57
Mixed Moduli of Smoothness in L p ,1 <p< : A Survey * M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper we survey recent developments over the last 25 years on the mixed fractional moduli of smoothness of periodic functions from L p ,1 <p< . In particular, the paper includes monotonicity properties, equivalence and realization results, sharp Jackson, Marchaud, and Ul’yanov inequalities, interrelations between the moduli of smoothness, the Fourier coefficients, and “angular” approximation. The sharpness of the results presented is discussed. MSC: 26A15, 26A33, 42A10, 41A25, 41A30, 42B05, 26B05 Keywords: Mixed fractional moduli of smoothness, fractional K-functionals, “angular” ap- proximation, Fourier sums, Fourier coefficients, sharp Jackson, Marchaud, and Ul’yanov in- equalities Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . 2 1.1 How this survey is organized . . . . . . . . . . . . . . 3 1.2 What is not included in this survey . . . . . . . . . . . . . 4 2 Definitions and notation . . . . . . . . . . . . . . . . . 5 2.1 The best angular approximation . . . . . . . . . . . . . . 5 2.2 The mixed moduli of smoothness . . . . . . . . . . . . . 6 2.3 K-functional . . . . . . . . . . . . . . . . . . . . 6 2.4 Special classes of functions . . . . . . . . . . . . . . . 7 3 Auxiliary results . . . . . . . . . . . . . . . . . . . . 7 3.1 Jensen and Hardy inequalities . . . . . . . . . . . . . . 7 3.2 Results on angular approximation . . . . . . . . . . . . . 8 3.3 Fourier coefficients of L p (T 2 )-functions, Multipliers, and Littlewood-Paley theorem 8 3.4 Auxiliary results for functions on T . . . . . . . . . . . . . 11 4 Basic properties of the mixed moduli of smoothness . . . . . . . . . 12 * This research was partially supported by the MTM 2011-27637, RFFI 12-01-00170, NSH 979-2012-1, 2009 SGR 1303. Surveys in Approximation Theory Volume 8, 2013. pp. 1–57. c 2013 Surveys in Approximation Theory. ISSN 1555-578X All rights of reproduction in any form reserved. 1

› sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞:

A Survey ∗

M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov

11 April 2013

Abstract

In this paper we survey recent developments over the last 25 years on the mixed fractionalmoduli of smoothness of periodic functions from Lp, 1 < p <∞. In particular, the paper includesmonotonicity properties, equivalence and realization results, sharp Jackson, Marchaud, andUl’yanov inequalities, interrelations between the moduli of smoothness, the Fourier coefficients,and “angular” approximation. The sharpness of the results presented is discussed.

MSC: 26A15, 26A33, 42A10, 41A25, 41A30, 42B05, 26B05

Keywords: Mixed fractional moduli of smoothness, fractional K-functionals, “angular” ap-proximation, Fourier sums, Fourier coefficients, sharp Jackson, Marchaud, and Ul’yanov in-equalities

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 21.1 How this survey is organized . . . . . . . . . . . . . . 31.2 What is not included in this survey . . . . . . . . . . . . . 4

2 Definitions and notation . . . . . . . . . . . . . . . . . 52.1 The best angular approximation . . . . . . . . . . . . . . 52.2 The mixed moduli of smoothness . . . . . . . . . . . . . 62.3 K-functional . . . . . . . . . . . . . . . . . . . . 62.4 Special classes of functions . . . . . . . . . . . . . . . 7

3 Auxiliary results . . . . . . . . . . . . . . . . . . . . 73.1 Jensen and Hardy inequalities . . . . . . . . . . . . . . 73.2 Results on angular approximation . . . . . . . . . . . . . 83.3 Fourier coefficients of Lp(T2)-functions, Multipliers, and Littlewood-Paley theorem 83.4 Auxiliary results for functions on T . . . . . . . . . . . . . 11

4 Basic properties of the mixed moduli of smoothness . . . . . . . . . 12

∗This research was partially supported by the MTM 2011-27637, RFFI 12-01-00170, NSH 979-2012-1, 2009 SGR1303.

Surveys in Approximation TheoryVolume 8, 2013. pp. 1–57.c© 2013 Surveys in Approximation Theory.ISSN 1555-578XAll rights of reproduction in any form reserved.

1

Page 2: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 2

4.1 Jackson and Bernstein-Stechkin type inequalities . . . . . . . . . 145 Constructive characteristic of the mixed moduli of smoothness . . . . . . 156 The mixed moduli of smoothness and the K-functionals . . . . . . . . 187 The mixed moduli of smoothness of Lp-functions and their Fourier coefficients . 208 The mixed moduli of smoothness of Lp-functions and their derivatives . . . . 269 The mixed moduli of smoothness of Lp-functions and their angular approximation 3510 Interrelation between the mixed moduli of smoothness of different orders in Lp . . 4311 Interrelation between the mixed moduli of smoothness in various (Lp,Lq) metrics 46

11.1 Sharpness . . . . . . . . . . . . . . . . . . . . 49References . . . . . . . . . . . . . . . . . . . . . . 50

1 Introduction

To open the discussion on mixed moduli of smoothness, we start with function spaces of dominatingmixed smoothness. The Sobolev spaces of dominating mixed smoothness were first introduced (onR2) by Nikol’skii [49, 50]. He defined the space

Sr1,r2p W (R2) =

{f ∈ Lp(R2) : ‖f‖Sr1,r2p W (R2) = ‖f‖Lp(R2)

+∥∥∥ ∂r1f∂xr11

∥∥∥Lp(R2)

+∥∥∥∂r2f∂xr22

∥∥∥Lp(R2)

+∥∥∥ ∂r1+r2f∂xr11 ∂x

r22

∥∥∥Lp(R2)

},

where 1 < p <∞, r1, r2 = 0, 1, 2. Here, the mixed derivative ∂r1+r2f

∂xr11 ∂x

r22

plays a dominant role and it

gave the name to these scales of function spaces.Later, the fractional Sobolev spaces with dominating mixed smoothness (see [43] by Lizorkin

and Nikol’skii), the Holder-Zygmund-type spaces (see Nikol’skii [49, 50] and Bakhvalov [4]), andthe Besov spaces of dominating mixed smoothness were introduced (see Amanov [1]). We wouldalso like to mention the paper [3] by Babenko which considered Sobolev spaces with dominatingmixed smoothness in the context of multivariate approximation. It transpires that spaces withdominating mixed smoothness have several unique properties which can be used in different settings,for example, in multivariate approximation theory of periodic functions (see [69, 1.3] and [81]) orin high-dimensional approximation and computational mathematics (see, e.g., [76]).

To define Holder-Besov spaces (Nikol’skii-Besov) of dominating mixed smoothness, the notionof the mixed modulus of smoothness is used, i.e.,

ωk(f, t)p = ωk1,...,kd(f, t1, . . . , td)p = sup|hi|≤ti,i=1,...,d

‖∆khf‖p,

where the k-mixed difference is given by

∆kh = ∆k1

h1◦ · · · ◦∆kd

hd,

k = (k1, . . . , kd), h = (h1, . . . , hd),

Page 3: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 3

and ∆kihi

is the difference of order ki with step hi with respect to xi; for example,

∆1hif(x1, . . . , xd) = f(x1, . . . , xi + hi, . . . , xd)− f(x1, . . . , xi, . . . , xd),

∆kihif(x1, . . . , xd) =

ki∑j=0

(−1)j(kij

)f(x1, . . . , xi + (ki − j)hi, . . . , xd), ki ∈ N.

