1
A Vaccine Targeting Protease Cleavage Sites Protects Cynomolgus Monkeys Against SIV Ma Luo, David Tang, Rupert Capina, Xin-Yang Yuan, Jorge F Correia-Pinto, Cecilia Prego, So-Yon Lim, Christina Barry, Richard Pilon, Christina Daniuk, Mikaela Nykoluk, Stephane Pillet, David La, Tomasz Bielawny, Jeffrey Tuff, Chris Czarnecki, Philip Lacap, Gary Wong, Shaun Tyler, Binhua Liang, Zhe Yuan, Qingsheng Li, Terry B Ball, James Whitney, Maria J Alonso, Paul Sandstrom, Gary Kobinger, Francis A. Plummer National Microbiology Laboratory, Winnipeg, Manitoba, Canada; University of Manitoba, Winnipeg, Manitoba, Canada; University of Santiago de Compostela, Spain; University of Nebraska-Lincoln, Nebraska, USA Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA ABSTRACT Background: With the sobering results of the STEP and HVTN 505 HIV vaccine clinical trials, novel approaches to HIV vac- cine development must be explored. The HIV protease is a 99-amino acid aspartic enzyme that mediates the cleavage of Gag, Gag-Pol and Nef precursor polyproteins. This process is a highly specific, temporally regulated and essential for the production of infectious viral particles. A total of 12 proteolytic reactions are required to generate an infectious virion, and a single impaired cleavage reaction can render the virus noninfectious. Thus, HIV vaccine-elicited responses targeting the protease cleavage sites (PCS) could be highly efficacious. Methods: We assess vaccine immunogenicity elicited against PCS immunogens using a modifiedVesicular stomatitis virus (VSV) vector combined with a nanodelivery system. We then evaluate protective efficacy to disrupt SIV acquisition and disease progression using a Cynomolgus macaque (Macaca facicularis, Philippines) and SIVMAC239 intrarectal chal- lenge model. To examine whether the immune driven viral mutations surrounding the PCS were detrimental to the virus, we amplified and sequenced the plasma viruses by 454-pyrosequencing and correlated the amino acid mutations sur- rounding PCS with alterations in viral load and CD4 count. Results: PCS peptides expressed by rVSVs and packaged in nanoparticles are able to generate both antibody and T cell responses in macaques. The ability of macaques to withstand high dose SIVMAC239 challenge was significantly correlated with the antibody and antibody/T cell responses to the number of PCS peptides(p=0.0005, R=0.8005). This combination imparted resistance to all but the higher SIV doses that were required to infect vaccinnees (p=0.01). the vaccine group maintains significantly higher CD4 counts (p=0.0002). Amino acid mutations (SN or NS) surrounding PCS correlated sig- nificantly with reduced viral RNA levels (p<0.0001). Conclusions: We show here in a Cynomolgus macaque/SIV model that a candidate HIV vaccine focusing immunologic re- sponses to the regions surrounding the SIV protease cleavage sites can force viral mutation resulting in impaired SIV fit- ness. Focused immune response to the PCS region enables the macaques to withstand multiple high dose pathogenic SIVMAC239 intrarectal challenges. Virus recovered from vaccinnees harbored mutations surrounding the protease cleavage region that correlated significantly with reduced viral load, and the maintenance of CD4+ T cells in vivo. Acknowledgement DISCUSSION Public Health Agency of Canada Agence de sant publique du Canada é Gag Pol Nef HIV-1 gag, Gag-Pol and Nef translation Pr55Gag Pr160Gag-Pol Nef MA CA p2 NC p1 p6gag MA CA P2 NC TFP p6pol PR RTp51 RTp66 IN NEF GagPol Cleavage Process p6gag p1 NC p2 MA CA TFP p6pol PR RTp51 RTp66 IN NEF 1 2 3 4 5 6 7 8 9 10 11 12 Pr55 Gag Cleavage process Pr160 Gag-Pol Cleavage process AmpR N P M MCS G T7P Mlu1 Bln1 The nucleotide sequences encoding 20 amino acids overlapping each of the 12 protease cleavage sites, Gag or Env were cloned into pATX VSV-G vector at Mlu1-Bln1 site. 0 5 10 12 16 18 20 week VSV-peptides IM VSV-peptides (IM) nanopeptides (IN) nanopeptides (IN) accelerated SIVmac239 intrarectal challenge necropsy of controls necropsy of vaccine group 29 32 33 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 OD405nm. IgG IgM Sampling points (week) 0 50 100 150 200 250 300 2 3 4 5 6 7 8 10 11 12 13 weeks after first immunization boost 1 boost 2 SFU/million 0 1 2 3 4 5 6 7 8 9 10 C93098F C91032F C91069F C87129F C93048F C91028F C87114F C93053F C90038F C92078F C88066F C91051F Antibody responses to no. of PCS 0 1 2 3 4 5 6 7 C93098F C91032F C91069F C87129F C93048F C91028F C87114F C93053F C90038F C92078F C88066F C91051F T cell response to No. of PCS sites A B C D E SIV infection after 7000 TCID50 challenge 0 1000 2000 3000 4000 5000 6000 7000 8000 0 10 20 30 40 50 60 70 80 90 100 with ab/T cell response => 6 PCS with ab/T cell response <6 PCS p = 0.017 Harzard ratio: 0.357, 95%CI:0.0398-0.0731 SIVmac239 TCID50 dosage Percent remain uninfected 0 2500 5000 7500 10000 12500 15000 17500 0 1 2 3 4 5 6 7 8 9 SIVmac239 Challenge (TCID50) IgG to No. of PCS sites p = 0.0097 R = 0.37 2 0 2500 5000 7500 10000 12500 15000 17500 0 1 2 3 4 5 6 7 8 9 SIVmac239 Challenge (TCID50) T cell & antibody to No. of PCS sites p = 0.005 R = 0.42 2 A B C D p = 0.01 Vaccine group control group 0 2000 4000 6000 8000 10000 12000 14000 16000 Accumulated SIVmac239 challenge dosage (TCID50) P =0.0002 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 Vaccine Control Weeks Post Infection Absolute CD4 cells/mm3 P = 0.316 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1000 2000 3000 4000 5000 6000 Vaccine Control Weeks Post Infection Absolute CD8 cells/mm3 p = 0.0002 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Vaccine Control Weeks Post Infection CD4/CD8 Ratio p = 0.0002 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 50 100 150 200 250 300 Vaccine Control Weeks Post Infection % Baseline CD4 Decline A B C D 2 3 4 5 6 7 8 9 0 2 4 6 8 10 12 14 16 18 C87-129F C90-038F C91-028F C91-032F C93-048F C91-069F C92-078F C87-114F C88-066F C91-051F C93-053F Vaccine Mean weeks after infection Log Viral Load 2 3 4 5 6 7 0 2 4 6 8 10 12 14 16 C87-133F C88-128F C93-055F C94-076F C97-007F Control Mean weeks after infection Log Viral Load 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 P = 0.3851 Vaccine Control Weeks after Infection Log viral load 2 3 4 5 6 7 8 p = 0.0092 p = 0.50 Log Viral Load control control vaccine vaccine peak viral load week 9 after infection A B C D p < 0.0001 R2: 0.18 0 1 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Log Viral Load amino acid mutations around PCS1 p = 0.003 R2: 0.07 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Log Viral Load amino acid mutations around PCS3 p = 0.03 R2: 0.04 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Log Viral Load amino acid mutations around PCS4 p < 0.0001 R2: 0.15 2 3 4 5 6 7 8 9 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Log Viral Load amino acid mutations around PCS5 a b c d p = 0.02 R2: 0.04 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 Log Viral Load amino acid mutations around PCS6 e p < 0.0001 R2: 0.13 2 3 4 5 6 7 8 9 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 Log Viral Load amino acid mutations around PCS7 f p = 0.003 R2: 0.07 0 1 2 3 4 5 6 7 8 9 10 