A Small Capacity Steam-ejector Refrigerator Experimental Investigation of a System Using Ejector With Movable Primary Nozzle

Embed Size (px)

Citation preview

  • 7/25/2019 A Small Capacity Steam-ejector Refrigerator Experimental Investigation of a System Using Ejector With Movable Primary Nozzle

    1/7

    ELSEVIER

    Int J. Refrig. Vo l. 20, No. 5, pp. 352 -358, 1997

    1997 Elsevier Science Ltd and IIR

    All rights reserved. Printed in G reat Britain

    PII:SO 140-7 007(9 7)000 08-X 0140-7007/97/$17.00 + .00

    A smal l capaci ty s team-ejector refr igerator: exper imenta l

    invest igat ion o f a sys tem us ing e jector wi th movable

    primary nozz le

    S a t h a A p h o r n r a t a n a

    D e p a r t m e n t o f M e c h a n i c a l E n g i n e e r i n g , S i r in t h o r n I n t e r n a t i o n a l

    I n s t i t u t e o f T e c h n o l o g y , T h a m m a s a t U n i v e r s i t y , P . O . B o x 2 2

    T h a m m a s a t R a n g s i t P o s t O f f ic e , P a t u m t h a n i 1 21 21 , T h a i l a n d

    l a n W . E a m e s

    I n s t i t u te o f B u il d in g T e c h n o l o g y , D e p a r t m e n t o f A r c h i t e c t u r e a n d

    B u i ld i n g T e c h n o l o g y , T h e U n i v e r s i t y o f N o t t i n g h a m , U n i v e r s i t y P a r k ,

    N o t t i n g h a m N G 7 2 R D , U K

    R e c e i v e d 2 2 J u l y 1 9 9 6 ; r e v is e d 6 J a n u a r y 1 9 9 7 ; a c c e p t e d 6 F e b r u a r y 1 9 9 7

    This paper desc r ibes an exper imenta l s tudy of a s team-e jec tor r e f r ige ra tor us ing an

    e j e c to r w i th a p r im a r y noz z l e t ha t c ou ld be m ove d a x i a l ly w i th in t he m ix ing c ha m be r

    sect ion . The e ffects on coeff ic ient o f pe r forman ce and cool ing capac i ty prod uced by

    adjus t ing the pos i t ion of the nozz le were s tudied . Th e exper imen ta l r ig and me thod a re

    desc r ibed and resul t s a re presented which c lea r ly show the benef i t of us ing such a pr im ary

    nozzle. C opy r ight Elsevie r Sc ience Ltd an d I IR .

    (Keywords: refrigerating machine;ejector; design; performance)

    R 6fr ig6rateur de p et i te pu i ssan ce 5. e ject ion de vapeur:

    E t ude exp6r i m ent a l e d ' un sys t 6m e u t i l i sant un 6 j ec t eur

    b u s e p r i m a i r e m o b i l e

    Cet article ddcrit l '~tude exp~rimentale d'un r~frig~rateur i t ~jection de vapeur uti l isant un

    ~jecteur i t buse prim aire qu i pe ut se dkplacer dans l 'ax e de la cham broe de m~lange . O n a

    ~tudi~ les e f fe ts de la posi t ion de la buse sur le C O P e t la puissa nce f r igori f ique . On d~crit le

    banc d 'essai e t la m~th ode ; on pr~s ente les r~sul tats qui me t tent en ~vidence les avantages de

    l 'u t il isat ion d 'un te l systbm e. Elsev ier Sc ienc e L td e t I IR .

    (Mo ts cles: mach ine frigorifique; 6jecteur; concep tion; performan ce)

    An e jec tor r e f r ige ra tor i s s imi la r to an absorpt ion

    re f r ige ra tor , s ince both can b e powered by low grad e

    hea t ene rgy, wi th the addi t ion of a smal l quant i ty of

    work input r equi red to c i rcula te the working f lu ids .