In their turn, moduli of smoothness of an integer order can be naturally extended to fractionalorder moduli. The one-dimensional fractional modulus of smoothness was introduced in the 1970’s(see [11, 78, 92] and the monograph [67]). Moreover, moduli of smoothness of positive orders playan important role in Fourier analysis, approximation theory, theory of embedding theorems andsome other problems (see, e.g., [67, 75, 82, 84, 85, 91, 92]). Note that one of the key results in thisarea of research — an equivalence between the modulus of smoothness and the K-functional —was proved for the one-dimensional fractional modulus in [11] and for the multivariate (non-mixed)fractional modulus in [101, 102]; see also [16, 37, 72]. Clearly, mixed moduli of smoothness areclosely related to mixed directional derivatives. Inequalities between the mixed and directionalderivatives are given in, e.g., [12].

In general, the modulus of smoothness is an important concept in modern analysis and there aremany sources providing information on the one dimensional and multivariate (non-mixed) modulifrom different perspectives. Concerning mixed moduli of smoothness, two old monographs [1] and[86] can be mentioned where several basic properties are listed. Also, there is vast literature on thetheory of function spaces with dominating mixed smoothness (see Section 1.2 below). The maingoal of this paper is to collect the main properties of the mixed moduli of smoothness of periodicfunctions from Lp(Td), 1 < p < ∞, from the point of view of approximation theory and Fourieranalysis.

This paper attempts to give a self-contained development of the theory. Since many of thesources where the reader can find these results are difficult to obtain and many of the resultsare stated without proofs, we will provide complete proofs of all the main results in this survey.Moreover, there are several results in Sections 4-11 that are new, to the best of our knowledge.

For the sake of clarity, in this survey we deal with periodic functions on T2. We limit ourselvesto this case to help the reader follow the discussion and to put the notation and results in a morecompact form. All the results of this survey can be extended to the case of Td, d > 2.

Let us also mention that since any Lp-function f on T2 can be written as

f(x, y) = F (x, y) + φ(x) + ψ(y) + c,

where F ∈ L0p(T2), i.e.,

∫T F dx =

∫T F dy = 0 and since ωα1,α2(f ; δ1, δ2)p = ωα1,α2(F ; δ1, δ2)p, it

suffices to deal with functions from L0p(T2).

1.1 How this survey is organized

After auxiliary results and notation given in Sections 2 and 3, in Section 4 we collect the mainproperties of the mixed moduli, mainly, various monotonicity properties and direct and inversetype approximation theorems. In Section 5 we prove a constructive characterization of the mixedmoduli of smoothness which is a realization result (see, e.g., [24]). This result provides us witha useful tool to obtain the results of the later sections. In particular, this allows us to show

Page 4: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 4

the equivalence between the mixed modulus of smoothness and the corresponding K-functional inSection 6.

In Section 7 two-sided estimates of the mixed moduli of smoothness in terms of the Fouriercoefficients are given. In Section 8 we deal with sharp inequalities between the mixed moduli ofsmoothness of functions and their derivatives, i.e., ωk(f, t)p and ωl(f

r, t)p. Section 9 gives sharporder two-sided estimates of the mixed moduli of smoothness of Lp functions in terms of their“angular” approximations.

In Section 10 we study sharp relationships between ωk(f, t)p and ωl(f, t)p. One part of thisrelation is usually called the sharp Marchaud inequality (see, e.g., [15, 22, 23]), another is equivalentto the sharp Jackson inequality ([14, 15]). It is well known that these results are closely connectedto the results of Section 8 because of Jackson and Bernstein-Stechkin type inequalities. Finally, inSection 11, we discuss sharp Ul’yanov’s inequality, i.e., sharp relationships between ωk(f, t)p andωl(f, t)q for p < q (see [75]).

In Sections 7-10, we deal with two-sided estimates for the mixed moduli of smoothness. In orderto show sharpness of these estimates we will introduce special function classes so that for functionsfrom these classes the two-sided estimates become equivalences.

1.2 What is not included in this survey

In this paper, we restrict ourselves to questions which were not covered by previous expositorypapers and which were actively developed over the last 25 years. For example, we do not discussquestions which are quite naturally linked to the mixed moduli of smoothness such as

· Different types of convergence of multiple Fourier series (see Chapter I in the surveys [29, 104]and the papers [17, 28]);

· Absolute convergence of multiple Fourier series (see Chapter X in the surveys [29, 104] andthe papers [48, 47]);

· Summability theory of multiple Fourier series (see the paper [103] and the monograph [105]);

· Interrelations between the total, partial and mixed moduli of smoothness; derivatives (see[10, 21, 39, 58, 88]);

· Fourier coefficients of functions from certain smooth spaces (see, e.g., [2, 7, 29]);

· Conjugate multiple Fourier series (see, e.g., the book [106] and Chapter VIII in the survey[29]);

· Representation and approximation of multivariate functions (see, e.g., [5, 17, 18, 20, 64, 77]and Chapter 11 of the recent book [95]); in particular, for Whitney type results see [27];

· Approximate characteristics of functions, entropy, and widths (see [35, 63, 38, 79, 80, 100]).

Also, we do not deal with the questions of

· The theory of function spaces with dominating mixed smoothness,

Page 5: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 5

in particular, with characterization, representation, embeddings theorems, characterization of ap-proximation spaces, m-term approximation, which are fast growing topics nowadays. Let us onlymention a few basic older papers [42, 43, 44], the monograph [9] by Besov, Il’in and Nikol’skii, themonograph by Schmeisser and Triebel [71], the recent book by Triebel [93], and the 2006’s survey[69] on this topic. The reader might also be interested in the recent work of researchers from theJena school [34, 40, 68, 70, 94, 98, 99]; see also [32, 36]. The coincidence of the Fourier-analyticdefinition of the spaces of dominating mixed smoothness and the definition in terms of differencesis given in the paper [96].

2 Definitions and notation

Let Lp = Lp(T2), 1 < p < ∞, be the space of measurable functions f of two variables that are2π-periodic in each variable and such that

‖f‖Lp(T2) =

2π∫0

2π∫0

|f(x, y)|p dx dy

1/p

<∞.

Let also L0p(T2) be the collection of f ∈ Lp(T2) such that

2π∫0

f(x, y) dy = 0 for a.e. x

and2π∫0

f(x, y) dx = 0 for a.e. y.

If F (f, δ1, δ2) > 0 and G(f, δ1, δ2) > 0 for all δ1, δ2 > 0, then writing F (f, δ1, δ2) . G(f, δ1, δ2)means that there exists a constant C, independent of f, δ1, δ2 such that F (f, δ1, δ2) ≤ CG(f, δ1, δ2).Note that C may depend on unessential parameters (clear from context), and may change formline to line. If F (f, δ1, δ2) . G(f, δ1, δ2) and G(f, δ1, δ2) . F (f, δ1, δ2) simultaneously, then we willwrite F (f, δ1, δ2) � G(f, δ1, δ2).

2.1 The best angular approximation

By sm1,∞(f), s∞,m2(f), and sm1,m2(f) we denote the partial sums of the Fourier series of a functionf ∈ Lp(T2), i.e.,

sm1,∞(f) =1

π

2π∫0

f(x+ t1, y)Dm1(t1) dt1,

s∞,m2(f) =1

π

2π∫0

f(x, y + t2)Dm2(t2) dt2,

Page 6: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 6

sm1,m2(f) =1

π2

2π∫0

2π∫0

f(x+ t1, y + t2)Dm1(t1)Dm2(t2) dt1 dt2,

where Dm is the Dirichlet kernel, i.e.,

Dm(t) =sin (m+ 1

2)t

2 sin t2

, m = 0, 1, 2, . . .