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 Log Viral Load amino acid mutations around PCS9 g p < 0.0001 R2: 0.19 0 1 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5 Log Viral Load amino acid mutations around PCS10 h p < 0.0001 R2: 0.14 0 1 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Log Viral Load amino acid mutations around PCS11 i p = 0.0009 R2 = 0.08 1 2 3 4 5 6 7 8 9 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 amino acid mutations adjecant to PCS1 j Log Viral Load p = 0.005 R2 = 0.06 2 3 4 5 6 7 8 9 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 amino acid mutations adjecant to PCS2 Log Viral Load k 2 3 4 5 6 7 8 9 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 p = 0.03 R2 : 0.04 amino acid mutations adjecant to PCS4 l Log Viral Load p = 0.02 R2 = 0.04 2 3 4 5 6 7 8 9 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 amino acid mutations adjecant to PCS7 Log Viral Load n p = 0.002 R2 = 0.07 1 2 3 4 5 6 7 8 9 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 Log Viral Load amino acid mutations adjecant to PCS11 o p = 0.02 R2 = 0.04 2 3 4 5 6 7 8 9 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 Log Viral Load amino acid mutations adjecant to PCS6 m 1 2 3 5 4 6 7 8 1: 100bp ladder 2: negative control 3: VSV-L, 357bp 4: VSV-M, 419bp 5: VSV-N, 423bp 6: VSV-P, 476bp 7: VSV-G, 820bp 8: PSC site 2 Agarose gel electrophoresis of RT-PCR products. The results demonstrate the expression of RNA of peptides overlapping the p27/p2 site of protease cleavage site of SIVmac239. week 2 after immunization PBS PCS1 PCS2 PCS3 PCS4 PCS5 PCS6 PCS7 PCS8 PCS9 PCS10 PCS11 PCS12 0.0 0.5 1.0 1.5 2.0 2.5 protease cleavage sites IgM (OD 405nm) IgM antibodies to the peptides overlapping the 12 protease cleavage sites were detected in BALB/c mice 2 weeks after immunization with recombinant vesicular stomatitis virus. A vaccine expressing PCS peptides generates antibody and T cell responses Vaccine Control Vaccine Control Vaccine Control Vaccine Control 0 25 50 75 100 NS NS NS NS Vaccine Control Vaccine Control Vaccine Control Vaccine Control 0 25 50 75 100 125 NS NS NS *P =0.02 A. Peak B. Set-point PCS2 (-8) PCS2 (-7) PCS2 (-6) PCS12 (-8) P R Q D Q E/R G R/E PCS2 (-8) PCS2 (-7) PCS2 (-6) PCS12 (-8) P R Q D Q E/R G R/E % major PCS amino acid mutation % major PCS amino acid mutation C. METHODS RESULTS RESULTS INTRODUCTION Developing an effective preventative vaccine for HIV has proved to be an enormous scientific challenge. The classical approach to HIV vaccine development has shown at best, only modest ef- ficacy. An effective HIV vaccine should not only generate potent immune responses capable of destroying infected cells, but also limit aberrant immune activation that increases the susceptibil- ity of the HIV target cell population to infection. Vaccines that generate focused immune re- sponses to highly conserved regions of HIV protease cleavage regions (PCS) might be able to strike such a balance. The HIV protease is a 99-amino acid aspartic enzyme that mediates the cleavage of Gag, Gag-Pol and Nef precursor polyproteins. This process is highly specific, tempo- rally regulated and essential for the production of infectious viral particles (1-4). Twelve proteo- lytic reactions are required to generate an infectious virion, and a single impaired cleavage reac- tion can render the virus noninfectious (5). Thus, an HIV vaccine eliciting immune responses tar- geting the sequences surrounding these PCS could be highly efficacious. we assessed vaccine immunogenicity elicited against PCS immunogens using a modified Vesicular stomatitis virus (VSV) vector combined with a nanodeliv- ery system. We then evaluated protective efficacy to disrupt SIV acquisition and disease progression using a Cynomolgus macaque (Macaca facicularis) and SIVMAC239 intrarectal challenge model. To examine whether the immune driven viral mutations surrounding the PCS were detrimental to the virus, we ampli- fied and sequenced the plasma viruses by 454-pyrosequencing and correlated the amino acid mutations surrounding the PCS regions with alterations in viral load and maintenance of CD 4 T cell counts. PCS specific immune responses protect cynomolgus monkeys against pathogenic SIV MAC239 infection and disease progression p = 0.033 R2 = 0.38 2 3 4 5 6 7 0.110 0.135 0.160 0.185 0.210 0.235 0.260 0.285 0.310 0.335 Log Viral Load amino acid mutations/PCS6 C87129F p = 0.023 R2 = 0.32 4 5 6 7 8 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 Log viral Load amino acid mutations/PCS11 C88066F p = 0.0002 R2 = 0.68 5 6 7 8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Log Viral Load amino acid mutations/PCS12 C88066F p = 0.04 R2 = 0.26 4 5 6 7 8 0.000 0.005 0.010 0.015 Log Viral Load mutations/amino acid adjacent to PCS11 C88066F p = 0.047 R2 = 0.51 3 4 5 6 7 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 Log Viral Load amino acid mutations/PCS4 C90038F p = 0.037 R2 = 0.49 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 Log Viral Load sequences with frame shift mutations at PCS12 (%) C90038F P = 0.03 R2 = 0.51 1 2 3 4 5 6 7 8 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Log Viral Load amino acid mutations adjacent to PCS12 C90038F p = 0.08 R2 = 0.68 4 5 6 7 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Log Viral Load amino acid mutations/PCS8 C91069F p = 0.011 R2 = 0.41 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 Log Viral Load sequences with frame shift mutations at PCS1 (%) C93053F p = 0.006 R2 = 0.87 3 4 5 6 7 8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Log Viral Load amino acid mutations adjacent to PCS10 p = 0.004 R2 = 0.9 3 4 5 6 7 8 0.000 0.005 0.010 0.015 Log Viral Load mutations/amino acid adjacent to PCS10 p = 0.03 R2 = 0.46 2 3 4 5 6 7 8 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 Log Viral Load amino acid mutations/PCS11 C92078F C92078F C92078F p = 0.05 R2 = 0.56 1 2 3 4 5 6 7 8 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 Log Viral Load amino acid mutations/PCS10 C87114F P = 0.002 R2 = 0.59 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Log Viral Load amino acid mutations adjacent to PCS11 C91028F P = 0.03 R2 = 0.73 4 5 6 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 Log Viral Load amino acid mutations adjacent to PCS7 C91032F P = 0.045 R2 = 0.68 4 5 6 7 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 Log Viral Load amino acid mutations adjacent to PCS6 C91032F p = 0.006 R2 = 0.52 4 5 6 7 8 9 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Log Viral Load aminoa acid mutations/PCS7 C91028F P = 0.007 R2 = 0.57 4 5 6 7 8 9 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Log Viral Load amino acid mutations adjacent to PCS4 C91048F p = 0.012 R2 = 0.52 4 5 6 7 8 9 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 Log Viral Load amino acid mutations/PCS1 C91048F P = 0.046 R2 = 0.67 4 5 6 7 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Log Viral Load amino acid mutations adjacent to PCS5 C91032F p = 0.0005 1 2 3 4 5 6 7 8 9 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Log Viral Load Conserved amino acid mutations around PCS1 (-10/+10)/PCS p < 0.0001 1 2 3 4 5 6 7 8 9 