    The r e f o r e , bo th sy s t em s c a n c onve r t w a s t e he a t t o

    use ful r e f r ige ra t ion and may be cheaper to opera te

    tha n c onve n t iona l va po u r c om pr e s s ion cycl es w hose

    energy input i s en t i re ly in the form of mechanica l

    w or k . W he n c om pa r e d w i th a n a bso r p t ion sys t e m ,

    an e jec tor sys tem is r e la t ive ly s imple to cons t ruc t ,

    opera te and cont ro l ; i t a l so uses only s ingle com-

    ponent working f lu id ( re f r ige rant only) . Even i t s

    coef ficient of pe r fo rman ce (COP ) i s r e la t ive ly low bu t

    i t s c a p i t a l c o s t a nd m a in t e na nc e shou ld m a ke i t

    becom e a se r ious compe t i tor wi th a ny o the r cyc le 1

    Figure 1

    show s a s c he m a t i c d i a g r a m o f a n e j e c to r

    re f r ige ra t ion cyc le . High pressure and h igh tempera -

    ture re f r ige rant vapour i s evolved in a boi le r to

    produce the pr imary (mot ive ) f lu id . This en te r s the

    pr imary nozz le of the e jec tor , where i t expands to

    produ ce a su personic f low tha t c rea tes a low pressure

    region wi th in the mixing chamber . This region o f low

    pr e s su r e d r a w s va p our f r om the e va po r a to r ( s e cond -

    a ry f low) . The pr imary and secondary f lu ids a re

    c om bine d in t he m ix ing c ha m be r o f t he e j e c to r . A t

    the m ix ing c ha m b e r ' s t h r oa t , a t r a nsver se shoc k - w a ve

    3 5 2

    Downloaded from http://www.elearnica.ir

  • 7/25/2019 A Small Capacity Steam-ejector Refrigerator Experimental Investigation of a System Using Ejector With Movable Primary Nozzle

    2/7

    A small capacity steam ejector refr igerator 3 5 3

    Figure l

    Figure 1

    boiler

    A steam ejector refrigeration cycle

    Cv cle JHgor(fique g~ ~jection de vapeur

    is induced to create a compression effect. The mixed

    stream is then discharged, via a diffuser, to a

    condenser, where the vapour is condensed. The

    liquid refrigerant accumulated in the condenser is

    returned to the boiler via a pum p whilst the remai nder

    is expanded through the throttling valve to the

    evaporator, thus completing the cycle. As the work

    input required to circulate the fluid is typically < 1

    of the heat supplied to the boiler, the COP may be

    given as:

    heat input at the evaporator

    COP -

    heat input at the boiler

    Theoretical and experimental studies of a small

    capacity steam-ejector refrigerator have been pre-

    sented previously1. These studies showed that COP

    and cooling capacity are both dependent on the

    operating temperatures. The area ratio of the primary

    nozzle throat to the diffuser throat was also impor-

    tant. For fixed boiler and evaporator temperatures,

    when the condenser pressure is allowed to be

    decreased below a certain critical value the COP and

    cooling capacity were found to be constant and the

    ejector entrained the same amount of the secondary

    fluid. This phenomenon may occur due to the flow

    choking within the mixing chamber. Therefore, an

    increase in boiler pressure or a reduction in condenser

    pressure may not always increase the COP and

    cooling capacity. Furthermore, if condenser pressure

    is increased to a value greater than a certain critical

    value, the ejector mar lose its function completely,

    causing the CO P and cooling capacity to drop sharply

    to zero. In a previous paper ~, it was concluded tha t,

    for a given condenser pressure (limited by the cooling

    water temperature) and evaporator temperature

    (limited by the cooling application heat source

    temperature ), a steam ejector refrigerator will provide

    its maximum performance when the boiler pressure is

    adjusted in order to allow the ejector to operate

    precisely at its critical condenser pressure condition.

    Also, when the geometry of the ejector is fixed,

    cooling capacity can only be increased by reducing the

    boiler temperature as the condenser pressure falls or

    I JR 20 5

    by allowing the evapora tor temperature to rise, which

    may not be possible.

    From the literature, the performance of an ejector

    has been shown to be dependent on the position of the

    primary nozzle2'3. The effect of the nozzle pos ition on

    ejector performance has not been clearly explained. In

    practice, ejectors are usually designed with a fixed

    primary nozzle position. The opt imum position of the

    nozzle within the mixing chamber being experimen-

    tally determined. The ESDU design guide2 suggests

    that the nozzle should be placed at a distance of 0.5

    1.0 length of the mixing chamber's throat diameter

    upstream of the mixing chamber inlet. However,

    because of the complex nature of the flow structure,

    it is difficult to give precise recommendations for

    the optimum nozzle position. In this current paper,

    the ejector used was designed so that the primary

    nozzle exit position, relative to the mixing chamber,

    could be adjusted in order to maximize the system

    performance when the operating conditions were

    difference from the design point. Tests were conduc-

    ted with various boiler, evaporator and condenser

    saturation temperatures.

