37
2010 Materials Research Society Spring Meeting, April 7, San Francisco A Self-Aligned Epitaxial Regrowth Process for Sub 100 nm III V FETs for Sub-100-nm III-V FETs Mark Rodwell A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti, J C S St A C G d C P l t Mark. Rodwell, University of California, Santa Barbara J. Cagnon, S. Stemmer, A. C. Gossard, C. Palmstrøm University of California, Santa Barbara *Now at Notre Dame B Shi E Ki P C M It B. Shin, E. Kim, P. C. McIntyre Stanford University Y.-J. Lee Itl Intel B. Yue, L. Wang, P. Asbeck, Y. Taur University of California, San Diego

A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

2010 Materials Research Society Spring Meeting, April 7, San Francisco

A Self-Aligned Epitaxial Regrowth Process for Sub 100 nm III V FETsfor Sub-100-nm III-V FETs

Mark Rodwell

A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti, J C S St A C G d C P l t

Mark. Rodwell, University of California, Santa Barbara

J. Cagnon, S. Stemmer, A. C. Gossard, C. PalmstrømUniversity of California, Santa Barbara*Now at Notre DameB Shi E Ki P C M I tB. Shin, E. Kim, P. C. McIntyreStanford UniversityY.-J. LeeI t lIntelB. Yue, L. Wang, P. Asbeck, Y. TaurUniversity of California, San Diego

Page 2: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

III-V MOS: What is needed ?

True MOS device structures at 10 nm gate lengths10nm gate length, < 10nm electrode spacings, < 10nm contact widths

True MOS device structures at ~10 nm gate lengths

< 3 nm channel, < 1 nm gate-channel separation, < 3nm deep junctions, g p , p jFully self-aligned processes: N+ S/D, S/D contacts

D i t >> 1 A/ i @ 1/2 V lt VDrive currents >> 1 mA/micron @ 1/2-Volt Vdd.Low access resistances. Density-of-states limits.

Dielectrics: < 0.6 nm EOT , Dit < 1012 /cm2-eV y

impacts Ion, Ioff , ...

...and the channel must be grown on SiliconLow dielectric Dit must survive FET process.

pacts on, off ,

Page 3: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

FET FETs

Page 4: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

FET Scaling Laws GL

Changes required to double device / circuit bandwidth.

laws in constant voltage limit:

g q

laws in constant-voltage limit: GW widthgateFET parameter change

gate length decrease 2:1current density (mA/m), gm (mS/m) increase 2:1channel 2DEG electron density increase 2:1electron mass in transport direction constantelectron mass in transport direction constantgate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1channel thickness decrease 2 1channel thickness decrease 2:1channel density of states increase 2:1

source & drain contact resistivities decrease 4:1

Current densities should doubleCharge densities must double

Page 5: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Semiconductor Capacitances Must Also Scale

)( VV motion)onalunidirecti(

oxc)( thgs VV )(

inversiondepth /Tc

2*2 2/

qEE wellf /)(

22 2/ gmqcdos

)2/()()(chargechannel 2* gmEEqVVcqn llfllfd )2/()()(charge channel gmEEqVVcqn wellfwellfdoss

scale. both alsomust states ofdensity & thicknessInversion

Page 6: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Calculating Current: Ballistic LimittoappliedvoltagevoltageFermiChannel c

vv )3/4(velocityelectronmean

2/* through velocity Fermidetermines

toapplied voltagevoltageFermiChannel2ffff

dos

vmqVEv

c

fvv )3/4(velocity electronmean

thgsequivdos

cfdos VVcc

ccVVc

s :charge Channel

minima band of # theis where, )/*(2/* ,22 gmmgcgmqc oodosdos

dosequiv cc

2/3

2/3,

2/1

V 1)/*()/(1)/*(

mmA 84

thgs

ooxodos

o VVmmgcc

mmgJ

Do we get highest current with high or low mass ?

