1
A Single Supply Bootstrapped Boost Regulator for Energy Harvesting Applications Zachary Nosker 1 Yasunori Kobori 1 Haruo Kobayashi 1 Kiichi Niitsu 2 Nobukazu Takai 1 Tetsuji Yamaguchi 2 Eiji Shikata 2 Tsuyoshi Kaneko 3 Kimio Ueda 4 1 Division of Electronics and Informatics, Gunma Univ, 1–5–1 Tenjin-cho Kiryu, Gunma 376-8515 Japan 2 Department of EECS, Nagoya Univ, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 Japan 3 AKM Technology Corporation, 1-9-1 Ichibancho, Aoba-ku, Sendai, Miyagi 980-0811 Japan 4 Asahi Kasei Microdevices, 1-105 Kanda Jinbocho, Chiyoda-ku, Tokyo 101-8101 Japan Introduction 1. Energy harvesting systems capture power from ambient sources I Examples: solar, vibrational, thermal transducers 2. Our approach targets real-world applications I Operates from a single input voltage I Only requires 3 external components (C I , C O , L) I Efficiency and load range maximized I Starts up with very low input voltage I Target low-power Micro-Controller system Energy Harvesting Block Diagram Energy Harvester Thermal Solar Vibra6onal RF Harves6ng Etc. Boost Converter / Ba>ery Management System Power MCU Wireless Interface ZigBee, etc Energy Storage I The proposed circuit does not require an energy storage device (battery) Proposed Circuit – Design Specifications 1. Bootstrapped boost regulator I Can startup from input voltage below V t(NMOS) I Works down to V IN = 240mV 2. Efficiency > 95% I Low I Q (15μA) I Low conduction/switching losses 3. Output Load > 5mW Overall System Block Diagram I O M N M P L C O V I V O Charge Pump Startup Oscillator Mode Logic and Driver + V REF One-shot Comparator V CP V O V CP V I V 1shot R 1 R 2 V SO V DRVn V DRVp C I State Logic - + en R hys Startup Charge Pump Schematic V CP V CP-OSC Buffer V I en Charge Pump Osc. V I C 1 C 2 C 1 C 2 C 1 C 2 1. Native NMOS, C 1 = 5pF, C 2 = 40pF 2. Values optimized to startup main switches Charge Pump Startup Simulation .250 .500 .750 1.0 1.25 time (us) 350 150 50.0 (mV) (mV) 400 300 200 100 (mV) (mV) V_{CPOSC} V_{CP} time (us) Steady State Simulation 11.34 11.35 11.36 11.37 11.38 time (ms) 1.05 1.03 1.01 .99 V (V) V (V) 50 40 30 20 10 I (mA) I (mA) 1.25 .75 .25 Y2 (V) Y2 (V) V_{OUT} I_L V_{DRVn} time (ms) Circuit Calculations v O i L t 0 t 1 t 2 t on t off I P Δv O I Inductor current equation i L (t)= V I L t, t 0 < t t 1 I P - V O - V I L (t - t 1 ) , t 1 < t t 2 I Output voltage ripple Δv O = 1 C O Z i L (t) dt = I 2 P L 2C O (V O - V I ) Δv O = t 2 on V 2 I 2LC O (V O - V I ) I Maximum load current I O(max) = t on V 2 I 2LV O I Smaller inductor larger peak current I Larger inductor current more losses I Optimum inductor value selected Circuit Efficiency 90 91 92 93 94 95 96 97 98 99 100 0 1 2 3 4 5 6 7 Efficiency (%) Output Load (mW) Efficiency Comparison 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 Maximum Efficiency (%) Maximum Load (mW) Conventional This Work Charge Pump Test Chip Chip photomicrograph Lab bench setup Test Chip Data ! #!! $!!! $#!! %!!! $#! %!! %#! &!! &#! '!! '#! #!! !"#$ &'!( !)* &'!( () *)+, $!!-. *)+, Conclusion 1. Introduced bootstrapped boost for EH applications 2. Better performance than previous works I Higher efficiency I Extended load range 3. Only requires 3 external components I Input capacitor, output capacitor, inductor I No external energy storage components Zachary NOSKER (Gunma University) www.el.gunma-u.ac.jp/ ˜ kobaweb/ [email protected]

A Single Supply Bootstrapped Boost Regulator for Energy ...kobaweb/news/pdf/2013/vietnam-NOSKER_Po… · A Single Supply Bootstrapped Boost Regulator for Energy ... I The proposed

Embed Size (px)

Citation preview

Page 1: A Single Supply Bootstrapped Boost Regulator for Energy ...kobaweb/news/pdf/2013/vietnam-NOSKER_Po… · A Single Supply Bootstrapped Boost Regulator for Energy ... I The proposed

