32
A TwoStep Set Operation for Highly Uniform A Two Step Set Operation for Highly Uniform Resistive Switching ReRAM by Controllable Filament Controllable Filament Sangheon Lee * , Daeseok Lee, Jiyong Woo, Euijun Cha, and Hyunsang Hwang Dept. of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) (POSTECH) Semiconductor Integrated Device & Process (SIDP) Laboratory 2013 18 th Sep. ESSDERC 2013 in Romania Slide 1

A Two‐Step Set Operation for Highly Uniform - IMT

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Two‐Step Set Operation for Highly Uniform - IMT

A Two‐Step Set Operation for Highly UniformA Two Step Set Operation for Highly Uniform Resistive Switching ReRAM by 

Controllable FilamentControllable Filament

Sangheon Lee*, Daeseok Lee, Jiyong Woo, Euijun Cha, g , , y g , j ,and Hyunsang Hwang

Dept. of Materials Science and Engineering,Pohang University of Science and Technology

(POSTECH)(POSTECH)Semiconductor Integrated Device & Process (SIDP) Laboratory

2013 18th Sep.

ESSDERC 2013 in RomaniaSlide 1

Page 2: A Two‐Step Set Operation for Highly Uniform - IMT

Outline• Introduction & Motivation• Two step set operation ReRAM• Two‐step set operation ReRAM

‐ Experimental‐ Electrical Characterization‐ Electrical Characterization‐ Improved Switching uniformity

• Gradual set operation ReRAMGradual set operation ReRAM

‐ Electrical Characterization‐ Motivation/Experimental

‐ Improved Switching Uniformity

• Conclusion

ESSDERC 2013 in RomaniaSlide 2

Page 3: A Two‐Step Set Operation for Highly Uniform - IMT

Outline• Introduction & Motivation• Two step set operation ReRAM• Two‐step set operation ReRAM

‐ Experimental‐ Electrical Chracterization‐ Electrical Chracterization‐ Improved Switching uniformity

• Gradual set operation ReRAMGradual set operation ReRAM

‐ Electrical Characterization‐ Motivation/Experimental

‐ Improved Switching Uniformity

• Conclusion

ESSDERC 2013 in RomaniaSlide 3

Page 4: A Two‐Step Set Operation for Highly Uniform - IMT

Introduction• Motivation

- Scaling limit of charge based memoryScaling limit of charge based memory- ReRAM is the most possible candidate

Non-VolatilityNon VolatilityFLASH

Filamentary ReRAM1. Advantages

Density

New Memoryg

- Fast operation- High scalability

DRAMSpeed SRAM

2. Disadvantages- Variability- Retention

ESSDERC 2013 in Romania

ITRS ROAD MAP 2010Speed S

Slide 4

Page 5: A Two‐Step Set Operation for Highly Uniform - IMT

Introduction• Motivation

- Variability of Resistive Switching ParametersVariability of Resistive Switching Parameters

Fl t ti f I

Large distribution of switching parameters

Fluctuation of ILRS

Fluctuation of IHRS

Unstable resistive switching operation

Fluctuation of Vset Fundamental understanding of

Fluctuation of Vreset

switching parameter variability

ESSDERC 2013 in Romania

Relationship between each parameter

Slide 5

Page 6: A Two‐Step Set Operation for Highly Uniform - IMT

Introduction• Motivation

- Chain Relationship for Variability DegradationChain Relationship for Variability Degradation

IHRS SET operation ILRSDifferent shape of CF• Non-uniform

dissolution of CF

• Non-uniform excessRESET power inducesth i bilit f I

• Higher IHRS inducesHigher VSET

• Large distribution of VSET due to Random f ti f CF

• Different shape of CF

• Controllable ILRSMulti-bit operation

• Trade-off relationshipthe variability of IHRS formation of CF Trade off relationshipwith retention property

RESET operationP RESET operation

• Non-uniform ILRSresults in the large variation of V

PRESET

• Large variation ofILRS requires differentPRESET

ESSDERC 2013 in Romania

variation of VRESETand IRESET• Applying fixed power

Slide 6

Page 7: A Two‐Step Set Operation for Highly Uniform - IMT

Introduction• Motivation

- Stack (layer) engineering for reliabilityStack (layer) engineering for reliability

O reservoir

Inert TE O2 reservoir

Inert TE

O2 reservoir

Binary M.OInert BE

Binary M.OInert TE

Inert BE

Binary M.O 1Binary M.O 2

Inert BE

2004 (Samsung) 2007 (Sony) 2012 (Tsukuba Univ )2004 (Samsung) 2007 (Sony) 2012 (Tsukuba Univ.)

