33
A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Linco [email protected]

A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln [email protected]

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

A Simple Introduction to

Integral EQUATIONS

Glenn Ledder

Department of MathematicsUniversity of [email protected]

Page 2: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Some Integral Equation Examples

2 20

( )t y s dst

t s

y t t t s y s ds( ) ( ) 20

1

Volterra

Volterra

Volterra

Fredholm

second kind

second kind

second kind

first kind

0

2 ( )( )

1 ( )

t s y sy t ds

y s

y t t t s y s dst

( ) ( ) 20

Page 3: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Integral Equations from Differential Equations

First-Order

Initial Value Problem

y t F t g t y t y a y' ( ) ( ) ( , ( )), ( ) 0

Volterra Integral EquationOf the Second Kind

Used to prove theorems about differential equations.

Used to derive numerical methods for differential equations.

y t y F s ds g s y s dsa

t

a

t

( ) ( ) ( , ( )) 0

Page 4: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

• Volterra IEs of the second kind (VESKs)

• Symbolic solution of separable VESKs

• Volterra sequences and iterative solutions

• Theory of linear VESKs

• Brief mention of Fredholm IEs of 2nd kind

• An age-structured population model

Page 5: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Volterra Integral Equationsof the Second Kind (VESKs)

y t f t g t s y s dsa

t

( ) ( ) ( , , ( ))

Given g : R3→R and f: R→R , find y: R→R such that

[equivalent to an initial value problem if g is independent of t]

y t y F s ds g s y s dsa

t

a

t

( ) ( ) ( , ( )) 0

Page 6: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Volterra Integral Equationsof the Second Kind (VESKs)

y t f t g t s y s dsa

t

( ) ( ) ( , , ( ))

y t f t k t s y s dsa

t

( ) ( ) ( , ) ( ) Linear:

Separable:

Convolved:

k t s p t q s( , ) ( ) ( )

k t s r t s( , ) ( )

Given g : R3→R and f: R→R , find y: R→R such that

Page 7: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Symbolic Solution of Separable VESKs

y t t t s y s dst

( ) ( ) 20

Y t s y s dst

( ) ( ) 0

Y t t y t t Y t Y' ( ) ( ) , ( ) 2 0 0

y t t t Y t( ) ( ) 2

y t t e t( ) 2

Solve

Let

Then

Solution:

New Problem:

Page 8: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

y t t s y s dst

( ) ( ) ( ) 10

Y t y s dst

( ) ( ) 0

Y Y Y Y

Z Y tY

0 0 0 0 1

1

, ( ) , ( ) ,

Z t s y s dst

( ) ( ) 0

y t t( ) co s

Solve

Let

and

Solution:

New Problem:

Page 9: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Volterra Sequences

y t f t g t s y s dsa

t

1 0( ) ( ) ( , , ( )) y t f t g t s y s ds

a

t

2 1( ) ( ) ( , , ( ))

Given f, g, and y0, define y1, y2, … by

and so on.

Page 10: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Volterra Sequences

y t f t g t s y s ds nn na

t

( ) ( ) ( , , ( )) , , , 1 1 2

Given f, g, and y0, define y1, y2, … by

•Does yn converge to some y ?

•If so, does y solve the VESK?

Page 11: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Volterra Sequences

y t f t g t s y s ds nn na

t

( ) ( ) ( , , ( )) , , , 1 1 2

Given f, g, and y0, define y1, y2, … by

•Does yn converge to some y ?

•If so, does y solve the VESK?

•If so, is this a useful iterative method?

Page 12: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

A Linear Example

y t t s y s dst

( ) ( ) ( ) 10

y t t s ds tt

1 0

12

21 1( ) ( )

y t t s s ds t tt

212

2

0

12

2 12 4

41 1 1( ) ( )( )

y t t t t 1 12

2 12 4

4 16

6! co s

Let y0 = 1. Then

↓↓

The sequence converges to the known solution.

Page 13: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Convergence of the Sequence

y0

y1

y2

y3

y4

y5

y6

y

Page 14: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

A Nonlinear Example

y ts y s

y sds

t

( )( )

( )

2

10

y t s ds tt

1 0

22( )

y ts s s

s s sds

t

3 0

1 3 1 2

1 3 1 2 2( )

ln ( ) ln ( )

ln ( ) ln ( )

Let y0 = 0. Then

231

2 2 220

2( ) ln(1 ) ln(1 )

1

t s sy t ds t t t

s

Page 15: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Convergence of the Sequence

y3

y2

y1

Page 16: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Lemma 1

y t k t s y s ds nn na

t

( ) ( , ) ( ) , , , 1 1 2

| ( , ) | , | ( ) | , ,k t s K y t Y t s T 0 0

Homogeneous linear Volterra sequences

decay to 0 on [a, T ] whenever k is bounded.