As a means of approximating a function f ∈ Lp(T2), we will use the so called best (two-dimensional) angular approximation Ym1,m2(f)Lp(T2) which is also sometimes called “approximationby an angle” ([53]). By definition,

Ym1,m2(f)Lp(T2) = infTm1,∞,T∞,m2

‖f − Tm1,∞ − T∞,m2‖Lp(T2),

where the function Tm1,∞ ∈ Lp(T2) is a trigonometric polynomial of degree at most m1 in x, andthe function T∞,m2 ∈ Lp(T2) is a trigonometric polynomial of degree at most m2 in y.

2.2 The mixed moduli of smoothness

For a function f ∈ Lp(T2), the difference of order α1 > 0 with respect to the variable x and thedifference of order α2 > 0 with respect to the variable y are defined as follows:

∆α1h1

(f) =∞∑ν1=0

(−1)ν1(α1ν1

)f(x+ (α1 − ν1)h1, y)

and, respectively,

∆α2h2

(f) =

∞∑ν2=0

(−1)ν2(α2ν2

)f(x, y + (α2 − ν2)h2),

where (αν ) = 1 for ν = 0, (αν ) = α for ν = 1, (αν ) = α(α−1)...(α−ν+1)ν! for ν ≥ 2.

Denote by ωα1,α2(f, δ1, δ2)Lp(T2) the mixed modulus of smoothness of a function f ∈ Lp(T2) oforders α1 > 0 and α2 > 0 with respect to the variables x and y, respectively, i.e.,

ωα1,α2(f, δ1, δ2)Lp(T2) = sup|hi|≤δi,i=1,2

‖∆α1h1

(∆α2h2

(f))‖Lp(T2).

We remark that ‖∆α1h1

(∆α2h2

(f))‖Lp(T2) ≤ C(α1, α2)‖f‖Lp(T2), where C(α1, α2) ≤ 2bα1c+bα2c+2.

2.3 K-functional

First, let us recall the definition of the fractional integral and fractional derivative in the sense ofWeyl of a function f defined on T. If the Fourier series of a function f ∈ L1(T) is given by∑

n∈Zcneinx, c0 = 0,

then the fractional integral or order ρ > 0 of f is defined by (see, e.g., [107, Ch. XII])

Iαf(x) :=(f ∗ ψρ

)(x) =

1

∫ 2π

0f(t)ψρ(x− t) dt,

Page 7: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 7

where

ψα(x) =∑n∈Zn 6=0

einx

(in)ρ.

To define the fractional derivative or order ρ > 0 of f , we put n := bρc+ 1 and

f (ρ)(x) :=dn

dxnIn−ρf(x).

By f (ρ1,ρ2) we will denote the Weyl derivative of order ρ1 ≥ 0 with respect to x and of orderρ2 ≥ 0 with respect to y of the function f ∈ L0

1(T2).

Denote by W(α1,0)p the Weyl class, i.e., the set of functions f ∈ L0

p(T2) such that f (α1,0) ∈ L0p(T2).

Similarly, W(0,α2)p is the set of functions f ∈ L0

p(T2) such that f (0,α2) ∈ L0p(T2). Moreover, W

(α1,α2)p

is the set of functions f ∈ L0p(T2) such that f (α1,α2) ∈ L0

p(T2).The mixed K-functional of a function f ∈ L0

p(T2) is given by

K(f, t1, t2, α1, α2, p) = infg1∈W

(α1,0)p ,g2∈W

(0,α2)p ,g∈W (α1,α2)

p

[‖f − g1 − g2 − g‖Lp(T2)

+ tα11 ‖g

(α1,0)1 ‖Lp(T2) + tα2

2 ‖g(0,α2)2 ‖Lp(T2) + tα1

1 tα22 ‖g

(α1,α2)‖Lp(T2)

].

2.4 Special classes of functions

We define the function class Mp, 1 < p < ∞, as the set of functions f ∈ L0p(T2) such that the

Fourier series of f is given by∞∑ν1=1

∞∑ν2=1

aν1,ν2 cos ν1x cos ν2y, where

aν1,ν2 − aν1+1,ν2 − aν1,ν2+1 + aν1+1,ν2+1 ≥ 0 (2.1)

for any integers ν1 and ν2. Note that (2.1) implies

an,m1 ≥ an,m2 m1 ≤ m2 and an1,m ≥ an2,m n1 ≤ n2. (2.2)

We also define the function class Λp, 1 < p < ∞, as the set of functions f ∈ L0p(T2) such that

the Fourier series of f is given by∞∑

µ1=0

∞∑µ2=0

λµ1,µ2 cos 2µ1x cos 2µ2y, where λµ1,µ2 ∈ R.

3 Auxiliary results

3.1 Jensen and Hardy inequalities

Lemma 3.1 [51, Ch. 1] Let ak ≥ 0, 0 < α ≤ β <∞. Then( ∞∑k=1

aβk

)1/β

( ∞∑k=1

aαk

)1/α

.

Page 8: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 8

Lemma 3.2 [41] Let ak ≥ 0, bk ≥ 0.

(A). Supposen∑k=1

ak = anγn. If 1 ≤ p <∞, then

∞∑k=1

ak

( ∞∑n=k

bn

)p.∞∑k=1

ak(bkγk)p.

If 0 < p ≤ 1, then

∞∑k=1

ak

( ∞∑n=k

bn

)p&∞∑k=1

ak(bkγk)p.

(B). Suppose∞∑k=n

ak = anβn. If 1 ≤ p <∞, then

∞∑k=1

ak

( k∑n=1

bn

)p.∞∑k=1

ak(bkβk)p.

If 0 < p ≤ 1, then

∞∑k=1

ak

( k∑n=1

bn

)p&∞∑k=1

ak(bkβk)p.

3.2 Results on angular approximation

Lemma 3.3 [53] Let f ∈ L0p(T2), 1 < p <∞, ni = 0, 1, 2, . . . , i = 1, 2. Then

‖f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f)‖Lp(T2) . Yn1,n2(f)Lp(T2).

Lemma 3.4 [54] Let f ∈ L0p(T2), 1 < p < q <∞, θ = 1

p −1q , Ni = 0, 1, 2, . . . , i = 1, 2. Then

Y2N1−1,2N2−1(f)Lq(T2) .

∞∑

ν1=N1

∞∑ν2=N2

2(ν1+ν2)θqY q2ν1−1,2ν2−1(f)Lp(T2)

1q

.

Note that similar results for functions on Rd can be found in [90].