Page 7: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

2/1*2/3A VV

Drive Current Versus Mass, # Valleys, and EOT

2/3*

,

*

)/()/(1 where,

V 1mmA84

oequivodos

othgs

mmgccmmgK

VVKJ

0 35

0 25

0.3

0.35g=2g=1

InGaAs <--> InP Si

)/c/c(c 111

0.15

0.2

0.25

K

0.4 nm0.3 nm

/EOTε)/c/c(c oxequiv

2SiO

depth

11

0.05

0.1

0.15

EOT 1 0EOT i l d th f ti d th t

0.6 nm

0.4 nm

0

0.05

0.01 0.1 1m*/m

EOT=1.0 nmEOT includes the wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

Standard InGaAs MOSFETs have superior Id to Si at large EOT.Standard InGaAs MOSFETs have inferior Id to Si at small EOT.

m /mo

Page 8: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

2/12/12/1 L

Transit Delay versus Effective Mass

,

0272

*1* whereVolt1cm/s 1052.2

oeq

odos

thgs

gch m

mgcc

mmK

VVL

K

1 5EOT=1.0 nm 0.6 nm

1.5

elay

K2

0.6 nm

1 nm0.4 nm

1

d tra

nsit

de 0.4 nm

)/c/c(c oxequiv1

depth11

0.5

norm

aliz

ed

EOT i l d f ti d th t

g=1, isotropic bands

g=2, isotropic bands

/EOTεoxequiv

2SiO

dept

00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

m*/m

EOT includes wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

m*/mo

Low m* gives lowest transit time, lowest Cgs at any EOT.

Page 9: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

III-V MOSFETs for VLSI: Why and Why Not.

Lower mass → Higher Carrier Velocity→ lower input capacitanceimproved gate delay in transistor-capacitance-limited gatesnot relevant in wiring-capacitance-limited gates (i.e. most of VLSI)

More importantly: potential for higher drive currentimproved gate delay in wiring-capacitance-limited gates (VLSI)

But this advantage is widely misunderstood in community

improved gate delay in wiring-capacitance-limited gates (VLSI)

But this advantage is widely misunderstood in communityInGaAs channels→ higher Id / Wg than Si only for thick dielectrics

....LOWER Id / Wg than Si for thin dielectricsbreak-even point is at ~0 5 nm EOTbreak-even point is at ~0.5 nm EOT

We will introduce (DRC2010) candidate III-V channel designsproviding higher Id / Wg than Si even for small EOT

Page 10: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Contacts: Low Resistivity, High Current Density

sidewall

metal gategate dielectric

source contact drain contact

b t t

barrier

quantum well / channelN+ source N+ drain

10)/( current, drive onimpact 10% For

hDDSD VVRI

substrate

V3.0)(@mmA/5.1~/Target

1.0)/(

thDDgD

thDDSD

VVWI

VVRI

m 20)(@g

gs

thDDgD

WR

)(!20t tid10 2 )(!m2.0contact widenm 10 2 c

contacts refractorymmA/ 150contact indensity current 2

Page 11: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

F h 2 1 d ti i t l th

FET: Key Regions, Key Challenges

For each 2:1 reduction in gate length: gate dielectric:2:1 reduction in thicknesslimit: tunneling→high-Klimit: tunneling→high Klimit (high-K): defects

contacts:4:1 reduction in contact resistivity channel :

2:1 increase in electron density @ same voltage 2:1 shallower4:1 higher J

2:1 increase in electron density @ same voltage limit: # available electron states / area / energy"density of states bottleneck"; perceived to be fundamental

Page 12: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Hi hl S l d FETHighly Scaled FETP FlProcess Flows

Page 13: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Scalable nm III-V MOSFET: what is needed

True MOS device structures at 10 nm gate lengths10 nm gate length, < 10nm electrode spacings, < 10nm contact widths

True MOS device structures at ~10 nm gate lengths

< 3 nm channel, < 1 nm gate-channel separation, < w nm deep junctions, g p , p jFully self-aligned processes: N+ S/D, S/D contacts