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Log Viral Load Non-conserved amino acid mutations around PCS1 (-10/+10)/PCS p = 0.04 1 2 3 4 5 6 7 8 9 0.00 0.01 0.02 0.03 0.04 0.05 0.06 Log Viral Load Stop codons around PCS1 (-10/+10)/PCS p = 0.01 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Log Viral Load Non-conserved amino acid mutations around PCS3 (-10/+10)/PCS p = 0.047 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Log Viral Load Non-conserved amino acid mutations around PCS4 (-10/+10)/PCS P < 0.0001 2 3 4 5 6 7 8 9 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 Log Viral Load Non-conserved amino acid mutations around PCS5 (-10/+10)/PCS p = 0.03 2 3 4 5 6 7 8 9 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 Log Viral Load Non-conserved amino acid mutations around PCS6 (-10/+10)/PCS P < 0.0001 2 3 4 5 6 7 8 9 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 Log Viral Load Non-conserved amino acid mutations around PCS7 (-10/+10)/PCS p = 0.003 1 2 3 4 5 6 7 8 9 0.00 0.03 0.06 0.09 0.12 0.15 0.18 Log Viral Load Non-conserved amino acid mutations around PCS9 (-10/+10)/PCS p = 0.04 1 2 3 4 5 6 7 8 9 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 Log Viral Load Conserved amino acid mutations around PCS10 (-10/+10)/PCS p < 0.0001 1 2 3 4 5 6 7 8 9 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Log Viral Load Non-conserved amino acid mutations around PCS10 (-10/+10)/PCS p = 0.0004 1 2 3 4 5 6 7 8 9 0.00 0.05 0.10 0.15 0.20 0.25 Log Viral Load Conserved amino acid mutations around PCS11 (-10/+10)/PCS p = 0.0006 1 2 3 4 5 6 7 8 9 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Log Viral Load Non-conserved amino acid mutations around PCS11 (-10/+10)/PCS a b c d e f g h i j k l m p = 0.01 R2 =0.84 1 2 3 4 5 6 7 8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Log Viral Load Non-conserved amino acid substitutions around PCS12 (-10/+10) (%) n p = 0.0001 R2 = 0.68 5.5 6.0 6.5 7.0 7.5 8.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Log Viral Load Non-conserved amino acid sbstitutions around PCS12 (-10/+10) (%) o p = 0.02 R2 = 0.62 3 4 5 6 7 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 Non-conserved amino acid mutations around PCS6 (-10/+10) (%) Log Viral Load p p = 0.004 R2 = 0.55 4 5 6 7 8 9 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Log Viral Load Non-conserved amino acid substitutions around PCS12 (-10/+10) (%) q p = 0.007 R2 = 0.73 4.5 5.0 5.5 6.0 6.5 0.00 0.01 0.02 0.03 0.04 Log viral Load Conserved amino acid substitutions around PCS1 (-10/+10) (%) r p = 0.01 R2 = 0.52 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Log Viral Load Non-conserved amino acid substitutions around PCS9 (-10/+10) s p = 0.04 R2 = 0.48 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 Log Viral Load Non-conserved amino acid substitutions around PCS7 (-10/+10) (%) t R2 = 0.09 R2 = 0.12 R2 = 0.03 R2 = 0.05 R2 = 0.03 R2 = 0.14 R2 = 0.04 R2 = 0.12 R2 = 0.07 R2 = 0.03 R2 = 0.16 R2 = 0.09 R2 = 0.09 Immune responses to PCS peptides drive viral mutation that is detrimental to the challenge virus Amino acid mutations surrounding PCS at the peak and set point correlated with reduced peak and set point viremia 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 CD4+ CD8+ Log (VL) Log viral load weeks after infection Q(-7)>R/L (PCS12) @ @ 92% & P(-8)>R/L (PCS2) & 43% & 24% & 35% & 23% & 30% & 34% & 26% # G(-7)>D (PCS2) # 16% $ K(+4)>R (PCS11) * G(-8)>R/E (PCS12) * 10% Y(-6)>C (PCS12) 13% C87114F CD4+ or CD8+ T cell counts/mm3 Q(-6)>E/R (PCS2) E(+6)>K/R (PCS12) # 29% 29% # 17% 17% # 24% 25% # 17% 18% # 20% 20% 16% & 31% # 31% 28% $ 18% 30% 29% * PCS11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 L V S Q G I R Q V L F L E K I E P A Q E PCS2 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 G G P G Q K A R L M A E A L K E A L A P PCS12 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 N Q G Q Y M N T P W R N P A E E R E K L We thank the staff of VTS of National Microbiology laboratory and Canadian Food Inspection Agency (CFIA) for their dedica- tion in this study; Ms. Michelle Janes for her technical support in viral load analysis; and the professional support from the staff of Genomic Core and Bioinformatics Core of National Microbiology Laboratory for SIV pyrosequencing and data analysis, as well as the project support from Dr. Mike Drebot and Dr. Graham Tipples. The study is supported by a CIHR/CHVI catalyst grant, the National Microbiology Laboratory, Public Health Agency of Canada and a NIH grant R01AI111805. References Our proof of concept study has demonstrated the feasibility of this vaccine approach in several ways. 1) it is possible to generate both T cell and antibody responses to the 12 20-amino acid peptides using a modified VSV vector and a Nano deliv- ery system. 2) the low-magnitude, focused immune responses to multiple PCS regions can provide protection against SIVmac239 infection. Studies have shown that higher viral load increases the risk of sexual HIV transmission, and mother-child HIV transmission(6). The increased dose of SIVmac239 intrarectal challenge in our study simulates the high viral load condi- tion in sexual HIV transmission. The resistance of macaques to the higher SIVmac239 challenge dose is significantly correlated with their ability to generate immune responses to the number of PCS. The second measurement of the effectiveness of the vaccine is whether a vaccine targeting PCS can offer protection from disease progression after infection. Our study showed that a vaccine targeting PCS can also protect macaques against disease progression. HIV disease progression is measured by rapid CD4 decline; this is also shown in monkey models. We showed that 1) PCS vaccinated monkeys can maintain significantly higher and healthy CD4 counts. 2) there is a significant inverse correla- tion between mutations surrounding the PCS and the viral load. 3) both conserved and non-conserved amino acid substitu- tions around the PCS correlated significantly with lower viral load. The data demonstrated that protease cleavage of the pathogenic SIVmac239 is extremely vulnerable to any amino acid alternations around PCS, thus the sequences surrounding PCS are good targets for an effective HIV vaccine. Our proof of concept study demonstrated that disrupting HIV maturation process by vaccination against sequences surrounding the PCS is feasible and effective. 1. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 331:280. 2. Kaplan AH, Zack JA, Knigge M, Paul DA, Kempf DJ, Norbeck DW, et al. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol. 67:4050. 3. Krausslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter CA. Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. PNAS U S A. 86:807. 4. Louis JM, Ishima R, Torchia DA, Weber IT. HIV-1 protease: structure, dynamics, and inhibition. Adv Pharmacol. 55:261. 5. Billich S, Knoop MT, Hansen J, Strop P, Sedlacek J, Mertz R, et al. Synthetic peptides as substrates and inhibitors of human immune deficiency virus-1 protease. J Biol Chem. 263:17905; 6. Chappell CA, Cohn SE. Prevention of perinatal transmission of human immunodeficiency virus. Infect Dis Clin North Am. 28:529