(K. Kamiya et al., IEDM 2012)(I. G. Baek et al., IEDM 2004) (K. Aratani et al., IEDM 2007)

Al OVOµO Larger µo

=> Difficult filament dissultion in M.O

Al2O3 HfO2Hf

ESSDERC 2013 in Romania

(K. Kamiya et al., IEDM 2012)µO fine-tuning for stable on/off states(L. Goux et al., VLSI 2013)

Slide 7

Page 8: A Two‐Step Set Operation for Highly Uniform - IMT

Outline• Introduction• Two step set operation ReRAM• Two‐step set operation ReRAM

‐ Experimental‐ Electrical Characterization‐ Electrical Characterization‐ Improved Switching uniformity

• Gradual set operation ReRAMGradual set operation ReRAM

‐ Electrical Characterization‐ Motivation/Experimental

‐ Improved Switching Uniformity

• Conclusion

ESSDERC 2013 in RomaniaSlide 8

Page 9: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides1. Experimental

on 250 nm via hole pattern substrateon 250 nm via-hole pattern substrate

250 nmSiO2 deposition by PECVD

SiO2 deposition by PECVD & 250 nm Patterning

Pt BE deposition by sputter

Patterning

TaOx (3.5 nm) deposition in Ar & O2 ambient by RF sputtering Ti (O2 reservoir layer)

Pt (Capping layer)

4 nm

3.5 nm

HfOx (4 nm) deposition by ALD

Ti oxygen reservoir layer and Pt Pt (BE)/Ti

SiO2SiO2 TaOx

HfOx

ESSDERC 2013 in Romania

yg y

Ti/HfOx/TaOx/Pt ReRAM SiO2

Slide 9

Page 10: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides2. Electrical Characteristics

DC biasBias

- DC bias

Ti (TE)

Pt (Capping layer)

4 nm

3.5 nmPt (BE)/Ti

SiO2SiO2 TaOx

HfOx

SiO2

GND

ESSDERC 2013 in Romania

Uniform set operation Uniform LRS distribution

Slide 10

Page 11: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides2. Electrical Characteristics

Two step set operation- Two-step set operationTwo‐step SET operation

Ti

2nd Set

PtTaOx

HfOx

Ti

1st Set

PtTaOx

HfOx

ESSDERC 2013 in Romania

Critical power is required to be set state of TaOx

Slide 11

Page 12: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides2. Electrical Characteristics

Different filament formation ability in metal oxides- Different filament formation ability in metal oxides

Triple‐layer ReRAM

HfOx

Ti

Triple layer ReRAMRamdoly formed Filament in HfOx

No fluctuation of TaO

TaOx

HfOx

Uniform filament in TaOxSet fluctuation of HfOx

No fluctuation of TaOx

Variability in HfO but TaO requires critical set power

ESSDERC 2013 in Romania

Variability in HfOx, but TaOx requires critical set power

Slide 12

Page 13: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides2. Electrical Characteristics

Defect distribution- Defect distribution

VoVo µoµo

Bi-layer ReRAM Triple-layer ReRAM

Ti HfOx Pt Ti HfOx TaOx Pt

Different filament formation ability with different chemical potential (µ )

ESSDERC 2013 in Romania

different chemical potential (µo)M. Kamiya et al., IEDM 2012

L. Goux et al., VLSI 2013

Slide 13

Page 14: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides2. Electrical Characteristics

Set and reset power requirement- Set and reset power requirement

S t f HfO ll th T O

ESSDERC 2013 in Romania

Set power of HfOx was smaller than TaOx

Reset power of HfOx was higher than TaOxSlide 14

Page 15: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides2. Electrical Characteristics

Desirable ReRAM structure- Desirable ReRAM structure

TE

Metal oxide 1

Metal oxide 2 BE

• Different chemical potential

• Higher set power of metal oxide 2

Voµo

Metal oxide 2 BE• Higher reset power of metal oxide 1

ESSDERC 2013 in Romania

Then, filament can be formed with two-step set operation

Slide 15

Page 16: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides2. Electrical Characteristics

Two filament formation and rupture- Two filament formation and rupture

To form TaOx filament, the critical voltage was required

ESSDERC 2013 in Romania

We can stop filament formation and rupture

Slide 16

Page 17: A Two‐Step Set Operation for Highly Uniform - IMT

Triple-layer ReRAM of Two Oxides3. Improved Switching uniformity

Bi layer ReRAM vs Triple layer ReRAM- Bi-layer ReRAM vs. Triple-layer ReRAMStill variability

• STD(σ)/AVGReset=0.023

• STD(σ)/AVGSet=0.023

• STD(σ)/AVGLRS=0.04

• STD(σ)/AVGHRS=0.26

ESSDERC 2013 in Romania

To form TaOx filament, the critical voltage was required.