Page 14: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

InGaAs MOSFET with N+ Source/Drain by MEE Regrowth1

HAADF-STEM1*

InGaAsregrowth

Interface

InGaAs

regrowth

2 nm

* TEM by J. Cagnon, Susanne Stemmer Group, UCSB

Self-aligned source/drain defined by MBE regrowth2

Self aligned in situ Mo contacts3Self-aligned in-situ Mo contacts3

Process flow & dimensions selected for 10-30 nm Lg design;1Singisetti, ISCS 20082Wistey, EMC 20083Baraskar, EMC 2009

Page 15: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Regrown S/D process: key features

Self-aligned & low resistivitySelf aligned & low resistivity...source / drain N+ regions...source / drain metal contacts

Vertical S/D doping profile set by MBEno n+ junction extension below channelabrupt on few-nm scaleabrupt on few-nm scale

Gate-firstgate dielectric formed after MBE growth uncontaminated / undamaged surface

Page 16: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Process flow* * Singisetti et al, 2008 ISCS, September, FrieburgSingisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Page 17: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Key challenge in S/D process: gate stack etch

R i t id d i i d t fRequirement: avoid damaging semiconductor surface:Approach: Gate stack with multiple selective etches*

SiO2

FIB Cross-section

Damage free channel

Cr

W

P l bl t 10 t l thProcess scalable to ~10 nm gate lengths* Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Page 18: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Challenge in S/D process: dielectric sidewallsidewall

2 1019

2.4 1019

2.8 1019

ratio

n (c

m-3

)

gate source

8 1018

1.2 1019

1.6 1019

10nm SiNctro

n co

ncen

tr

4 1018

0 10 20 30 40 50 60 70 80

20 nm SiN30 nm SiNel

ec

distance (nm) spillover

ns under sidewall:electrostatic spillover from source gateelectrostatic spillover from source, gate

Sidewall must be kept thin:avoid carrier depletion, p ,avoid source starvation

Page 19: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

MBE Regrowth→ Gap Near Gate→ Source Resistance

SEMMo+InGaAs

Ti/Au PadSiO2 cap

W / Cr / SiO2 gate

W/Cr gateg

SEM

gGap in regrowth

W / Cr / SiO2 gate

SEM

• Shadowing by gate: No regrowth next to gate

• Gap region is depleted of electronsHigh source resistance because of electron depletion in the gap

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

Page 20: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Migration Enhanced Epitaxial (MEE) S/D Regrowth*

High T migration enhancedEpitaxial (MEE) regrowth*

No Gap

45o tilt SEM

gateNo Gap Top of SiO2 gate

Side of gate

regrowth interfaceNo Gap

High temperature migration enhanced epitaxial regrowthHigh temperature migration enhanced epitaxial regrowth

*Wistey, EMC 2008Wistey, ICMBE 2008

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

Page 21: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Regrown S/D III-V MOSFET: Images

SiO2SiO2

WCr

InGaAsregrowth

SiNx

WCr

InGaAsregrowth

SiNx

W

Originalinterface

W

Originalinterface Ti/Au Pad

Mo+InGaAs

Ti/Au Pad

Mo+InGaAs

Cross-section after regrowth, Top view of completed devicebut before Mo deposition

Page 22: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Source Resistance: electron depletion near gate

SiOSiOSiO2

InGaAsregrowth

SiNx

SiO2

InGaAsregrowth

SiNx

WCr

Originalinterface

g

WCr

Originalinterface

g

R1 interfaceinterfaceR1R2

• Electron depletion in regrowth shadow region (R1 )

• Electron depletion in the channel under SiNx sidewalls (R2 )

Page 23: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Regrowth profile dependence on As flux*

SiO2

InGaAsInAlAs

Cr

InGaAs

InGaAsincreasing As flux

W

InGaAs

InGaAs

regrowth f uniform filling

multiple InGaAs regrowths with InAlAs marker layers

surface uniform filling

Uniform filling with lower As flux* Wistey et al, EMC 2009

Wistey et al NAMBE 2009

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

Page 24: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

InAs source/drain regrowth

InAsregrowth

Gateregrowth

side of gate

top of gate

M S/D t l ith Mo S/D metal with N+ InAs underneath

Improved InAs regrowth with low As flux for uniform filling1p g gInAs less susceptible to electron depletion: Fermi pinning above Ec