    An experimental refr igerator

    An experimental refrigerator with a cooling capacity

    of 2kW was constructed. Water was used as the

    refrigerant. F i g u r e 2 shows a schematic diagram of the

    system. The boiler design was based on the thermo-

    syphon principle. Its maximum heating capacity was

    s u p e r h e a t e r

    evaporator

    s t e a m

    b o i l e r Y

    c o n d e n s e r

    8

    t o d r a i n

    c o o l i n g w a t e r

    s o l e n o i d v a l v e

    Figure

    2 Schematic diagram of the experimental steam

    ejector refrigerator

    Figure 2 Sch em a du r{jHg~rateur e xper ime ntal h ~/ection de

    vapeur

  • 7/25/2019 A Small Capacity Steam-ejector Refrigerator Experimental Investigation of a System Using Ejector With Movable Primary Nozzle

    3/7

    54

    S . A p h o r n r a t a n a a n d I . W . E a m e s

    primary nozzle

    throat diameter (mm ) 2.0

    exit diameter (mm ) 8.0

    4 0 r a m I_ 1 0 0r am _ ,4 0 m m ,_ 2 1 0mm

    ............ Lm-; .............. ....L m - ; .................................................... - - 2 ] ..... .....

    - ~ [ ~ _~ - 4 0 m m ~ ]

    nozzle exit position (NXP)

    Figure 3 F low bound aries of the experimental steam ejector

    F ig u r e 3 Lirnites d'~coulement de l'gjecteur de vapeur experimental

    20

    15

    10

    I I I I t I

    -30 -10 10 30

    ev ap o r a to r co o l in g lo ad 6 8 5 W

    "1 Tboiler = 120C , Peon = 30 m bar

    T b o i l e r 120C, Peon = 35 mbar

    ~" ~ " ~ O Tboiler = 130C, Peon = 35 mbar

    ~ Tboiler = I30C , Pcon = 40 mbar

    m i x i n g c h a m b e r i n l e t

    NXP (mm)

    50

    Figure 4 Variations of the eva pora tor temperatures with the NX P

    F ig u r e 4

    Variations de temperatures h l'~vaporateur en fon ctio n de la position de la

    b u s e ( N X P )

    7 k W , p r o v i d e d b y t w o 3 .5 k W e l e c t r i c h e a t e r s . T h e

    e v a p o r a t o r w a s b a s e d o n a f l a s h t y p e d e s i g n . A s i n g l e

    3 . 2 5 k W e l e c tr i c h e a t e r w a s u s e d t o s i m u l a t e t h e

    e v a p o r a t o r h e a t l o a d . A l l t h e e l e c t ri c h e a te r s w e r e

    c o n t r o l l e d u s i n g v a r i a b l e t r a n s f o r m e r s . A s h e l l a n d

    c o i l c o n d e n s e r w a s u s e d , c o o l e d b y w a t e r t a k e n f r o m

    t h e l a b o r a t o r y ' s c o o l i n g to w e r . T h e b o i l e r w a s

    c o v e r e d w i t h a 3 0 m m t h i c k n e s s o f g l a s s f ib r e w o o l

    w i t h a l u m i n i u m f o i l b a c k i n g . T h e e v a p o r a t o r w a s

    c o v e r e d w i th a 2 0 m m t h i c k ne s s o f n e o p r e n e f o a m

    r u b b e r . T h e a v e r a g e b o i l e r h e a t l o s s w a s e s t i m a t e d t o

    b e 2 5 % o f t h e e l e ct r ic a l p o w e r i n p u t a n d t h e a v e r a g e

    e v a p o r a t o r u n w a n t e d h e a t g a i n w a s f o u n d t o b e

    c a

    1 2 % 1

    T w o c i r c u l a t i o n p u m p s w e r e e m p l o y e d i n t h e

    s y s t e m ; a p n e u m a t i c d i a p h r a g m p u m p w a s u s e d t o

    r e t u r n t h e l i q u i d w a t e r c o l l e c t e d i n t h e c o n d e n s e r t o

    t h e b o i l e r a n d e v a p o r a t o r , a n d a m a g n e t i c a l l y c o u p l e d

    c e n t r i fu g a l p u m p w a s u s e d t o c i r c u l a t e w a t e r t h r o u g h

    t h e e v a p o r a t o r .

    F ig u r e 3 s h o w s a s e c t i o n a l d r a w i n g o f t h e t e s t

    e j e c to r . I t w a s d e s ig n e d b a s e d o n m e t h o d s p r o v i d e d i n

    t h e l i t e r a t u r e I - 3 . T h e n o z z l e w a s m o u n t e d o n a

    t h r e a d e d s h a f t w h i c h a l l o w e d t h e d i s t a n c e b e t w e e n

    t h e n o z z l e e x i t a n d t h e m i x i n g c h a m b e r i n l e t t o b e

    a d j u s t e d i n o r d e r t o d e t e r m i n e t h e i n f l u e n c e o f t h e

    n o z z le p o s i t i o n o n t h e p e r f o r m a n c e o f t h e e j e c t o r. T h e

    n o z z l e e x i t p o s i t i o n ( N X P ) w a s d e f i n e d a s t h e d i s t a n c e

    b e t w e e n t h e n o z z l e e x it a n d t h e m i x i n g c h a m b e r i n l e t

    p l a n e s a s s h o w n i n

    F ig u r e 3 .