3.3 Fourier coefficients of Lp(T2)-functions, Multipliers, and Littlewood-Paleytheorem

Lemma 3.5 (The Marcinkiewicz multiplier theorem, [51, Ch. 1]) Let the Fourier series of a functionf ∈ L0

p(T2), 1 < p <∞, be

∞∑n1=1

∞∑n2=1

(an1,n2 cosn1x cosn2y + bn1,n2 sinn1x cosn2y

+ cn1,n2 cosn1x sinn2y + dn1,n2 sinn1x sinn2y)

=:∞∑

n1=1

∞∑n2=1

An1,n2(x, y). (3.1)

Page 9: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 9

Let the number sequence (ϑn1,n2)∞n1,n2=1 satisfy

|ϑn1,n2 | ≤M,2n1∑

m1=2n1−1+1

|ϑm1,n2 − ϑm1+1,n2 | ≤M,2n2∑

m2=2n2−1+1

|ϑn1,m2 − ϑn1,m2+1| ≤M

and2n1∑

m1=2n1−1+1

2n2∑m2=2n2−1+1

|ϑm1,m2 − ϑm1+1,m2 − ϑm1,m2+1 + ϑm1+1,m2+1| ≤M

for some finite M and any ni ∈ N, i = 1, 2. Then the trigonometric series∞∑

n1=1

∞∑n2=1

ϑn1,n2An1,n2(x, y)

is the Fourier series of a function φ ∈ L0p(T2) and

‖φ‖Lp(T2) . ‖f‖Lp(T2).

Lemma 3.6 (The Littlewood-Paley theorem, [51, Ch. 1]) Let the Fourier series of a functionf ∈ L0

p(T2), 1 < p <∞, be given by (3.1). Let ∆0,0 := A1,1(x, y),

∆m1,0 :=2m1∑

ν1=2m1−1+1

Aν1,1(x, y) for m1 ∈ N, ∆0,m2 :=2m2∑

ν1=2m2−1+1

A1,ν2(x, y) for m2 ∈ N,

and

∆m1,m2 :=2m1∑

ν1=2m1−1+1

2m2∑ν1=2m2−1+1

Aν1,ν2(x, y) for m1 ∈ N and m2 ∈ N.

Then

‖f‖Lp(T2) �

2π∫0

2π∫0

( ∞∑ν1=0

∞∑ν2=0

∆2ν1,ν2

)p/2dx dy

1/p

.

Lemma 3.7 (The Hardy-Littlewood-Paley theorem, [29]) Let the Fourier series of a function f ∈L01(T2) be given by (3.1).

(A). Let 2 ≤ p <∞ and

I :=

( ∞∑n1=1

∞∑n2=1

(|an1,n2 |+ |bn1,n2 |+ |cn1,n2 |+ |dn1,n2 |)p(n1n2)p−2)1/p

<∞.

Then f ∈ L0p(T2) and ‖f‖Lp(T2) . I.

(B). Let f ∈ L0p(T2), 1 < p ≤ 2. Then I . ‖f‖Lp(T2).

Lemma 3.8 Let f ∈Mp, 1 < p <∞, ri ≥ 0, i = 1, 2. Then

‖f‖Lp(T2) �

( ∞∑ν1=1

∞∑ν2=1

apν1,ν2(ν1ν2)p−2

)1/p

(3.2)

and

‖f (r1,r2)‖Lp(T2) �

( ∞∑ν1=1

∞∑ν2=1

apν1,ν2νr1p+p−21 νr2p+p−22

)1/p

. (3.3)

Page 10: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 10

Proof. The proof of (3.2) is given in [46] (see also [30]).Let us verify (3.3). If 2 ≤ p < ∞, then the estimate from above in (3.3) follows from Lemma

3.7 (A). If 1 < p < 2, then Lemmas 3.5 and 3.6 imply

Ip = ‖f (r1,r2)‖pLp(T2)

�2π∫0

2π∫0

( ∞∑ν1=0

∞∑ν2=0

22(ν1r1+ν2r2)∆2ν1,ν2

)p/2dx dy.

Since p2 < 1, using Lemma 3.1, we get

Ip .∞∑ν1=0

∞∑ν2=0

2p(ν1r1+ν2r2)‖∆ν1,ν2‖pp.

In the paper [30] it was shown that ‖∆ν1,ν2‖pp . 2(ν1+ν2)p−1apb2ν1−1c+1,b2ν2−1c+1

. Hence

Ip .∞∑ν1=0

∞∑ν2=0

2p(ν1r1+ν2r2)+(ν1+ν2)p−1apb2ν1−1c+1,b2ν2−1c+1

and by (2.2)

Ip .∞∑ν1=1

∞∑ν2=1

apν1,ν2ν(r1+1)p−21 ν

(r2+1)p−22 .

Thus, we have proved the part “.” in (3.3).To show the estimate from below, if 1 < p ≤ 2 then we simply use Lemma 3.7 (B). If 2 < p <∞,

we use the inequality

‖f (r1,r2)‖pp &∞∑ν1=1

∞∑ν2=1

(ν1ν2)−2( ∞∑µ1=ν1

∞∑µ2=ν2

aµ1,µ2µr11 µ

r22

)pfrom the paper [52]. Therefore, by (2.2),

‖f (r1,r2)‖pp &∞∑ν1=1

∞∑ν2=1

apν1,ν2ν(r1+1)p−21 ν

(r2+1)p−22 .

Lemma 3.9 Let f ∈ Λp, 1 < p <∞. Then

‖f‖Lp(T2) �

∞∑µ1=0

∞∑µ2=0

λ2µ1,µ2

1/2

. (3.4)

This lemma is well known in one dimension ([107, Ch. V, §8]) but we failed to find its multivariateversion. For the sake of completeness we give a simple proof of this result.

Proof. Lemma 3.6 yields

I := ‖f‖Lp(T2) �

( 2π∫0

2π∫0

( ∞∑ν1=0

∞∑ν2=0

∆2ν1,ν2

)p/2dx dy

)1/p

.

Page 11: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 11

Since ∆ν1,ν2 = λν1,ν2 cos 2ν1x cos 2ν2y for f ∈ Λp, we get

I �

( 2π∫0

2π∫0

( ∞∑ν1=0

∞∑ν2=0

λ2ν1,ν2(

cos 2ν1x cos 2ν2y)2)p/2

dx dy

)1/p

(3.5)

.

( ∞∑ν1=0

∞∑ν2=0

λ2ν1,ν2

)1/2

.

Let us now verify the estimate from below. If 1 < p < 2, using Minkowski’s inequality in (3.5), wehave

I &

( ∞∑ν1=0

∞∑ν2=0

λ2ν1,ν2

( 2π∫0

2π∫0

∣∣ cos 2ν1x cos 2ν2y∣∣p dx dy

)2/p)1/2

&( ∞∑ν1=0

∞∑ν2=0

λ2ν1,ν2

)1/2.

If 2 ≤ p <∞, then I = ‖f‖Lp(T2) & ‖f‖L2(T2) &( ∞∑ν1=0

∞∑ν2=0

λ2ν1,ν2

)1/2. �

3.4 Auxiliary results for functions on T

Below we collect several useful results for functions of one variable. As usual, Lp(T) is the collection

of 2π-periodic measurable functions f such that ‖f‖Lp(T) =

(2π∫0

|f(x)|p dx

)1/p

<∞ and L0p(T) is

the collection of f ∈ Lp(T) such that2π∫0

f(x) dx = 0.

Let sn(f) be the n-th partial sum of the Fourier series f ∈ Lp(T), i.e.,

sn(f) = sn(f, x) =1

π

2π∫0

f(x+ t)sin (n+ 1

2)t

2 sin t2

dt.

Let also f (ρ) be the Weyl derivative of order ρ > 0 of the function f .For f ∈ Lp we define the difference of positive order α as follows

∆αh(f) =

∞∑ν=0

(−1)ν(α

ν

)f(x+ (α− ν)h).

We let ωα(f, δ)Lp(T) denote the modulus of smoothness of f of positive order α ([11, 78, 92]), i.e.,

ωα(f, δ)Lp(T) := sup|h|≤δ

‖∆αh(f)‖Lp(T).