A Vaccine Targeting Protease Cleavage Sites Protects ...€¦ · virus (VSV) vector combined with a nanodelivery system. We then evaluate protective efficacy to disrupt SIV acquisition

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Vaccine Targeting Protease Cleavage Sites Protects ...€¦ · virus (VSV) vector combined with a nanodelivery system. We then evaluate protective efficacy to disrupt SIV acquisition

A Vaccine Targeting Protease Cleavage Sites Protects Cynomolgus Monkeys Against SIVMa Luo, David Tang, Rupert Capina, Xin-Yang Yuan, Jorge F Correia-Pinto, Cecilia Prego, So-Yon Lim, Christina Barry, Richard Pilon, Christina Daniuk, Mikaela Nykoluk, Stephane Pillet, David La, Tomasz Bielawny,

Jeffrey Tuff, Chris Czarnecki, Philip Lacap, Gary Wong, Shaun Tyler, Binhua Liang, Zhe Yuan, Qingsheng Li, Terry B Ball, James Whitney, Maria J Alonso, Paul Sandstrom, Gary Kobinger, Francis A. PlummerNational Microbiology Laboratory, Winnipeg, Manitoba, Canada; University of Manitoba, Winnipeg, Manitoba, Canada; University of Santiago de Compostela, Spain; University of Nebraska-Lincoln, Nebraska, USA

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA

ABSTRACTBackground: With the sobering results of the STEP and HVTN 505 HIV vaccine clinical trials, novel approaches to HIV vac-cine development must be explored. The HIV protease is a 99-amino acid aspartic enzyme that mediates the cleavage of Gag, Gag-Pol and Nef precursor polyproteins. This process is a highly specific, temporally regulated and essential for the production of infectious viral particles. A total of 12 proteolytic reactions are required to generate an infectious virion, and a single impaired cleavage reaction can render the virus noninfectious. Thus, HIV vaccine-elicited responses targeting the protease cleavage sites (PCS) could be highly efficacious.Methods: We assess vaccine immunogenicity elicited against PCS immunogens using a modifiedVesicular stomatitis virus (VSV) vector combined with a nanodelivery system. We then evaluate protective efficacy to disrupt SIV acquisition and disease progression using a Cynomolgus macaque (Macaca facicularis, Philippines) and SIVMAC239 intrarectal chal-lenge model. To examine whether the immune driven viral mutations surrounding the PCS were detrimental to the virus, we amplified and sequenced the plasma viruses by 454-pyrosequencing and correlated the amino acid mutations sur-rounding PCS with alterations in viral load and CD4 count.Results: PCS peptides expressed by rVSVs and packaged in nanoparticles are able to generate both antibody and T cell responses in macaques. The ability of macaques to withstand high dose SIVMAC239 challenge was significantly correlated with the antibody and antibody/T cell responses to the number of PCS peptides(p=0.0005, R=0.8005). This combination imparted resistance to all but the higher SIV doses that were required to infect vaccinnees (p=0.01). the vaccine group maintains significantly higher CD4 counts (p=0.0002). Amino acid mutations (SN or NS) surrounding PCS correlated sig-nificantly with reduced viral RNA levels (p<0.0001).Conclusions: We show here in a Cynomolgus macaque/SIV model that a candidate HIV vaccine focusing immunologic re-sponses to the regions surrounding the SIV protease cleavage sites can force viral mutation resulting in impaired SIV fit-ness. Focused immune response to the PCS region enables the macaques to withstand multiple high dose pathogenic SIVMAC239 intrarectal challenges. Virus recovered from vaccinnees harbored mutations surrounding the protease cleavage region that correlated significantly with reduced viral load, and the maintenance of CD4+ T cells in vivo.