    T h e N X P h a s a p o s i t i v e

    v a l u e w h e n t h e n o z z l e i s p l a c e d i n s i d e t h e m i x i n g

    c h a m b e r , a n d i s n e g a t i v e w h e n o u t s i d e t h e m i x i n g

    c h a m b e r .

    T h e b o i l e r, c o n d e n s e r a n d e v a p o r a t o r w e r e c h a r g e d

    w i t h d e i o n i z e d w a t e r . T h e p e r f o r m a n c e o f t h e

    e x p e r i m e n t a l r e f r ig e r a t o r w a s o b t a i n e d b y m e a s u r i n g

    t h e t i m e a v e r a g e d e l e c t r ic p o w e r i n p u t t o t h e

    e v a p o r a t o r a n d g e n e r a t o r h e a t e r s o v e r a s te a d y s t a te

    r u n n i n g t i m e o f 3 0 - 6 0 m i n .

    Optimu m no zzle position

    T h e s e t e s t s w e re c o n d u c t e d b y s e t t i n g t h e e v a p o r a t o r

  • 7/25/2019 A Small Capacity Steam-ejector Refrigerator Experimental Investigation of a System Using Ejector With Movable Primary Nozzle

    4/7

    A small capacity steam ejector refrigerator 55

    20

    .,:-d

    i.

    G

    5

    g

    o

    evaporator cooling load 685 W

    boiler temperature 140C

    condenser pressure

    ~7 35 mbar

    + 40 mbar

    c,._.. A 45 mbar

    0 50 mbar

    a......~....~ [] 55 mbar

    60 mbar

    mixingchamber nlet NXP (ram)

    f

    -30 -10 10 30 50

    Figure

    5 Variations of the evaporator temperatures with the NXP

    Figure 5 Variations de tempdratures h l'~vaporateur en fon ctio n de la position de la

    b u s e ( N X P )

    heat load cons tant at 685 W (110 4-0.5 V across the

    heater). At each setting of the boiler and condenser

    conditions, the primary nozzle position was varied

    and the evaporator temperature was measured. If the

    compression ratio (condenser to the evaporator

    pressures) increased while the entrained fluid flow

    was fixed (fixed cooling capacity), it was indicated

    that the ejector performance was improved. The

    optimum nozzle position was thought to be at the

    point where the mini mum evaporator temperature

    was achieved. The results of these experiments are

    shown in F ig u r e 4 and 5. It was found that:

    For fixed boiler and condenser pressures, the

    evaporator temperature decreased as the primary

    nozzle position was moved into the mixing

    chamber. The temperature can be reduced to a

    minimum level at some nozzle positions. Further

    movement of the nozzle into the mixing chamber

    caused the evaporator temperature to rise.

    -- For a fixed nozzle position , the evaporator

    temperature dropped when the condenser pres-

    sure was reduced or when the boiler pressure was

    increased. However, the effect of the condenser

    and boiler pressures were reduced when the NXP

    was large.

    The optimum nozzle position was shown to

    depend on the boiler and condenser pressures.

    Increasing the condenser pressure or reducing the

    boiler pressure moved the optimum nozzle posi-

    tion into the mixing chamber, and vice versa.

    According to the tests' results, a single optimum

    nozzle position cannot be defined to meet all

    operating conditions. Each operating condition

    required a particular nozzle position. Similar experi-

    ments were conducted by Hamner4 using RII as

    the working fluid and with zero secondary flow

    (the evaporator was isolated from the ejector). In

    Hamner 's case, the optim um nozzle posit ion was

    determined by measuring the minimum pressure in

    the mixing chamber. However, the pressure varied

    only very slightly with the nozzle position. According

    to Zeren5, the pressure in the mixing chamb er was not

    only a function of the boiler and condenser pressures

    but also the mass flow rate of the secondary fluid.

    From F ig u r e s 4 and 5, the optimum NXP was

    found in the range of 0-15ram within the mixing

    chamber inlet section. This is in contrast to the

    recommendation from ESDU 2 which suggested pla-

    cing the nozzle exit 0.5-1.0 length of the mixing

    chamber's throat diameter upstream of the start of

    the mixing chamber (equivalent to an NXP of - 9 to

    -18mm). This may be due to the fact that the

    primary steam pressure used is relatively low com-

    pared with the pressure that is commonly used

    in industrial applications (2-3.6 bar compared with

    5-20 bar).