2

1 Wistey et al, EMC 2009 Wistey et al NAMBE 2009.

2Bhargava et al , APL 1997

Page 25: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

In-Situ Refractory Ohmics on MBE Regrown N-InGaAs

4

5

)

In-situ Mo on n-InAs In-situ Mo on n-InGaAs6

8

)

2

3

esis

tanc

e (

2

4

esis

tanc

e (

0

1

0 0.5 1 1.5 2 2.5 3 3.5

Re

ρc = 0.6 ± 0.4 Ω·µm2

n = 1×1020 cm-3

ρc = 1.0 ± 0.6 Ω·µm2

n = 5×1019 cm-3

0

2

0 0.5 1 1.5 2 2.5 3 3.5

Re

Gap Spacing (m) Gap Spacing (m)HAADF-STEM*

InGaAsth

Interface

InGaAs

regrowth

2 nm

InGaAs

TEM by Dr. J. Cagnon, Stemmer Group, UCSB

A. Baraskar

Page 26: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Benefits of refractory contacts

100 nm InGaAs grown in MBE

15 nm Pd/Ti diffusion

30 nm Mo

After 250°C anneal, Pd/Ti/Pd/Au diffuses 15nm into semiconductordeposited Pd thickness 2 5nmdeposited Pd thickness: 2.5nm

Refractory Mo contacts do not diffuse measurablyRefractory Mo contacts do not diffuse measurablyRefractory, non-diffusive metal contacts for thin semiconductor layers

A.. Baraskar

Page 27: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Resistivity of MEE Regrowth

15 m TLM width

(mV)

Volta

ge (m

V

~50 nm InAs regrowth has ~22 sheet resistivity50 nm InAs regrowth has 22 sheet resistivityContact resistivity is ~1.2 -m2.

Page 28: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Self-Aligned Contacts: Height Selective Etching*

Mo PR

PR PR

InGaAs

Dummy gateNo regrowth

* Burek et al, J. Cryst. Growth 2009

Page 29: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Fully Self-Aligned III-V MOSFET Process

0 5

0.6

0.7

0.8

mA/m

)

Lg = 200 nm W

g = 8 m

Vgs

: 0 to 4 V in 0.5 V steps

0.2

0.3

0.4

0.5

rain

cur

rent

, ID

(m

0

0.1

0 0.2 0.4 0.6 0.8 1

d

VDS

(V)

Page 30: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

Subthreshold characteristics

Lg=0.35 m

10-3

10-2

Lg=1.0 m

325 mV/decade10-5

10-4

290 mV/decadeI d(A)

Vds

=0.1V10-7

10-6

Vd

=0.1V

290 mV/decade

-1 0 1 2 3 4 5

ds

Vds

=1.0 V

10-9

10-8

-1 0 1 2 3 4 5

ds

Vds

=1.0V

1 0 1 2 3 4 5V

gs(V)

1 0 1 2 3 4 5V

gs(V)

Page 31: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

10-30 nm Process Development

SiO2 + SiNx Field: SiNx

Cr + SiNx

W + SiNx

Excellent structural yield in sub-100nm process flow

Page 32: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

27 nm Self-Aligned InGaAs MOSFETSelf-aligned N+ S/D regrowthg g

shallow , high doping , low sheet Self-aligned Mo in-situ S/D contacts:

lo refractor shallolow , refractory → shallow

Page 33: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

HAADF TEM

Page 34: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

HAADF TEM

STEM is chemical contrast imaging -> Is the regrowth sinking?

Page 35: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

C l iConclusion

Page 36: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

III-V MOS

With appropriate design III-V channels can provide > current than Si With appropriate design, III-V channels can provide > current than Si ...even for highly scaled devices

But present III-V device structures are also unsuitable for 10 nm MOSl i l t d iti d j tilarge access regions, low current densities, deep junctions

Raised S/D regrowth process is a path towards a nm VLSI III-V device

Page 37: A Self-Aligned Epitaxial Regrowth Process for Subfor Sub

(end)