Lemma 3.10 [11, 78] Let f, g ∈ L0p(T), 1 < p <∞, and α > 0, β > 0. Then

(a) 4αh(f + g) = 4α

hf +4αhg;

(b) 4αh(4β

hf) = 4α+βh f ;

Page 12: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 12

(c) ‖4αhf‖Lp(T) . ‖f‖Lp(T).

Lemma 3.11 [11, 78] Let 1 < p < ∞, α > 0, and Tn be a trigonometric polynomial of degree atmost n, n ∈ N. Then

(a) we have for any 0 < |h| ≤ πn

‖4αhTn‖Lp(T) . n

−α‖T (α)n ‖Lp(T);

(b) we have‖T (α)

n ‖Lp(T) . nα‖4α

πnTn‖Lp(T).

Lemma 3.12 [51] Let f ∈ L0p(T), 1 < p <∞. Then

‖sn(f)‖Lp(T) . ‖f‖Lp(T), n ∈ N.

Lemma 3.13 [97] Let f ∈ L0p(T), 1 < p < q <∞, θ := 1

p −1q , n = 0, 1, 2, . . . Then

‖f − s2n(f)‖Lq(T) .

{ ∞∑ν=n

2θνq‖f − s2ν (f)‖qLp(T)

}1/q

.

Lemma 3.14 (The Hardy-Littlewood inequality for fractional integrals, [107])Let f ∈ L0

p(T), 1 < p < q <∞, θ := 1p −

1q , α > 0. Then

‖s(α)n (f)‖Lq(T) . ‖s(α+θ)n (f)‖Lp(T), n ∈ N.

4 Basic properties of the mixed moduli of smoothness

We collect the main properties of the mixed moduli of smoothness of Lp(T2)-functions, 1 < p <∞,in the following result.

Theorem 4.1 Let f, g ∈ Lp(T2), 1 < p <∞, αi > 0, i = 1, 2. Then

(1) ωα1,α2(f, δ1, 0)Lp(T2) = ωα1,α2(f, 0, δ2)Lp(T2) = ωα1,α2(f, 0, 0)Lp(T2) = 0;

(2) ωα1,α2(f + g, δ1, δ2)Lp(T2) . ωα1,α2(f, δ1, δ2)Lp(T2) + ωα1,α2(g, δ1, δ2)Lp(T2);

(3) ωα1,α2(f, δ1, δ2)Lp(T2) . ωα1,α2(f, t1, t2)Lp(T2)

for 0 < δi ≤ ti, i = 1, 2;

Page 13: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 13

(4)ωα1,α2(f, δ1, δ2)Lp(T2)

δα11 δα2

2

.ωα1,α2(f, t1, t2)Lp(T2)

tα11 tα2

2

for 0 < ti ≤ δi ≤ 1, i = 1, 2;

(5) ωα1,α2(f, λ1δ1, λ2δ2)Lp(T2) . λα11 λα2

2 ωα1,α2(f, δ1, δ2)Lp(T2)

for λi > 1, i = 1, 2;

(6) ωβ1,β2(f, δ1, δ2)Lp(T2) . ωα1,α2(f, δ1, δ2)Lp(T2)

for 0 < αi < βi, i = 1, 2;

(7) ωα1,α2(f, δ1, δ2)Lp(T2) . δα11 δα2

2

∫ 1

δ1

∫ 1

δ2

ωβ1,β2(f, t1, t2)Lp(T2)

tα11 tα2

2

dt1t1

dt2t2

for 0 < αi < βi, 0 < δi ≤ 12 , i = 1, 2 (Marchaud’s inequality);

(8)ωα1,α2(f, δ1, δ2)Lp(T2)

δα11 δα2

2

.ωβ1,β2(f, δ1, δ2)Lp(T2)

δβ11 δβ22

for 0 < αi < βi, i = 1, 2;

(9) ωβ1+r1,β2+r2(f, δ1, δ2)Lp(T2) . δr11 δ

r22 ωβ1,β2(f (r1,r2), δ1, δ2)Lp(T2)

for βi, ri > 0, i = 1, 2;

(10) ωβ1,β2(f (r1,r2), δ1, δ2)Lp(T2) .

δ1∫0

δ2∫0

t−r11 t−r22 ωβ1+r1,β2+r2(f, t1, t2)Lp(T2)dt1t1

dt2t2

for βi, ri > 0, i = 1, 2.

Remark 4.1 Note that sharp versions of inequalities given in (6)–(10) can be found in Sections 8and 10 below.

Page 14: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 14

Proof of Theorem 4.1. Properties (1), (2), and (3) follow from Lemma 3.10 (a),

∞∑ν=0

(−1)ν (αν ) = 0,

and the definition of modulus of smoothness.To prove (4), we write

ωα1,α2(f, δ1, δ2)Lp(T2)

δα11 δα2

2

� K(f, δ1, δ2, α1, α2, p)

δα11 δα2

2

.K(f, t1, t2, α1, α2, p)

tα11 tα2

2

�ωα1,α2(f, t1, t2)Lp(T2)

tα11 tα2

2

,

where the equivalence between the modulus of smoothness and the K-functional is given by Theo-rem 6.1 below.

Property (4) yields (5). Note that Lemma 3.10 (b), (c) implies ‖4βhf‖Lp(T) . ‖4

αhf‖Lp(T) for

0 < α < β. Then property (6) follows.The Marchaud inequality (7) can be easily shown using the direct and inverse approximation

inequalities given below in this section by Theorem 4.2. Property (8) is a simple consequence of(4) and (7). Finally, properties (9) and (10) follow directly from Theorem 8.1 below. �

Theorem 4.1 was partially proved in the papers [73, 31]. For the one-dimensional case see[11, 75, 78].

4.1 Jackson and Bernstein-Stechkin type inequalities

The direct and inverse type results for periodic functions on T2 using the mixed modulus of smooth-ness are given by the following result.

Theorem 4.2 Let f ∈ L0p(T2), 1 < p <∞, n1, n2 = 0, 1, 2, . . ., α1, α2 > 0. Then

Yn1,n2(f)Lp(T2) . ωα1,α2(f,π

n1 + 1,

π

n2 + 1)Lp(T2) (4.1)

.1

(n1 + 1)α1(n2 + 1)α2

n1+1∑ν1=1

n2+1∑ν2=1

να1−11 να2−1

2 Yν1−1,ν2−1(f)Lp(T2).

Theorem 4.2 was proved for integers α1, α2 in the paper [53]. In the general case, Theorem 4.2follows from Theorem 9.1 which is sharp versions of Jackson and Bernstein-Stechkin inequalities.For non-mixed moduli of smoothness, see [51, Ch. 5] and [86, Chs. V-VI].

Remark 4.2 Note that the results of Theorem 4.1 and Theorem 4.2 also hold in Lp(T2), p = 1,∞;see [62] for Theorem 4.1 (1)-(8) and Theorem 4.2. Moreover, the Jackson inequality (4.1) is truein Lp(T2), 0 < p < 1; see [66].

Page 15: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 15

5 Constructive characteristic of the mixed moduli of smoothness

Theorem 5.1 Let f ∈ L0p(T2), 1 < p <∞, αi > 0, ni ∈ N, i = 1, 2. Then

ωα1,α2

(f,

π

n1,π

n2

)Lp(T2)

� n−α11 n−α2

2 ||s(α1,α2)n1,n2

(f)||Lp(T2) + n−α11 ||s(α1,0)

n1,∞ (f − s∞,n2(f))||Lp(T2)

+ n−α22 ||s(0,α2)

∞,n2(f − sn1,∞(f))||Lp(T2)

+ ||f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f)||Lp(T2).