A Single Supply Bootstrapped Boost Regulatorfor Energy Harvesting Applications

Zachary Nosker1 Yasunori Kobori1 Haruo Kobayashi1 Kiichi Niitsu2 Nobukazu Takai1Tetsuji Yamaguchi2 Eiji Shikata2 Tsuyoshi Kaneko3 Kimio Ueda4

1Division of Electronics and Informatics, Gunma Univ, 1–5–1 Tenjin-cho Kiryu, Gunma 376-8515 Japan2Department of EECS, Nagoya Univ, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 Japan3AKM Technology Corporation, 1-9-1 Ichibancho, Aoba-ku, Sendai, Miyagi 980-0811 Japan

4Asahi Kasei Microdevices, 1-105 Kanda Jinbocho, Chiyoda-ku, Tokyo 101-8101 JapanIntroduction

1. Energy harvesting systems capture powerfrom ambient sourcesI Examples: solar, vibrational, thermal transducers

2. Our approach targets real-world applicationsI Operates from a single input voltageI Only requires 3 external components (CI, CO, L)I Efficiency and load range maximizedI Starts up with very low input voltageI Target→ low-power Micro-Controller system

Energy Harvesting Block Diagram

Energy  Harvester  Thermal  Solar  

Vibra6onal  RF  Harves6ng  

Etc.

Boost  Converter  /  Ba>ery  Management System  Power

MCU

Wireless  Interface  ZigBee,  etc

Energy  Storage  

I The proposed circuit does not require anenergy storage device (battery)

Proposed Circuit – Design Specifications

1. Bootstrapped boost regulatorI Can startup from input voltage below Vt(NMOS)

I Works down to VIN = 240mV2. Efficiency > 95%

I Low IQ (≈ 15µA)I Low conduction/switching losses

3. Output Load > 5mW

Overall System Block Diagram

IO MN

MP L

CO

VI

VO

Charge Pump

Startup Oscillator

Mode Logic and

Driver

+ VREF One-shot

Comparator

VCP

VO VCP

VI

V1shot

R1

R2

VSO

VDRVn

VDRVp

CI

State Logic

-

+

en

Rhys

Startup Charge Pump Schematic

VCP VCP-OSC

Buffer

VI

en

Charge Pump Osc.

VI

C1

C2

C1

C2

C1

C2

1. Native NMOS, C1 = 5pF, C2 = 40pF2. Values optimized to startup main switches

Charge Pump Startup Simulation

.250 .500 .750 1.0 1.25time (us)

3 5 0

1 5 0

−50.0 (

mV

) (

mV

)

4 0 0

3 0 0

2 0 0

1 0 0

(m

V)

(m

V)

V_{CP−OSC}

V_{CP}

time (us)

Steady State Simulation

11.34 11.35 11.36 11.37 11.38time (ms)

1.05

1.03

1.01

.99

V (V

)V

(V)

5 04 03 02 01 0

I (m

A)

I (m

A)

1 .25

.75

.25Y2 (V

)Y2

(V)

V_{OUT}

I_L

V_{DRVn}

time (ms)

Circuit Calculations

vO

iL

t0 t1 t2

ton toff

IP

ΔvO

I Inductor current equation

iL(t) =

VI

Lt, t0 < t ≤ t1

IP −VO − VI

L(t− t1) , t1 < t ≤ t2

I Output voltage ripple

∆vO =1

CO

∫iL(t) dt =

I2PL

2CO(VO − VI)

∆vO = t2onV2

I

2LCO(VO − VI)

I Maximum load current

IO(max) = tonV2

I

2LVO

I Smaller inductor→ larger peak currentI Larger inductor current→ more lossesI Optimum inductor value selected

Circuit Efficiency

90 91 92 93 94 95 96 97 98 99

100

0 1 2 3 4 5 6 7

Eff

icie

ncy

(%)

Output Load (mW)

Efficiency Comparison

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

Max

imum

Effi

cien

cy (%

)

Maximum Load (mW)

Conventional

This Work

Charge Pump Test Chip

Chip photomicrographLab bench setup

Test Chip Data

!"

#!!"

$!!!"

$#!!"

%!!!"

$#!" %!!" %#!" &!!" &#!" '!!" '#!" #!!"

!"#$%&'!(

!)*%&'!(

+,-./0%12'3%$045%+,63%7-5-

()"*)+,"

$!!-."*)+,"

Conclusion

1. Introduced bootstrapped boost for EHapplications

2. Better performance than previous worksI Higher efficiencyI Extended load range

3. Only requires 3 external componentsI Input capacitor, output capacitor, inductorI No external energy storage components

Zachary NOSKER (Gunma University) www.el.gunma-u.ac.jp/˜kobaweb/ [email protected]