Slide 17

Page 18: A Two‐Step Set Operation for Highly Uniform - IMT

Outline• Introduction & Motivation• Two step set operation ReRAM• Two‐step set operation ReRAM

‐ Experimental‐ Electrical Characterization‐ Electrical Characterization‐ Improved Switching uniformity

• Gradual set operation ReRAMGradual set operation ReRAM

‐ Electrical Characterization‐ Motivation/Experimental

‐ Improved Switching Uniformity

• Conclusion

ESSDERC 2013 in RomaniaSlide 18

Page 19: A Two‐Step Set Operation for Highly Uniform - IMT

Introduction• Motivation

- Chain Relationship for Variability DegradationChain Relationship for Variability DegradationIHRS

• Non-uniform

SET operation

• Higher IHRS induces

ILRS• Different shape of CF

dissolution of CF

• Non-uniform excessRESET power inducesthe variability of IHRS

Higher VSET

• Large distribution of VSET due to Random formation of CF

• Controllable ILRSMulti-bit operation

• Trade-off relationshipwith retention propertyp p y

RESET operationPRESET

• Non-uniform ILRSresults in the large variation of VRESETand IRESET

• Large variation ofILRS requires differentPRESET

A l i fi d

ESSDERC 2013 in Romania

and IRESET• Applying fixed power

Slide 19

Page 20: A Two‐Step Set Operation for Highly Uniform - IMT

Highly Reliable Resistive Switching1. Motivation for HRS stability

Defective HRS induces reliable switching!

But, small on/off ratio was exhibited!

ESSDERC 2013 in RomaniaJ. Park et al., Electron Device Lett. 2010

Slide 20

Page 21: A Two‐Step Set Operation for Highly Uniform - IMT

ReRAM for Gradual Set Operation1. Experimental

on 250 nm via hole pattern substrateon 250 nm via-hole pattern substrateSiO2 deposition by PECVDPt BE d iti b tt

Thermal oxidation

SiO2 deposition by PECVD & 250 nm Patterning

Pt BE deposition by sputter

Pt

Ta2O5-xTaOx

TaOx (3.5 nm) deposition in Ar & O2 ambient by RF sputtering Thermal annealing in O2 ambient by RTA

Pt

Ti

HfOx (4 nm) deposition by ALD Ti top electrode deposition Ta2O5-x

TaOx

Ti ion

ESSDERC 2013 in RomaniaDefect engineered Ti/HfOx/TaOx/Pt ReRAMUltra-high vacuum annealing by RTA Pt x

H. Zhang et al., Appl. Phys. Lett 2010

Slide 21

Page 22: A Two‐Step Set Operation for Highly Uniform - IMT

ReRAM for Gradual Set Operation2. Electrical characteristics

Ultra high vaccum annealing for Ti ion diffusion- Ultra-high vaccum annealing for Ti ion diffusion

HfO

Ti

VTi ion

Ti ion diffusion

Pt

TaOx

HfOx Vo

Highly reliable resistive switching!

3 min annealing

ESSDERC 2013 in Romania

Highly reliable resistive switching!But, poor on/off ratio owing to defective HRS

Slide 22

Page 23: A Two‐Step Set Operation for Highly Uniform - IMT

ReRAM for Gradual Set Operation2. Electrical characteristics

Oxygen thermal annealing for insulating Ta O- Oxygen thermal annealing for insulating Ta2O5-xTi ion diffusion by high

vacuum annealing

T O

Thermal oxidation

HfO

Ti

Pt

Ta2O5-xTaOx

PtTaOx

Ta2O5-x

HfOx

Insulating Ta O will increase HRS for higher on/off ratio

Control thickness of Ta2O5-x by O2 annealing

ESSDERC 2013 in Romania

Insulating Ta2O5-x will increase HRS for higher on/off ratio

Slide 23

Page 24: A Two‐Step Set Operation for Highly Uniform - IMT

ReRAM for Gradual Set Operation2. Electrical characteristics

For reliable switching with on/off & forming less- For reliable switching with on/off & forming-less