Proof. Using properties of the norm we get, for any hi and ni ∈ N, i = 1, 2,

‖4α1h1

(4α2h2

(f))‖Lp(T2) ≤ ‖4α1h1

(4α2h2

(f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f)))‖Lp(T2)

+ ‖4α1h1

(4α2h2

(sn1,∞(f − s∞,n2)))‖Lp(T2)

+ ‖4α1h1

(4α2h2

(s∞,n2(f − sn1,∞)))‖Lp(T2)

+ ‖4α1h1

(4α2h2

(sn1,n2(f)))‖Lp(T2) =: I1 + I2 + I3 + I4.

First we estimate I1 from above. Denote ϕ(x, y) := f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f). By Lemma3.10 (c), we have for a.e. y 2π∫

0

|4α1h1

(4α2h2

(ϕ))|p dx

1/p

.

2π∫0

|4α2h2

(ϕ)|p dx

1/p

.

Then2π∫0

2π∫0

|4α1h1

(4α2h2

(ϕ))|p dx dy .

2π∫0

2π∫0

|4α2h2

(ϕ)|p dx dy.

Therefore, I1 . ‖4α2h2

(ϕ)‖Lp(T2) =: I5. Using Lemma 3.10 (c), we have for a.e. x 2π∫0

|4α2h2

(ϕ)|p dy

1/p

.

2π∫0

|ϕ|p dy

1/p

.

Then2π∫0

2π∫0

|4α2h2

(ϕ)|p dy dx .

2π∫0

2π∫0

|ϕ|p dy dx

and I5 . ‖ϕ‖Lp(T2). Thus, I1 . ‖f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f)‖Lp(T2).Similarly, to estimate I2 from above, we denote ψ := f − s∞,n2(f). By Lemma 3.10 (c), for a.e.

x, 2π∫0

|4α1h1

(4α2h2

(sn1,∞(ψ)))|p dy

1/p

.

2π∫0

|4α1h1

(sn1,∞(ψ))|p dy

1/p

.

Hence,2π∫0

2π∫0

|4α1h1

(4α2h2

(sn1,∞(ψ)))|p dy dx .

2π∫0

2π∫0

|4α1h1

(sn1,∞(ψ))|p dy dx

Page 16: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 16

and I2 . ‖4α1h1

(sn1,∞(ψ))‖Lp(T2) =: I6. Now by using Lemma 3.11 (a), we get for a.e. y and anyh1 ∈ (0, πn1

) 2π∫0

|4α1h1

(sn1,∞(ψ))|p dx

1/p

. n−α11

2π∫0

|s(α1,0)n1,∞ (ψ)|p dx

1/p

.

Then we get2π∫0

2π∫0

|4α1h1

(sn1,∞(ψ))|p dx dy . n−α11

2π∫0

2π∫0

|s(α1,0)n1,∞ (ψ)|p dx dy.

Hence, I6 . n−α11 ‖s(α1,0)

n1,∞ (ψ)‖Lp(T2). We have shown that, for 0 < |h1| < πn1

,

I2 . n−α11 ‖s(α1,0)

n1,∞ (f − s∞,n2(f))‖Lp(T2).

Similarly, we obtain

I3 . n−α22 ‖s(0,α2)

∞,n2(f − sn1,∞(f))‖Lp(T2),

I4 . n−α11 n−α2

2 ‖s(α1,α2)n1,n2

(f)‖Lp(T2),

for 0 < |h1| < πn1, 0 < |h2| < π

n2.

Finally,

ωα1,α2(f,π

n1,π

n2)Lp(T2) . ||f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f)||Lp(T2)

+ n−α11 ||s(α1,0)

n1,∞ (f − s∞,n2(f))||Lp(T2) + n−α22 ||s(0,α2)

∞,n2(f − sn1,∞(f))||Lp(T2)

+ n−α11 n−α2

2 ||s(α1,α2)n1,n2

(f)||Lp(T2),

and the upper estimate follows.To prove the estimate from below, we use Lemma 3.3, Theorem 4.2, and properties of the mixed

modulus of integer order

A1 := ||f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f)||Lp(T2) . Yn1,n2(f)Lp(T2)

. ωbα1c+1,bα2c+1(f,π

n1 + 1,

π

n2 + 1)Lp(T2) . ωbα1c+1,bα2c+1(f,

π

n1,π

n2)Lp(T2).

By Lemma 3.10 (b), we get

A1 ≤ sup|hi|≤ π

ni,i=1,2

‖4bα1c+1−α1

h1(4bα2c+1−α2

h2(4α1

h1(4α2

h2(f))))‖Lp(T2).

Using Lemma 3.10 (c),

A1 ≤ sup|hi|≤ π

ni,i=1,2

‖4α1h1

(4α2h2

(f))‖Lp(T2) = ωα1,α2(f,π

n1,π

n2)Lp(T2).

Now let us estimateA2 := ‖s(α1,0)

n1,∞ (f − s∞,n2(f))‖Lp(T2).

Page 17: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 17

Defining γ(x, y) := f(x, y)− s∞,n2(f) and using Lemma 3.11 (b), we have for a.e. y 2π∫0

|sn1,∞(γ)|p dx

1/p

. nα11

2π∫0

|4α1πn1

(sn1,∞(γ))|p dx

1/p

.

Hence,2π∫0

2π∫0

|sn1,∞(γ)|p dx dy . nα1p1

2π∫0

2π∫0

|4α1πn1

(sn1,∞(γ))|p dx dy,

andA2 . n

α11 ‖sn1,∞(4α1

πn1

(γ))‖Lp(T2).

Lemma 3.12 impliesA2 . n

α11 ‖4

α1πn1

(f − s∞,n2(f))‖Lp(T2).

Defining 4α1πn1

(f) =: F , we get A2 . nα11 ‖F − s∞,n2(F )‖Lp(T2). Since s0,∞(F ) = s0,n2(F ) = 0, then

A2 . nα11 ‖F − s0,∞(F )− s∞,n2(F ) + s0,n2(F )‖Lp(T2).

Therefore by Lemma 3.3, Theorem 4.2, and the properties of the mixed moduli of smoothness

A2 . nα11 ωbα1c+1,bα2c+1(F, π,

π

n2 + 1)Lp(T2) . n

α11 ωbα1c+1,bα2c+1(F, π,

π

n2)Lp(T2).

Using Lemma 3.10 (b), we have

A2 . nα11 sup|h1|≤π,|h2|≤ π

n2

‖4bα1c+1h1

(4bα2c+1−α2

h2(4α2

h2(F )))‖Lp(T2).

Now Lemma 3.10 (c) yields

A2 . nα11 sup|h2|≤ π

n2

‖4α2h2

(F )‖Lp(T2) = nα11 sup|h2|≤ π

n2

‖4α2h2

(4α1πn1

(f))‖Lp(T2) . nα11 ωα1,α2(f,

π

n1,π

n2)Lp(T2).

Similarly, one can show that

A3 := ‖s(0,α2)∞,n2

(f − sn1,∞(f))‖Lp(T2) . nα22 ωα1,α2(f,

π

n1,π

n2)Lp(T2)

andA4 := ‖s(α1,α2)

n1,n2(f)‖Lp(T2) . n

α11 nα2

2 ωα1,α2(f,π

n1,π

n2)Lp(T2).