Choose constants K, Y and T such that

| ( ) | ( , ) ( )y t k t s y s ds KY ds YK tt t

1 00 0

Then

Proof: (a=0)

Page 17: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

y t k t s y s ds nn n

t

( ) ( , ) ( ) , , , 101 2

| ( , ) | , | ( ) | , ,k t s K y t Y t s T 0 0

| ( ) |y t K Y ds YK tt

1 0

| ( ) | ( )y t K YK s ds YK tt

2 0

2 21

2

| ( ) | ( )!

y t K YK s ds YK tt

312

2 2

0

3 31

3

| ( ) |!

y tnYK t nn

n n 1

Given

we have

In general,

so limn

ny 0

Page 18: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Theorem 2Homogeneous linear VESKs

have the unique solution y ≡ 0.

y t k t s y s dsa

t

( ) ( , ) ( )

Proof:

Let φ be a solution.

Choose y0 = φ.

Then yn = φ for all n, so yn→φ.

But the lemma requires yn→0.

Therefore φ ≡ 0.

Page 19: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Theorem 3Linear VESKs have at most one solution.

( ) ( ) ( , ) ( )t f t k t s s dsa

t

( ) ( ) ( , ) ( )t f t k t s s dsa

t

y t k t s y s dsa

t

( ) ( , ) ( )

Proof:

Suppose

and

Let y = φ – ψ. Then

By Theorem 2, y ≡ 0; hence, φ = ψ.

Page 20: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Lemma 4Linear Volterra sequences with y0=f converge.

y t f t k t s y s ds y fn na

t

( ) ( ) ( , ) ( ) , 1 0

| |y y gn m n n

Define

Sketch of Proof:

g y yn n m n mm

| |11

1) gn → 0

2)

Together, these properties prove the Lemma.

Page 21: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Theorem 5Linear VESKs have a unique solution.

y t f t k t s y s ds y fn na

t

( ) ( ) ( , ) ( ) , 1 0

By Lemma 4, the sequence

y t f t k t s y s dsa

t

( ) ( ) ( , ) ( )

Proof:

converges to some y. Taking a limit as n → ∞:

The solution is unique by Theorem 3.

Page 22: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Fredholm Integral Equations of the Second Kind (linear)

• Separable FESKs can be solved symbolically.

• Fredholm sequences converge (more slowly than Volterra sequences) only if ||k|| is small enough.

• The theorems hold if and only if ||k|| is small enough.

Given g : R3→R and f: R→R , find y: R→R such that

y t f t k t s y s dsa

b

( ) ( ) ( , ) ( )

Page 23: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

An Age-Structured Population

Given An initial population of known age distribution Age-dependent birthrate Age-dependent death rate

Find Total birthrate Total population Age distribution

Page 24: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

An Age-Structured Population

Given An initial population of newborns Age-dependent birthrate Age-independent death rate

Find Total birthrate Total population

Simplified Version

Page 25: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

The Founding Mothers

Assume a one-sex population.

Starting population is 1 unit.

Life expectancy is 1 time unit.

p0′ = -p0, p0(0) = 1

Result:

p0(t) = e-t

Page 26: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Basic Birthrate Facts

Total Birthrate =

Births to Founding Mothers+

Births to Native Daughters

Let f (t) be the number of births per mother

of age t per unit time.

b(t) = m(t) + d(t)

m(t) = f (t) e-t

Page 27: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Births to Native Daughters

Consider daughters of ages x to x+dx.

All were born between t-x-dx and t-x.

The initial number was b(t-x) dx.

The number at time t is b(t-x) e-x dx.

The rate of births is f(x) b(t-x) e-x dx

=m(x) b(t-x) dx.

d t m x b t x dxt

( ) ( ) ( ) 0

Page 28: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

The Renewal Equation

b t m t m t x b x dxt

( ) ( ) ( ) ( ) 0

b t m t m x b t x dxt

( ) ( ) ( ) ( ) 0

or

This is a linear VESK with convolved kernel.It can be solved by Laplace transform.

Page 29: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Solution of the Renewal Equation

F s L f t r t LF s

F s( ) ( ) , ( )

( )

( )

1

1

p t e e r x dxt tt

( ) ( ) 0

Given the fecundity function f, define

where L is the Laplace transform. Then

b t e r tt( ) ( )

Page 30: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

A Specific Example

p t e e eaa

a ta

t aa

a t( ) ( )( )

( _ )( )

2 2

3 44 2 2

3

Let f(x) = a x e -2x.

b t e ea a t a a t( ) ( ) ( ) 2

32

3Then

If a = 9, then p(t) →1.5. Exponential growth for a>9.The population dies if a<9.

Page 31: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Fecundity

a = 10a = 9a = 8

Page 32: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Birth Rate

a = 10a = 9a = 8

Page 33: A Simple Introduction to Integral EQUATIONS Glenn Ledder Department of Mathematics University of Nebraska-Lincoln gledder@math.unl.edu

Population

a = 10a = 9a = 8