Acknowledgement

DISCUSSION

Public HealthAgency of Canada

Agence de santpublique du Canada

é

Gag

Pol

Nef

HIV-1 gag, Gag-Pol and Nef translation

Pr55Gag

Pr160Gag-Pol

Nef

MA CA p2 NC p1 p6gag MA CA P2 NC

TFP p6pol PR RTp51 RTp66 IN NEF

GagPol Cleavage Process

p6gagp1NCp2MA CA

TFP p6pol PR RTp51 RTp66 IN NEF

1 2 3 4 5 6 7 8 9 10 11 12

Pr55 Gag Cleavage process Pr160 Gag-Pol Cleavage process

AmpR N P M

MCS

G

T7P

Mlu1 Bln1

The nucleotide sequences encoding 20 amino acidsoverlapping each of the 12 protease cleavage sites, Gag or Env were cloned into pATX VSV-G vector at Mlu1-Bln1 site.

0 5 10 12 16 18 20week

VSV-peptidesIM

VSV-peptides (IM)nanopeptides (IN)

nanopeptides (IN)

accelerated SIVmac239intrarectal challenge

necropsy of controls

necropsy of vaccine group

29 32 33

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

OD40

5nm

.

IgG

IgM

Sampling points (week)

0

50

100

150

200

250

300

2 3 4 5 6 7 8 10 11 12 13weeks after first immunization

boost 1 boost 2

SFU/

milli

on

0

1

2

3

4

5

6

7

8

9

10

C930

98F

C910

32F

C910

69F

C871

29F

C930

48F

C910

28F

C871

14F

C930

53F

C900

38F

C920

78F

C880

66F

C910

51F

Antib

ody

resp

onse

s to

no.

of P

CS

0

1

2

3

4

5

6

7

C930

98F

C910

32F

C910

69F

C871

29F

C930

48F

C910

28F

C871

14F

C930

53F

C900

38F

C920

78F

C880

66F

C910

51F

T ce

ll re

spon

se to

No.

of P

CS s

ites

A

B C

D E

SIV infection after 7000 TCID50 challenge

0 1000 2000 3000 4000 5000 6000 7000 80000

10

20

30

40

50

60

70

80

90

100 with ab/T cell response=> 6 PCS

with ab/T cell response<6 PCS

p = 0.017Harzard ratio: 0.357, 95%CI:0.0398-0.0731

SIVmac239 TCID50 dosage

Perc

ent r

emai

n un

infe

cted

0 2500 5000 7500 10000 12500 15000 175000

1

2

3

4

5

6

7

8

9

SIVmac239 Challenge (TCID50)

IgG

to N

o. o

f PC

S si

tes

p = 0.0097R = 0.372

0 2500 5000 7500 10000 12500 15000 175000

1

2

3

4

5

6

7

8

9

SIVmac239 Challenge (TCID50)

T ce

ll &

ant

ibod

y to

No.

of P

CS

site

s

p = 0.005R = 0.422

A B

C Dp = 0 .0 1

V a c c in e g ro u p c o n tro l g ro u p0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

Acc

um

ula

ted

SIV

mac

23

9 c

hal

len

ge

do

sag

e (T

CID

50

)

P =0 .0 0 0 2

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250Vac c ineC ontrol

We e k s P o s t In fe c tio n

Ab

solu

te C

D4

cel

ls/m

m3

P = 0 .3 1 6

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

1000

2000

3000

4000

5000

6000

Vac c ineC ontrol

We e k s P o s t In fe c tio n

Ab

solu

te C

D8

cel

ls/m

m3

p = 0 .0 0 0 2

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Vac c ineC ontrol

We e k s P o s t In fe c tio n

CD

4/C

D8

Rat

io

p = 0 .0 0 0 2

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

50

100

150

200

250

300

Vac c ineC ontrol

We e k s P o s t In fe c tio n

% B

asel

ine

CD

4 D

eclin

e

A B

C D

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18

C 87-129F

C 90-038F

C 91-028F

C 91-032F

C 93-048F

C 91-069F

C 92-078F

C 87-114F

C 88-066F

C 91-051F

C 93-053F

V accin e M ean

weeks after infection

Log

Vir

al L

oad

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

C 87-133F

C 88-128F

C 93-055F

C 94-076F

C 97-007F

C o n trol M ean

weeks after infection

Log

Vir

al L

oad

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

1

2

3

4

5

6

7

8P = 0.3851 Vaccine

Control

Weeks after Infection

Log

vira

l loa

d

2

3

4

5

6

7

8

p = 0 .0 0 9 2

p = 0 .5 0

Lo

g V

ira

l Lo

ad

control controlvaccine vaccine

peak viral load week 9 after infection

A B

C D

p < 0.0001R2: 0.18

0 1 2 3 4 5 6 7 8 90.00.10.20.30.40.50.60.70.80.91.01.1

Log Viral Load

amin

o ac

id m

utat

ions

arou

nd P

CS1

p = 0.003R2: 0.07

2 3 4 5 6 7 8 90.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Log Viral Load

amin

o ac

id m

utat

ions

arou

nd P

CS3

p = 0.03R2: 0.04

2 3 4 5 6 7 8 90.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Log Viral Load