Finally,

||f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f)||Lp(T2) + n−α11 ||s(α1,0)

n1,∞ (f − s∞,n2(f))||Lp(T2)+

n−α22 ||s(0,α2)

∞,n2(f − sn1,∞(f))||Lp(T2) + n−α1

1 n−α22 ||s(α1,α2)

n1,n2(f)||Lp(T2) . ωα1,α2(f,

π

n1,π

n2)Lp(T2),

i.e., the required estimate from below. �Theorem 5.1 was stated in the papers [56, 73] without proof. This statement is called the

realization result; in dimension one, see [24] for the moduli of smoothness of integer order and [74]for the fractional case. For the non-mixed moduli of smoothness of functions on Rd see, e.g., [25,(5.3)].

Page 18: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 18

6 The mixed moduli of smoothness and the K-functionals

Theorem 6.1 Let f ∈ L0p(T2), 1 < p <∞, αi > 0, 0 < δi ≤ π, i = 1, 2. Then

ωα1,α2(f, δ1, δ2)Lp(T2) � K(f, δ1, δ2, α1, α2, p). (6.1)

Proof. For any δi ∈ (0, π] take integers ni such that πni+1 < δi ≤ π

ni, i = 1, 2. If f ∈ L0

p(T2), then

(sn1+1,∞(f)− sn1+1,n2+1(f)) ∈W (α1,0)p ; (s∞,n2+1(f)− sn1+1,n2+1(f)) ∈W (0,α2)

p ;

sn1+1,n2+1(f) ∈W (α1,α2)p .

Then it is clear that

K(f, δ1, δ2, α1, α2, p)

≤ ‖f − (sn1+1,∞(f)− sn1+1,n2+1(f))− (s∞,n2+1(f)− sn1+1,n2+1(f))− sn1+1,n2+1(f)‖Lp(T2)

+ δα11 ‖s

(α1,0)n1+1,∞(f)− s(α1,0)

n1+1,n2+1(f)‖Lp(T2) + δα22 ‖s

(0,α2)∞,n2+1(f)− s(0,α2)

n1+1,n2+1(f)‖Lp(T2)

+ δα11 δα2

2 ‖s(α1,α2)n1+1,n2+1(f)‖Lp(T2)

. ‖f − sn1+1,∞(f)− s∞,n2+1(f) + sn1,n2(f)‖Lp(T2) + n−α11 ‖s(α1,0)

n1+1,∞(f − s∞,n2+1(f))‖Lp(T2)

+ n−α22 ‖s(0,α2)

∞,n2+1(f − sn1+1,∞(f))‖Lp(T2) + n−α11 n−α2

2 ‖s(α1,α2)n1+1,n2+1(f)‖Lp(T2).

By Theorem 5.1, the last expression is bounded by ωα1,α2

(f, π

n1+1 ,π

n2+1

)Lp(T2)

and therefore

K(f, δ1, δ2, α1, α2, p) .. ωα1,α2

(f, δ1, δ2

)Lp(T2)

, (6.2)

and the part “&” in estimate (6.1) follows.

Let us prove the part “.” in estimate (6.1). Take any functions g1 ∈W (α1,0)p , g2 ∈W (0,α2)

p , and

g ∈W (α1,α2)p . Then using Theorem 4.1 (2), we get

ωα1,α2(f, δ1, δ2)Lp(T2) . ωα1,α2(f − g1 − g2 − g, δ1, δ2)Lp(T2) + ωα1,α2(g1, δ1, δ2)Lp(T2)

+ ωα1,α2(g2, δ1, δ2)Lp(T2) + ωα1,α2(g, δ1, δ2)Lp(T2) =: J1 + J2 + J3 + J4.

By Lemma 3.10, we have J1 . ‖f − g1 − g2 − g‖Lp(T2).To estimate J2, for any δi ∈ (0, π] we take integers ni such that π

2ni+1 < δi ≤ π2ni , i = 1, 2. We

consider B2 := ωα1,α2

(g1,

π2n1 ,

π2n2

)Lp(T2)

. Lemma 3.10 yields

B2 . ωα1,α2

(g1 − s2n1 ,∞(g1),

π

2n1,π

2n2

)Lp(T2)

+ ωα1,α2

(s2n1 ,∞(g1),

π

2n1,π

2n2

)Lp(T2)

. ‖g1 − s2n1 ,∞(g1)‖Lp(T2) + sup|h1|≤ π

2n1

‖∆α1h1

(s2n1 ,∞(g1))‖Lp(T2) =: J21 + J22.

Using Lemma 3.11 (a) and Lemma 3.12, we get for a.e. y and 0 < h1 ≤ π2n1( 2π∫

0

∣∣∆α1h1s2n1 ,∞(g1)

∣∣p dx

)1/p

. 2−n1α1

( 2π∫0

∣∣s(α1,0)2n1 ,∞(g1)

∣∣p dx

)1/p

. 2−n1α1

( 2π∫0

∣∣g(α1,0)1

∣∣p dx

)1/p

.

Page 19: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 19

Then the inequality

2π∫0

2π∫0

|∆α1h1s2n1 ,∞(g1)|p dx dy . 2−n1α1p

2π∫0

2π∫0

|g(α1,0)1 |p dx dy

implies J22 . 2−n1α1‖g(α1,0)1 ‖Lp(T2). Since g1 ∈ L0

p(T2), then Lemmas 3.5 and 3.6 give

J21 .

( 2π∫0

2π∫0

( ∞∑ν1=n1

∞∑ν2=0

∆2ν1,ν2

)p/2dx dy

)1/p

. 2−n1α1

( 2π∫0

2π∫0

( ∞∑ν1=n1

∞∑ν2=0

22ν1α1∆2ν1,ν2

)p/2dx dy

)1/p

.

Using again Lemmas 3.5 and 3.6, and further Lemma 3.12, we get

J21 . 2−n1α1‖g(α1,0)1 − s2n1−1,∞(g

(α1,0)1 )‖Lp(T2)

. 2−n1α1

(‖g(α1,0)

1 ‖Lp(T2) + ‖s2n1−1,∞(g(α1,0)1 )‖Lp(T2)

). 2−n1α1‖g(α1,0)

1 ‖Lp(T2).

The estimates for J21 and J22 imply

B2 . 2−n1α1‖g(α1,0)1 ‖Lp(T2).

Using properties of moduli of smoothness, we get ωα1,α2

(g1, δ1, δ2

)Lp(T2)

. ωα1,α2

(g1,

π2n1 ,

π2n2

)Lp(T2)

andJ2 . 2−n1α1‖g(α1,0)

1 ‖Lp(T2).

Similarly,

J3 . 2−n2α2‖g(0,α2)2 ‖Lp(T2) and J4 . 2−n1α1−n2α2‖g(α1,α2)‖Lp(T2).

Finally, combining estimates for J1, J2, J3, and J4, we get

ωα1,α2

(g1, δ1, δ2

)Lp(T2)

. ‖f − g1 − g2 − g‖Lp(T2) + δα11 ‖g

(α1,0)1 ‖Lp(T2)

+ δα22 ‖g

(0,α2)2 ‖Lp(T2) + δα1

1 δα22 ‖g

(α1,α2)‖Lp(T2).

