is "Tail Blade Area" a particularly good)I

    acoustical design parameter. On the other hand, the main rotor advancing tip

    mach number to the sixth power (considered an important correlate to noise)

    appears as a weak correlate by itself, although it does strengthen the takeoff

    correlation in the multiple regression analysis. Interpretation of these

    results and 0iscussion of application in predicting noise of new design

    helicopters or reducing levels of existent maclirles is left for subsequent study.

    -15-

  • 40

    0404

    aM

    QNI

    Ixt

    0 04 I I

    z .w00

    0n 2

    16.

  • 9 N*

    q .'

    IA-

    w 0

    ,.,,.,C m.+ = 4r U

    us q

    - -- 0

    t0

    a. a - am

    17'-

  • Dro us

    IIa -~ a

    * ILI

    \ " l m V)/ 4 tID

    cr.< d)

    "---3da -i O'

    do is11

    o 3b

  • co~4 M c

    -9 .

    IDa

    Ne4

    ra~, -C

    V1 -Cg4

    C) 40

    0Y a

    Ak. tn :

    0.

    LM~omW

    a 2

    19~

  • ON IN

    gto

    00

    w w.

    SL20M

    4c*

    in C

    - w

    W~ -O.ra .

    (320

  • zIn

    r4 cc

    Jicm -C 403 cn toX' .

    0*fn

    0I

    CL

    CA

    0w

    .- Of

    9 to

    21 ~

  • ;NO

    CC4

    -CD A an

    00

    C)

    - ftN0-i 4. a -j

    22D

  • r)

    14N1

    0~0

    4o or

    49

    -C4

    r d0, m )

    iin

    ob to

    ~.,

    232

    .........

  • m b,

    Ii0

    N 4

    -l 00

    511

    IL IIEll

    p.- -t M a-

    24~

  • REFERENCES

    1. Newman, J. S., and Rickley, E. J., Noise Levels and Flight Profilesof Eight Helicopters Using Proposed International CertificationProcedures," FAA-EE-79-03, March 1979.

    2. True, H. C., and Rckley, E. J., "Noise Characteristics of EightHelicopters," FAA-RD-94, July 1977.

    3. Jane's All the World's Aircraft, 1964-1965.

    4. Jane's All the World's Aircraft, 1975-1976.

    5. Jane's All the World's Aircraft, 1977-1978.

    6. Defense Intelligence Agency DIA DT-2 (personal communication) RussianHelicopter Data.

    7. Pat Lang, FAA Eastern Region (personal communication) SikorskyHelicopter Data.

    8. Mr. Arland Doe, Westland Helicopters, Yeovil, U.K., (personalcommunication) Westland Helicopter Data.

    -25-