amin

o ac

id m

utat

ions

arou

nd P

CS4

p < 0.0001R2: 0.15

2 3 4 5 6 7 8 90.00

0.05

0.10

0.15

0.20

0.25

0.30

Log Viral Load

amin

o ac

id m

utat

ions

arou

nd P

CS5

a b c d

p = 0.02R2: 0.04

2 3 4 5 6 7 8 90.0

0.1

0.2

0.3

0.4

Log Viral Load

amin

o ac

id m

utat

ions

arou

nd P

CS6

e p < 0.0001R2: 0.13

2 3 4 5 6 7 8 90.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

Log Viral Load

amin

o ac

id m

utat

ions

arou

nd P

CS7

f p = 0.003R2: 0.07

0 1 2 3 4 5 6 7 8 9 100.000.020.040.060.080.100.120.140.160.180.200.220.240.26

Log Viral Load

amin

o ac

id m

utat

ions

arou

nd P

CS9

g p < 0.0001R2: 0.19

0 1 2 3 4 5 6 7 8 90.0

0.1

0.2

0.3

0.4

0.5

Log Viral Load

amin

o ac

id m

utat

ions

arou

nd P

CS10

h

p < 0.0001R2: 0.14

0 1 2 3 4 5 6 7 8 90.0

0.1

0.2

0.3

0.4

0.5

0.6

Log Viral Load

amino

acid

mutat

ions a

roun

d PCS

11

i p = 0 .0009R2 = 0.08

1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

amino

acid

mutat

ions a

djeca

nt to

PCS1

j

Log Viral Load

p = 0.005R2 = 0.06

2 3 4 5 6 7 8 90.000.020.040.060.080.100.120.140.160.180.200.220.240.260.28

amino

acid

mutat

ions a

djeca

nt to

PCS2

Log Viral Load

k

2 3 4 5 6 7 8 90.000.020.040.060.080.100.120.140.160.180.200.220.240.260.28

p = 0.03R2 : 0 .04

amino

acid

mutat

ions a

djeca

nt to

PCS

4

l

Log Viral Loadp = 0.02

R2 = 0 .04

2 3 4 5 6 7 8 90.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

amino

acid

mutat

ions a

djeca

nt to

PCS

7

Log Viral Load

n p = 0.002R2 = 0.07

1 2 3 4 5 6 7 8 90.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Log Viral Load

amino

acid

mutat

ions a

djeca

nt to

PCS

11

op = 0.02R2 = 0.04

2 3 4 5 6 7 8 90.000.020.040.060.080.100.120.140.160.180.200.220.240.260.28

Log Viral Load

amino

acid

mutat

ions a

djeca

nt to

PCS

6

m

1 2 3 54 6 7 81: 100bp ladder2: negative control3: VSV-L, 357bp4: VSV-M, 419bp5: VSV-N, 423bp6: VSV-P, 476bp7: VSV-G, 820bp8: PSC site 2

Agarose gel electrophoresis of RT-PCR products.The results demonstrate the expression of RNA of peptides overlapping the p27/p2 site of protease cleavage site ofSIVmac239.

week 2 after immunization

PBSPCS1

PCS2PCS3

PCS4PCS5

PCS6PCS7

PCS8PCS9

PCS10

PCS11

PCS120.0

0.5

1.0

1.5

2.0

2.5

protease cleavage sites

IgM

(OD

405

nm

)

IgM antibodies to the peptides overlapping the 12 protease cleavage sites were detected in BALB/c mice 2 weeks after immunization with recombinant vesicular stomatitis virus.

A vaccine expressing PCS peptides generates antibody and T cell responses

Vaccine C ontrol Vaccine C ontrol Vaccine C ontrol Vaccine C ontrol

0

25

50

75

100

% m

ajor

PC

S a

min

o ac

id m

utat

ion

NS NS NS NS

Vaccine C ontrol Vaccine C ontrol Vaccine C ontrol Vaccine C ontrol

0

25

50

75

100

125

% m

ajor

PC

S a

min

o ac

id m

utat

ion

NS NS NS *P=0.02

A. Peak

B. Set-point

P C S 2 (-8 ) P C S 2 (-7 ) P C S 2 (-6 ) P C S 12 (-8)PR QD QE /R GR /E

P C S 2 (-8 ) P C S 2 (-7 ) P C S 2 (-6 ) P C S 12 (-8)PR QD QE /R GR /E

% m

ajor

PC

S am

ino

acid

mut

atio

n%

maj

or P

CS

amin

o ac

id m

utat

ion

C.

METHODS

RESULTS RESULTS

INTRODUCTIONDeveloping an effective preventative vaccine for HIV has proved to be an enormous scientific challenge. The classical approach to HIV vaccine development has shown at best, only modest ef-ficacy. An effective HIV vaccine should not only generate potent immune responses capable of destroying infected cells, but also limit aberrant immune activation that increases the susceptibil-ity of the HIV target cell population to infection. Vaccines that generate focused immune re-sponses to highly conserved regions of HIV protease cleavage regions (PCS) might be able to strike such a balance. The HIV protease is a 99-amino acid aspartic enzyme that mediates the cleavage of Gag, Gag-Pol and Nef precursor polyproteins. This process is highly specific, tempo-rally regulated and essential for the production of infectious viral particles (1-4). Twelve proteo-lytic reactions are required to generate an infectious virion, and a single impaired cleavage reac-tion can render the virus noninfectious (5). Thus, an HIV vaccine eliciting immune responses tar-geting the sequences surrounding these PCS could be highly efficacious.

we assessed vaccine immunogenicity elicited against PCS immunogens using a modified Vesicular stomatitis virus (VSV) vector combined with a nanodeliv-ery system. We then evaluated protective efficacy to disrupt SIV acquisition and disease progression using a Cynomolgus macaque (Macaca facicularis) and SIVMAC239 intrarectal challenge model. To examine whether the immune driven viral mutations surrounding the PCS were detrimental to the virus, we ampli-fied and sequenced the plasma viruses by 454-pyrosequencing and correlated the amino acid mutations surrounding the PCS regions with alterations in viral load and maintenance of CD 4 T cell counts.

PCS specific immune responses protect cynomolgus monkeys against pathogenic SIVMAC239 infection and disease progression

p = 0 .0 3 3R2 = 0 .3 8

2 3 4 5 6 70.110

0.135

0.160

0.185

0.210

0.235

0.260

0.285

0.310

0.335

L o g V ira l L o a d

amin

o ac

id m

utat

ions

/PC

S6

C87129Fp = 0 .0 2 3R2 = 0 .3 2

4 5 6 7 80.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

L o g v ira l L o a d

amin

o ac

id m

utat

ions

/PC

S11

C88066Fp = 0 .0 0 0 2R2 = 0 .6 8

5 6 7 80.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L o g V ira l L o a d

amin

o ac

id m

utat

ions

/PC

S12

C88066Fp = 0 .0 4

R2 = 0 .2 6

4 5 6 7 80.000

0.005

0.010

0.015

L o g V ira l L o a d

mut

atio

ns/a

min

o ac

id a

djac

ent t

o PC

S11

C88066Fp = 0 .0 4 7R2 = 0 .5 1

3 4 5 6 70.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

L o g V ira l L o a d

amin

o ac

id m

utat

ions

/PC

S4

C90038F

p = 0 .0 3 7R2 = 0 .4 9

1 2 3 4 5 6 70

1

2

3

4

5

6

7

8

9

L o g V ira l L o a d

sequ

ence

s w

ith fr

ame

shift

mut

atio

nsat

PC

S12

(%)