    E f f e c t o f t h e n o z z l e p o s i t io n o n t h e s y s t e m p e r f o r m a n c e

    These tests were conducted by setting the evapo-

    rator's thermo stat at 5C and the boiler's thermostat

    at 130C. For each NXP, the condenser pressure was

    varied from below to above the critical value. Dur ing

    the tests, the electric power inp ut to the boiler and the

    evaporator were measured. Refrigerator COP based

    on electric power input, to both the boiler and

    evaporator, is a measure of overall performance and

    includes all the unwanted heat losses and gains to the

    system.

    F ig u r e 6 (see also T a b le 1 ) shows the effect of the

    nozzle position on COP. For fixed boiler and

    evaporator temperatures, the COP and cooling

    capacity can be varied as much as 100 by changing

    on the nozzle position. Moving the nozzle into the

  • 7/25/2019 A Small Capacity Steam-ejector Refrigerator Experimental Investigation of a System Using Ejector With Movable Primary Nozzle

    5/7

    3 5 6

    S A p h o r n r a t a n a a n d I W E a m e s

    0 .3 0

    0 .2 4

    0 .1 8

    0. t2

    0 .0 6

    25

    I

    e~

    28

    I I I i

    tt A . . zx

    ~ o u

    0 .0 0

    3 0

    4O

    T a b l e

    1 P e r f o r m a n c e o f t h e e x p e r i m e n t a l r e f ri g e r a t o r a t

    c r it i ca l c o n d e n s e r p r e s s u r e o p e r a t i o n w i t h v a r i o u s N X P s

    T a b l e a u 1 Per form ance du r~ frig~ra teur expdr im en ta l fon c-

    t ionnan t en press ion cr i t ique au condenseur , avec d i f f~ren tes

    pos i t ions de la buse

    C o n d e n s e r

    P r e s s u r e

    N X P ( m m ) T e m p . ( C ) ( m b a r ) Q ev ap ( W ) C O P

    31

    I _ _ ~ _ _ L ~ _ _ I

    1 1

    5 0

    34 37

    I [ I i

    Tcon (C)

    boiler temperature 130C

    boiler pressure 2.7

    bar

    evaporator emperature 5C

    A NXP = 4 mm

    o NXP = 11 mm

    V NXP = 26 mm

    [] NXP = 41 mm

    O NXP = 56 mm

    Pco n (mb a r )

    I 1

    6 0

    Figure

    6 V a r i a t i o n s o f e x p e r i m e n t a l p e r f o r m a n c e ( C O P ) w i t h N X P a n d

    c o n d e n s e r p r e s s u r e f o r t h e e v a p o r a t o r t e m p e r a t u r e o f 5 C a n d t h e b o i l e r

    t e m p e r a t u r e o f 1 3 0 C

    F i g u r e 6

    V a r i a t io n s d e l a p e r f o r m a n c e e x p ~ r i m e n t a le ( C O P ) o n f o n c t i o n d e l a

    pos i t ion d e la buso ( N X P ) e t de la press ion au condenseur , pou r une tempera ture h

    lYvap ora teu r de 5 deg C e t une tempOra ture au bou i l leur de 130 deg C

    m i x i n g c h a m b e r c a u s e d t h e C O P t o fa ll a n d c o o l in g

    c a p a c i t y t o d e c r e a s e w h e n t h e b o i le r i n p u t w a s

    m a i n t a i n e d c o n s t a n t . H o w e v e r , t h e c y cl e c o u l d b e

    o p e r a t e d a t a h i g h e r c r i ti c a l c o n d e n s e r p r e s s u r e . B y

    r e t r a c t i n g t h e n o z z l e f r o m t h e m i x i n g c h a m b e r , t h e

    C O P a n d c o o l i n g c a p a c i t y c a n b e i n c re a s e d a t t h e

    e x p e n s e o f t h e cr i ti c a l c o n d e n s e r p r e s s u r e .

    -4 2 9 .5 4 1 7 5 4 0 .2 2 3 8

    1 1 2 9 .8 4 2 6 5 0 0 .1 9 2 9

    2 6 3 0 .8 4 4 5 2 8 0 .1 5 6 7

    4 1 3 1 .2 4 5 4 5 8 0 .1 3 6 0

    5 6 3 1 .9 4 7 3 7 2 0 .1 1 0 4

    E v a p o r a t o r t e m p e r a t u r e , 5 C ; b o il e r t e m p e r a t u r e , 1 3 0 C ;

    b o i l e r p r e s s u r e , 2 . 7 b a r ; b o i l e r h e a t i n p u t 3 3 6 9 W .