• O2 thermal annealing improve on/off ratio • Ultra‐high vaccum annealing f f l

Highly reliable switching without degradation,

• Up to 15 min, no degradation of LRS and HRS STDs for forming‐less ReRAM

ESSDERC 2013 in Romania

even no initial forming operation

Slide 24

Page 25: A Two‐Step Set Operation for Highly Uniform - IMT

ReRAM for Gradual Set Operation2. Electrical characteristics

For reliable switching with on/off & forming less- For reliable switching with on/off & forming-lessM. Lee et al., Nature materials 2011

Not stepwise set operation gradual set operation

ESSDERC 2013 in Romania

Not stepwise set operation, gradual set operation

Excellent reliability Slide 25

Page 26: A Two‐Step Set Operation for Highly Uniform - IMT

ReRAM for Gradual Set Operation3. Improved switching uniformity / Retention

Switching uniformity- Switching uniformity

High defect density HRS stability & no forming operation

LRSHRS LRSHRS LRSHRSLRSHRS ResetSetResetSetResetSetResetSet

HRS stability (defect) Vset stability (defect&stack)

ESSDERC 2013 in Romania

LRS stabilityVreset stability

Slide 26

Page 27: A Two‐Step Set Operation for Highly Uniform - IMT

Introduction• Motivation

- Chain Relationship for Variability DegradationChain Relationship for Variability DegradationIHRS

• Non-uniform

SET operation

• Higher IHRS induces

ILRS• Different shape of CF

dissolution of CF

• Non-uniform excessRESET power inducesthe variability of IHRS

Higher VSET

• Large distribution of VSET due to Random formation of CF

• Controllable ILRSMulti-bit operation

• Trade-off relationshipwith retention propertyp p y

RESET operationPRESET

• Non-uniform ILRSresults in the large variation of VRESETand IRESET

• Large variation ofILRS requires differentPRESET

A l i fi d

ESSDERC 2013 in Romania

and IRESET• Applying fixed power

Slide 27

Page 28: A Two‐Step Set Operation for Highly Uniform - IMT

ReRAM for Gradual Set Operation3. Improved switching uniformity

Excellent cell to cell distribution- Excellent cell to cell distribution

ESSDERC 2013 in Romania

Cell to cell distribution of 4-inch wafer

Slide 28

Page 29: A Two‐Step Set Operation for Highly Uniform - IMT

Outline• Introduction• Two step set operation ReRAM• Two‐step set operation ReRAM

‐ Experimental‐ Electrical Characterization‐ Electrical Characterization‐ Improved Switching uniformity

• Gradual set operation ReRAMGradual set operation ReRAM

‐ Electrical Characterization‐ Motivation/Experimental

‐ Improved Switching Uniformity

• Conclusion

ESSDERC 2013 in RomaniaSlide 29

Page 30: A Two‐Step Set Operation for Highly Uniform - IMT

Conclusion• Two-step set of the triple-layer ReRAM

- Two filaments formation and rupture due to different- Two filaments formation and rupture due to different filament formation abilities for reliable set operation

- Stable set operation induces stable LRS

- But, forming operation & still HRS variability

• Defect engineering of the triple-layer ReRAM- HfOx defect engineering for HRS stability & forming-less

operation by ultra-high vacuum annealing

Defect engineering of the triple layer ReRAM

T O d f t i i f / ff ti b th l- TaOx defect engineering for on/off ratio by oxygen thermal annealing

- Lower operating current (50 uA) was achieved

ESSDERC 2013 in RomaniaSlide 30

Page 31: A Two‐Step Set Operation for Highly Uniform - IMT

Thank you for your attention!!

This work was supported by R&D program of Korea Ministry of Knowledge Acknowledgement

pp y & p g y gEconomy and POSTECH-Samsung Electronics ReRAM cluster Research.

ESSDERC 2013 in RomaniaSlide 31

Page 32: A Two‐Step Set Operation for Highly Uniform - IMT

Back-up slideElectrical Characteristics

Inserting various metal oxide layers- Inserting various metal oxide layers

Ti/HfOx/AlOx/Pt Ti/HfOx/TiOx/Pt Ti/HfOx/TaOx/Pt

Inserting AlOx exhibited unstable HRS

ESSDERC 2013 in Romania

Inserting TiOx exhibited small on/off ratio