C90038FP = 0 .0 3

R2 = 0 .5 1

1 2 3 4 5 6 7 81.1

1.2

1.3

1.4

1.5

1.6

1.7

L o g V ira l L o a d

amin

o ac

id m

utat

ions

adj

acen

t to

PCS1

2

C90038F

p = 0 .0 8R2 = 0 .6 8

4 5 6 70.00

0.05

0.10

0.15

0.20

0.25

0.30

L o g V ira l L o a d

amin

o a

cid

mu

tati

on

s/P

CS

8

C91069Fp = 0 .0 1 1R2 = 0 .4 1

3 4 5 6 7 80

1

2

3

4

5

6

7

8

9

10

L o g V ira l L o a d

seq

uenc

es w

ith

fram

e sh

ift m

utat

ions

at P

CS1

(%)

C93053F

p = 0 .0 0 6R2 = 0 .8 7

3 4 5 6 7 80.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L o g V ira l L o a d

amin

o ac

id m

utat

ions

adj

acen

t to

PCS1

0 p = 0 .0 0 4R2 = 0 .9

3 4 5 6 7 80.000

0.005

0.010

0.015

L o g V ira l L o a d

mut

atio

ns/a

min

o ac

id a

djac

ent t

o PC

S10

p = 0 .0 3R2 = 0 .4 6

2 3 4 5 6 7 80.000.020.040.060.080.100.120.140.160.180.200.220.240.26

L o g V ira l L o a d

amin

o ac

id m

utat

ions

/PC

S11

C92078F

C92078F C92078Fp = 0 .0 5

R2 = 0 .5 6

1 2 3 4 5 6 7 80.000.020.040.060.080.100.120.140.160.180.200.220.240.260.28

L o g V ira l L o a d

amin

o ac

id m

utat

ions

/PC

S10

C87114FP = 0 .0 0 2R2 = 0 .5 9

4 5 6 7 8 90.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L o g V ira l L o a d

amin

o ac

id m

utat

ions

adj

acen

t to

PCS1

1

C91028F

P = 0 .0 3R2 = 0 .7 3

4 5 60.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

L o g V ira l L o a d

amin

o ac

id m

utat

ions

adj

acen

t to

PCS7

C91032FP = 0 .0 4 5R2 = 0 .6 8

4 5 6 70.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

L o g V ira l L o a d

amin

o ac

id m

utat

ions

adj

acen

t to

PCS6

C91032F

p = 0 .0 0 6R2 = 0 .5 2

4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L o g V ira l L o a d

amin

oa a

cid

mut

atio

ns/P

CS7

C91028F

P = 0 .0 0 7R2 = 0 .5 7

4 5 6 7 8 90.00

0.05

0.10

0.15

0.20

0.25

0.30

L o g V ira l L o a d

amin

o ac

id m

utat

ions

adj

acen

t to

PCS4

C91048Fp = 0 .0 1 2R2 = 0 .5 2

4 5 6 7 8 9

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

L o g V ira l L o a d

amin

o ac

id m

utat

ions

/PC

S1

C91048FP = 0 .0 4 6R2 = 0 .6 7

4 5 6 70.00

0.02

0.04

0.06

0.08

0.10

0.12

L o g V ira l L o a d

amin

o ac

id m

utat

ions

adj

acen

t to

PCS5

C91032F

p = 0.0005

1 2 3 4 5 6 7 8 9-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Log V iral Load

Co

ns

erv

ed

am

ino

ac

idm

uta

tio

ns

aro

un

d P

CS

1 (

-10

/+1

0)/

PC

S

p < 0 .0001

1 2 3 4 5 6 7 8 90.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Log V iral Load

No

n-c

on

serv

ed a

min

o a

cid

mu

tatio

ns

aro

un

d P

CS

1 (-

10/+

10)/P

CS

p = 0 .04

1 2 3 4 5 6 7 8 90.00

0.01

0.02

0.03

0.04

0.05

0.06

Log V iral Load

Sto

p c

od

on

s ar

ou

nd

PC

S1

(-10

/+10

)/PC

S

p = 0 .01

2 3 4 5 6 7 8 90.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log V iral Load

No

n-c

on

se

rve

d a

min

o a

cid

mu

tati

on

s a

rou

nd

PC

S3

(-1

0/+

10

)/P

CS

p = 0 .047

2 3 4 5 6 7 8 90.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Log V iral Load

No

n-c

on

serv

ed a

min

o a

cid

mu

tati

on

s ar

ou

nd

PC

S4

(-10

/+10

)/P

CS

P < 0 .0001

2 3 4 5 6 7 8 90.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Log V iral Load

Non

-con

serv

ed a

min

o ac

idm

utat

ions

aro

und

PC

S5

(-10

/+10

)/PC

S

p = 0 .03

2 3 4 5 6 7 8 90.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

Log V iral Load

No

n-c

on

serv

ed a

min

o a

cid

mu

tati

on

s ar

ou

nd

PC

S6

(-10

/+10

)/P

CS

P < 0 .0001

2 3 4 5 6 7 8 90.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Log V iral Load

No

n-c

on

serv

ed a

min

o a

cid

mu

tati

on

s ar

ou

nd

PC

S7

(-10

/+10

)/P

CS

p = 0 .003

1 2 3 4 5 6 7 8 90.00

0.03

0.06

0.09

0.12

0.15

0.18

Log V iral Load

No

n-c

on

serv

ed

am

ino

aci

dm

uta

tio

ns

aro

un

d P

CS

9 (

-10

/+1

0)/

PC

S

p = 0.04

1 2 3 4 5 6 7 8 90.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Log V iral Load

Co

nse

rve

d a

min

o a

cid

mu

tati

on

s a

rou

nd

PC

S1

0 (

-10

/+1

0)/

PC

S

p < 0.0001

1 2 3 4 5 6 7 8 90.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Log V iral Load

No

n-c

on

serv

ed

am

ino

aci

dm

uta

tio

ns

aro

un

d P

CS

10

(-1

0/+

10

)/P

CS

p = 0.0004

1 2 3 4 5 6 7 8 90.00

0.05

0.10

0.15

0.20

0.25

Log V iral Load

Co

nse

rve

d a

min

o a

cid

mu

tati

on

s a

rou

nd

PC

S1

1 (

-10

/+1

0)/

PC

S

p = 0.0006

1 2 3 4 5 6 7 8 90.00

0.05

0.10

0.15

0.20

0.25

0.30

Log V iral Load

No

n-c

on

se

rve

d a

min

o a

cid

mu

tati

on

s a

rou

nd

PC

S1

1 (

-10

/+1

0)/

PC

S

a b c d e

f g h i j

k l mp = 0.01R2 =0.84

1 2 3 4 5 6 7 80.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Log V ira l Load