    O p e r a t i o n a n d c o n t r o l o f a s t e a m e j e c t o r r e fr i g e r a t o r

    T h i s s e c t i o n g iv e s m e t h o d s o f o p e r a t i n g a n d c o n t r o l-

    l i n g a s m a l l s c a l e s t e a m e j e c t o r r e f r i g e r a t o r u s i n g a n

    e j e c t o r w i t h a m o v e a b l e p r i m a r y n o z z l e p o s i t i o n .

    P e r f o r m a n c e m a p s w e r e c o n s t r u c t e d s o t h a t t h e

    e j e c t o r c o u l d b e t u n e d b y v a r y i n g t h e b o il e r t e m p e r a -

    0 .6

    0 .5

    2 2 2 6 3 0 3 4 3 8

    I I I I I I I I I I I I I I I I I

    Tco n ( C)

    e~

    T boiler = 1 20 C - - N X P = 2 6 m m

    . . . . . . . . N X P = I 1 m m

    0 ,4 - - / 1 2 5 C

    , 1 3 0 C

    0 3 . / , , - 1 4 0 o c

    0 .2 - ' - ~ ~ a - g ~ . . / ~ T e v a p = 1 0 .0 o c

    " ' : - ~ - ~ _ 2 , ' ~ - - /

    01 :/- 50oc

    ~ Peon (mb a r )

    I

    0 , 0 I i i i i I l l

    2 5 3 5 4 5 5 5 6 5

    F i g o r e 7 P e r f o r m a n c e c h a r a c te r i s t ic ( C O P ) o f t h e e x p e r i m e n t a l s t e a m e j e ct o r

    r e f r i g e r a t o r

    F i g u r e 7 Caract~;ristique de perf orm anc e (C O P ) du r~frig~rateur exp~;rimental ? t

    ~ jection de vapeur

  • 7/25/2019 A Small Capacity Steam-ejector Refrigerator Experimental Investigation of a System Using Ejector With Movable Primary Nozzle

    6/7

    A sm al l capa ci ty steam ejector refr igerator

    57

    1400

    1000

    600

    200

    22 26 30 34 38

    i L i J i i i

    Tcn (C)

    - ,~- __/_ . __ , "

    Tboiler = 120 C 125oc 130oC

    25

    . / f -

    7 I I

    - - N X P = 26 m m

    135C

    , f 140C

    t - - ~ . . . . k , \

    Z;--

    ~ k~ - . . . 5 . 0o C

    Tevap = 10.0C

    . . . . . . . . NXP = 1 l mm ~ Pcon ( mba r )

    I

    I I I I I I I I

    35 45 55 65

    F i gu r e 8 Pe r f o r m ance cha r ac t e r i s t ic (coo l i ng capac i t y ) o f t he expe r i men t a l s te am

    e j ec t o r r e f r i ge r a t o r

    F i gu r e 8 Carac tkr i s t ique de per forman ce (pu i ssance f r igor i f ique) du r~ fr ig~rateur

    experimental h ~ject ion de vapeur

    Tab l e 2 Pe r f o r m ance a t o f f de s i gn ope r a t i ons o f the s t e am e jec t o r r e f r i ge r a t o r a s shown i n

    Figures 7

    and 8*

    T a b l e a u 2

    Per form ance d u rOfrigOrateur ~ dject ion de vapeur en cas de fon ctio nne me nt hors des norm es de conception, selon les

    f igures 7 e t 8

    Hea t i npu t ( W ) Tem per a t u r e ( C)

    O p e r a t i n g p o i n t C o n d e n s e r

    on t he f i gu r e s NX P ( mm ) CO P Eva por a t o r Bo i l e r Evap or a t o r Bo i l e r p r e s su r e ( mba r )

    a 26 0.210 710 3369 7.5 130.0 45.7

    b 26 0.210 710 3369 7.5 1300 42.5

    c 26 0.210 710 3369 7.5 130.0 25.0

    d 26 0.225 710 3160 7.0 127.2 42.5

    e 26 0.240 752 3138 7.5 126.9 42.5

    f 26 0.278 936 3369 10.0 130.0 47.6

    g 26 0.197 690 3510 7.5 131.7 47.6

    h I1 0.210 710 3369 6.0 130.0 42.5

    i 11 0.261 850 3257 7.5 128.5 42.5

    * The da t a p r ov i ded i n t h i s t ab l e a r e ob t a i ne d g r aph i ca l l y f r om t he f igu re s

    t u r e a n d p r e s s u r e o r N X P i n o r d e r t o o b t a i n t h e

    m a x i m u m p e r f o r m a n c e w h e n t h e c o n d e n s e r p r e s su r e

    i s c h a n g e d d u e t o t h e v a r i a t i o n o f t h e e n v i r o n m e n t

    t e m p e r a t u r e

    T h e e x p e r i m e n t s s h o w e d t h a t, f o r g i ve n e v a p o r a t o r

    a n d c o n d e n s e r p re s su r e s, m a x i m u m C O P a n d c o o l in g

    c a p a c i t y w e r e o b t a i n e d w h e n t h e c y c l e w a s o p e r a t e d

    a t a b o i l e r t e m p e r a t u r e t h a t a l l o w e d t h e e j e c t o r

    t o o p e r a t e a t i ts c r i t i c a l c o n d e n s e r p r e s s u r e T h e

    p e r f o r m a n c e m a p s i n F i g u r e s 7 a n d 8 w e r e c o n s t r u c -

    t e d f r o m d a t a t a k e n a t c r i t i c a l c o n d e n s e r p r e s s u r e

    o p e r a t i o n f o r th e N X P s o f 1 1 a n d 2 6 m m . T h e b o i l e r

    a n d e v a p o r a t o r i s o t h e r m l i n e s s h o w n i n th e f ig u r e s

    c a n b e u s e d o n l y w h e n t h e e j e c t o r w a s o p e r a t e d a t i ts

    c r it ic a l c o n d e n s e r p r e s s u re . A n e x a m p l e o f u s i n g t h es e

    f i g u r es i s n o w g i v e n .

    R e f e r r i n g t o F i g u r e s 7 a n d 8 ( d a t a f o r e a c h

    o p e r a t i n g p o i n t o n t h e s e f i g u r e s a r e p r o v i d e d i n

    T a b l e

    2 ) ; I t is a s s u m e d t h a t , t h e c y c l e i s n o r m a l l y

    d e s i g n e d t o o p e r a t e a t p o i n t a ( r e f e r e n c e d t o s o l i d

    l in e c u r v e s ) w i t h a N X P o f 2 6 m m a n d c r i t ic a l

    c o n d e n s e r p r e s s u re o f 4 5 . 7 m b a r . I f t h e c o n d e n s e r

    p r e s s u r e f a ll s to 4 2 . 5 m b a r , d u e t o a r e d u c t i o n o f i t s

    c o o l i n g w a t e r t e m p e r a t u r e , w h i l e t h e b o i l e r a n d

    e v a p o r a t o r t e m p e r a t u r e s a r e h el d c o n s t a n t , t h e c y cl e

    w i ll th e n o p e r a t e a t p o i n t b w i t h t h e C O P w i t h t h e

    c o o l i n g c a p a c i t y e s s e n t ia l l y r e m a i n i n g t h e s a m e * . A s

    t h e b o i l e r t e m p e r a t u r e i s f ix e d, f o r a n y c o n d e n s e r

    p r e s s u r e < 4 5 .7 m b a r , t h e C O P a n d c o o l i n g c a p a c i t y

    e s s e n t i a l l y r e m a i n c o n s t a n t a s s h o w n b y t h e h o r i z o n -

    t a l l in e a - b - c , b u t t h e e j e c t o r is n o l o n g e r o p e r a t i n g a t

    i ts c ri ti c a l c o n d e n s e r p r e s s u r e . I n o r d e r t o i m p r o v e

    c y c l e p e r f o r m a n c e w h e n t h e c o n d e n s e r p r e s s u r e i s

    * F o r t h i s c a se , t he evap or a t o r a nd bo i l e r i so t he r m l i ne s can

    no t be u sed t o i nd i ca t e t he evapor a t o r and bo i l e r t empe r a -

    t u r e s a s i t does no t op e r a t e w i t h c r it i c a l condense r p r e s su r e

    (see

    Table 2

    f o r ope r a t i ng cond i t i ons ) . It mus t be no t ed t h a t

    t he bo i l e r and evapor a t o r t empe r a t u r e s g i ven by t he

    i o s t he r m l i ne s can be u sed on l y when t he e j ec t o r is ope r a t ed

    wi th cr i t ica l condi t ion.