No

n-c

on

serv

ed a

min

o a

cid

sub

stit

uti

on

s ar

ou

nd

PC

S1

2 (-

10

/+1

0) (

%)

n p = 0.0001R2 = 0.68

5.5 6.0 6.5 7.0 7.5 8.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Log V ira l Load

No

n-c

on

serv

ed a

min

o a

cid

sbst

itu

tio

ns

aro

un

d P

CS1

2 (-

10/+

10) (

%)

o

p = 0.02R2 = 0.62

3 4 5 6 70.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

No

n-c

on

serv

ed a

min

o a

cid

mu

tati

on

s ar

ou

nd

PC

S6 (-

10/+

10) (

%)

Log V ira l Load

p p = 0.004R2 = 0.55

4 5 6 7 8 90.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Log V ira l Load

No

n-c

on

serv

ed a

min

o a

cid

sub

stit

uti

on

s ar

ou

nd

PC

S1

2 (-

10

/+1

0) (

%)

q p = 0.007R2 = 0.73

4.5 5.0 5.5 6.0 6.50.00

0.01

0.02

0.03

0.04

Log v iral Load

Co

nse

rved

am

ino

aci

dsu

bst

itu

tio

ns

aro

un

d P

CS

1 (-

10/+

10) (

%)

r p = 0.01R2 = 0.52

4 .0 4 .5 5 .0 5 .5 6 .0 6 .5 7 .0 7 .5 8 .00 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1 0

0 .1 2

Log V iral Load

No

n-c

on

serv

ed a

min

o a

cid

su

bst

itu

tio

ns

aro

un

d P

CS

9 (-

10/+

10)

s p = 0.04R2 = 0.48

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.50.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Log V ira l Load

No

n-c

on

serv

ed

am

ino

aci

dsu

bst

itu

tio

ns

aro

un

d P

CS

7 (

-10

/+1

0)

(%)

t

R2 = 0.09 R2 = 0.12 R2 = 0.03 R2 = 0.05 R2 = 0.03

R2 = 0.14 R2 = 0.04 R2 = 0.12 R2 = 0.07 R2 = 0.03

R2 = 0.16 R2 = 0.09 R2 = 0.09

Immune responses to PCS peptides drive viral mutation that is detrimental to the challenge virus

Amino acid mutations surrounding PCS at the peak and set point correlated with reduced peak and set point viremia

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0500

100015002000250030003500400045005000550060006500700075008000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CD4+ CD8+ Log (VL)

Log

vira

l loa

d

weeks after infection

Q(-7)>R/L (PCS12)@

@ 92%

& P(-8)>R/L (PCS2)

& 43%

& 24%

& 35%

& 23%

& 30%

& 34%

& 26%

# G(-7)>D (PCS2)

# 16%

$ K(+4)>R (PCS11)

* G(-8)>R/E (PCS12)

* 10%

Y(-6)>C (PCS12)

13%

C87114F

CD

4+ o

r CD

8+ T

cel

l cou

nts/

mm

3 Q(-6)>E/R (PCS2)

E(+6)>K/R (PCS12)

# 29%29%

# 17%17%

# 24% 25%

# 17%18%

# 20%20%

16%

& 31%# 31%

28% $ 18%30%29%*

PCS11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10L V S Q G I R Q V L F L E K I E P A Q E

PCS2-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10G G P G Q K A R L M A E A L K E A L A P

PCS12-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10N Q G Q Y M N T P W R N P A E E R E K L

We thank the staff of VTS of National Microbiology laboratory and Canadian Food Inspection Agency (CFIA) for their dedica-tion in this study; Ms. Michelle Janes for her technical support in viral load analysis; and the professional support from the staff of Genomic Core and Bioinformatics Core of National Microbiology Laboratory for SIV pyrosequencing and data analysis, as well as the project support from Dr. Mike Drebot and Dr. Graham Tipples. The study is supported by a CIHR/CHVI catalyst grant, the National Microbiology Laboratory, Public Health Agency of Canada and a NIH grant R01AI111805.

References

Our proof of concept study has demonstrated the feasibility of this vaccine approach in several ways. 1) it is possible to generate both T cell and antibody responses to the 12 20-amino acid peptides using a modified VSV vector and a Nano deliv-ery system. 2) the low-magnitude, focused immune responses to multiple PCS regions can provide protection against SIVmac239 infection. Studies have shown that higher viral load increases the risk of sexual HIV transmission, and mother-child HIV transmission(6). The increased dose of SIVmac239 intrarectal challenge in our study simulates the high viral load condi-tion in sexual HIV transmission. The resistance of macaques to the higher SIVmac239 challenge dose is significantly correlated with their ability to generate immune responses to the number of PCS. The second measurement of the effectiveness of the vaccine is whether a vaccine targeting PCS can offer protection from disease progression after infection. Our study showed that a vaccine targeting PCS can also protect macaques against disease progression. HIV disease progression is measured by rapid CD4 decline; this is also shown in monkey models. We showed that 1) PCS vaccinated monkeys can maintain significantly higher and healthy CD4 counts. 2) there is a significant inverse correla-tion between mutations surrounding the PCS and the viral load. 3) both conserved and non-conserved amino acid substitu-tions around the PCS correlated significantly with lower viral load. The data demonstrated that protease cleavage of the pathogenic SIVmac239 is extremely vulnerable to any amino acid alternations around PCS, thus the sequences surrounding PCS are good targets for an effective HIV vaccine. Our proof of concept study demonstrated that disrupting HIV maturation process by vaccination against sequences surrounding the PCS is feasible and effective.

1. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 331:280. 2. Kaplan AH, Zack JA, Knigge M, Paul DA, Kempf DJ, Norbeck DW, et al. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol. 67:4050. 3. Krausslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter CA. Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. PNAS U S A. 86:807. 4. Louis JM, Ishima R, Torchia DA, Weber IT. HIV-1 protease: structure, dynamics, and inhibition. Adv Pharmacol. 55:261. 5. Billich S, Knoop MT, Hansen J, Strop P, Sedlacek J, Mertz R, et al. Synthetic peptides as substrates and inhibitors of human immune deficiency virus-1 protease. J Biol Chem. 263:17905; 6. Chappell CA, Cohn SE. Prevention of perinatal transmission of human immunodeficiency virus. Infect Dis Clin North Am. 28:529