  • 7/25/2019 A Small Capacity Steam-ejector Refrigerator Experimental Investigation of a System Using Ejector With Movable Primary Nozzle

    7/7

    3 58

    S A p h o r n r a t a n a a n d I W E a m e s

    reduced from 45.7 to 42.5mbar, the ejector must

    be allowed to operate at a new critical condenser

    pressure (42.5mbar) by using one of the following

    methods (see Figures 7 and 8):

    Constant cooling capacity, lower evaporator

    temperature

    Point d with N XP of 26 mm referenced to solid line

    curves). If the boiler temperature is reduced to

    127.2C when the condenser pressure is decreased

    to 42.5 mbar, the cycle operating point will move to

    point d with the critical condenser pressure of

    42.5 mbar. This produces a constant cooling capacity

    at a lower evaporator temperature (7.0C). The COP

    is also increased as the primary nozzle is always

    choked, reducing the boiler temperature automati-

    cally reduces heat input to the boiler.

    Point h with NXP o f 11 mm referenced to dotted line

    curves): If the boiler temperature is maintained at

    130.0C and the nozzle is retracted to NXP of

    l l m m when the condenser pressure falls to

    42.5mbar, the cycle operating point will be moved

    to point h with the critical condenser pressure of

    42.5 mbar (from the figures, point h and b are shown

    to be the same, however, point h is operated with

    critical condition and referenced to the dotted line

    curves while point b is not operated with critical con-

    dition). This causes the COP and the cooling capa-

    city to remain constant, but at a lower evaporator

    temperature (6C).

    Constant evaporator temperature, higher cooling

    capacity

    Point e with NX P o f 26m m referenced to solid line

    curves): If the cycle is already operating at point d,

    and the boiler temperature is slightly further reduced

    from 127.2 to 126.9C, the evapora tor temperatu re

    will return to 7.5C and the cycle operating point

    will move to point e with the critical condenser pres-

    sure of 42.5 mbar. The COP and the cooling capacity

    will rise.

    Point i with NX P o f l l mm referenced to dotted line

    curves): If the cycle is already operating at point h

    with an N XP of 11 mm and the boiler temperature

    is reduced from 130.0 to 128.5C, the evaporator tem-

    perature will increase back to 7,5C and the cycle can

    be operated at point i with the critical condenser pres-

    sure at 42.5 mbar. This causes the COP and cooling

    capacity to be increase.

    If the condenser pressure is increased higher than

    the design point such as on a hot day points f and g

    show the possible operating conditions when the

    condenser pressure is increased to 47.6mbar. As

    the condenser pressure is increased higher than the

    critical value, in order to establish a new critical

    condenser pressure, the cycle must operate with a

    higher boiler pressure and fixed evaporator tempera-

    ture (which reduces cooling capacity and COP) or a

    higher evaporator temperature and fixed boiler

    temperature (which increases cooling capacity and

    c o P ) .

    C o n c l u s i o n s

    This paper describes the experimental studies of a

    small scale steam ejector refrigerator using ejector

    with adjustable primary nozzle position. The test

    showed that a single optimum primary nozzle

    position cannot be defined to meet all operating

    conditions. Each operating condition requires a

    particular optimum nozzle position. The COP and

    cooling capacity can be varied as much as 100 by

    changing the nozzle position. Moving the nozzle into

    the mixing chamber caused the COP and cooling

    capacity to decrease when the boiler input and

    temperature was main tained constant. However, the

    cycle could be operated at a higher critical condenser

    pressure. When the nozzle was retracted from the

    mixing chamber, the COP and cooling capacity was

    found to increase, but the critical condenser pressure

    was reduced.

    The use of an ejector with movable primary nozzle

    provides a more flexible opera tion t han a totally fixed

    geometry unit. An increase in the cooling capacity can

    be achieved by retracting the nozzle from the mixing

    chamber as the condenser pressure falls without

    changing either the evaporator or boiler tempera-

    tures. In practice, the nozzle position may be

    automatically controlled by monitoring the saturated

    temperatures and pressures in the boiler, evaporator

    and condenser.

    R e f e r e n c e s

    1 Eam e s , I . W . , Aphor nr atana, S . , Haid e r , H. A theore-

    tical and experimental study of a small scale steam

    jet refrigerator. Int. J. Refrig. (1995) 18 378-386

    2 ESDU, Ejector and jet pump, data item 86030, ESDU

    International Ltd, London, UK, (1985)

    3 Ke e nan, J . H. , Ne um ann, E. P . , Lus twe rk , F . An inves-

    tigation of ejector design by analysis and experiment.

    ASME J. Appl. Mech., (1950), Sept. 299-309

    4 Hamner, R. M. An investigation of an ejector-com-

    pression refrigeration cycle and its applications to

    heating, cooling, and energy conservation. Ph.D. the-

    sis, The University of Alabama, Birmingham, USA

    (1978)

    5 Zeren, F. Freon-12 vapor compression jet pump solar

    cooling system. Ph.D. thesis, Texas A&M University,

    USA (1982)