Since the last inequality holds for any g1 ∈W (α1,0)p , g2 ∈W (0,α2)

p , and g ∈W (α1,α2)p , we get

ωα1,α2

(g1, δ1, δ2

)Lp(T2)

. K(f, δ1, δ2, α1, α2, p) (6.3)

and therefore the proof of the part “.” in estimate (6.1) follows. �In the case of integers α1 and α2 Theorem 6.1 was proved in the paper [65] for 1 ≤ p ≤ ∞,

and in the paper [13] for p = ∞ using different methods. In the one-dimensional case and inthe multivariate case for non-mixed moduli of smoothness, the equivalence between the moduli ofsmoothness and the corresponding K-functionals was proved in [37] (see also [6, p. 339]).

Page 20: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 20

7 The mixed moduli of smoothness of Lp-functions and their Fourier coefficients

The classical Riemann-Lebesgue lemma states that the Fourier coefficients of an Lp(T2) functiontend to 0 as |n| → ∞. Its quantitative version is written as follows:

ρn1,n2 . ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

,

whereρn1,n2 = |an1,n2 |+ |bn1,n2 |+ |cn1,n2 |+ |dn1,n2 |

and the Fourier series of f ∈ L0p(T2), 1 < p < ∞, is given by (3.1). We extend this estimate by

writing the following two-sided inequalities using weighted tail-type sums of the Fourier series.

Theorem 7.1 Let f ∈ L0p, 1 < p < ∞, and the Fourier series of f be given by (3.1). Let

τ := max(2, p), θ := min(2, p), α1 > 0, α2 > 0, and n1 ∈ N, n2 ∈ N. Then

I(θ) . ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

. I(τ), (7.1)

where

I(s) :=1

nα11

1

nα22

{n1∑ν1=1

n2∑ν2=1

ρsν1,ν2ν(α1+1)s−21 ν

(α2+1)s−22

}1/s

+1

nα11

{n1∑ν1=1

∞∑ν2=n2+1

ρsν1,ν2ν(α1+1)s−21 νs−22

}1/s

+1

nα22

{ ∞∑ν1=n1+1

n2∑ν2=1

ρsν1,ν2νs−21 ν

(α2+1)s−22

}1/s

+

{ ∞∑ν1=n1+1

∞∑ν2=n2+1

ρsν1,ν2(ν1ν2)s−2

}1/s

for 1 < s <∞.

The next two theorems provide sharper results than (7.1) for special classes of functions definedin Section 2.4. In particular, these results show that the parameters τ = max(2, p) and θ = min(2, p)in (7.1) cannot be extended.

Theorem 7.2 Let f ∈Mp, 1 < p <∞, α1 > 0, α2 > 0, n1 ∈ N, n2 ∈ N. Then

ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

� 1

nα11 nα2

2

{n1∑ν1=1

n2∑ν2=1

apν1,ν2ν(α1+1)p−21 ν

(α2+1)p−22

}1/p

+1

nα11

{n1∑ν1=1

∞∑ν2=n2+1

apν1,ν2ν(α1+1)p−21 νp−22

}1/p

+1

nα22

{ ∞∑ν1=n1+1

n2∑ν2=1

apν1,ν2νp−21 ν

(α2+1)p−22

}1/p

+

{ ∞∑ν1=n1+1

∞∑ν2=n2+1

apν1,ν2(ν1ν2)p−2

}1/p

.

Page 21: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 21

Theorem 7.3 Let f ∈ Λp, 1 < p <∞, α1 > 0, α2 > 0, ni = 0, 1, 2, . . . , i = 1, 2. Then

ωα1,α2

(f,

1

2n1,

1

2n2

)p� 1

2n1α1+n2α2

{n1∑µ1=0

n2∑µ2=0

λ2µ1,µ222(µ1α1+µ2α2)

}1/2

+1

2n1α1

{n1∑µ1=0

∞∑µ2=n2+1

λ2µ1,µ222µ1α1

} 12

+1

2n2α2

{ ∞∑µ1=n1+1

n2∑µ2=0

λ2µ1,µ222µ2α2

}1/2

+

{ ∞∑µ1=n1+1

∞∑µ2=n2+1

λ2µ1,µ2

}1/2

.

Proof of Theorem 7.1. By Theorem 5.1, we have

I := ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

� n−α11 n−α2

2 ||s(α1,α2)n1,n2

(f)||Lp(T2)

+n−α11 ||s(α1,0)

n1,∞ (f − s∞,n2(f))||Lp(T2) + n−α22 ||s(0,α2)

∞,n2(f − sn1,∞(s))||Lp(T2)+

+‖(f − sn1,∞(f)− s∞,n2(f) + sn1,n2(f))‖Lp(T2).

Let first 2 ≤ p <∞. Then taking into account Lemmas 3.5 and 3.7 (A), we get

I . n−α11 n−α2

2

( n1∑ν1=1

n2∑ν2=1

ρpν1,ν2ν(α1+1)p−21 ν

(α2+1)p−22

)1/p+ n−α1

1

( n1∑ν1=1

∞∑ν2=n2+1

ρpν1,ν2ν(α1+1)p−21 νp−22

)1/p+ n−α2

2

( ∞∑ν1=n1+1

n2∑ν2=1

ρpν1,ν2νp−21 ν

(α2+1)p−22

)1/p+

( ∞∑ν1=n1+1

∞∑ν2=n2+1

ρpν1,ν2(ν1ν2)p−2)1/p

.

Therefore, for p ≥ 2 we show the estimate from above in Theorem 7.1.If 1 < p < 2, then Holder’s inequality gives

ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

. ωα1,α2

(f,

1

n1,

1

n2

)L2(T2)

.

Thus, the estimate from above is obtained.

Page 22: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 22

To prove the estimate from below, if 1 < p ≤ 2 , we use Lemmas 3.5 and 3.7 (B):

I & n−α11 n−α2

2

( n1∑ν1=1

n2∑ν2=1

ρpν1,ν2ν(α1+1)p−21 ν

(α2+1)p−22

)1/p+ n−α1

1

( n1∑ν1=1

∞∑ν2=n2+1

ρpν1,ν2ν(α1+1)p−21 νp−22

)1/p+ n−α2

2

( ∞∑ν1=n1+1

n2∑ν2=1

ρpν1,ν2νp−21 ν

(α2+1)p−22

)1/p+

( ∞∑ν1=n1+1

∞∑ν2=n2+1

ρpν1,ν2(ν1ν2)p−2)1/p

.

Let now 2 < p <∞. Applying Holder’s inequality once again, we get

ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

& ωα1,α2

(f,

1

n1,

1

n2

)L2(T2)

.

Proof of Theorem 7.2. Let us denote

I1 := n−α11 n−α2

2 ‖s(α1,α2)n1,n2

(f)‖Lp(T2), I2 := n−α11 ‖s(α1,0)

n1,∞ (f − s∞,n2(f))‖Lp(T2),

I3 := n−α22 ‖s(0,α2)

∞,n2(f − sn1,∞)‖Lp(T2), I4 := ‖f − sn1,∞(f)− s∞,n2(f) + sn1,n2‖Lp(T2)

and

A1 := n−α11 n−α2

2

( n1∑ν1=1

n2∑ν2=1

apν1,ν2ν(α1+1)p−21 ν

(α2+1)p−22

)1/p,

A2 := n−α11

( n1∑ν1=1

∞∑ν2=n2+1

apν1,ν2ν(α1+1)p−21 νp−22

)1/p,

A3 := n−α22

( ∞∑ν1=n1+1

n2∑ν2=1

apν1,ν2νp−21 ν

(α2+1)p−22

)1/p,

A4 :=( ∞∑ν1=n1+1

∞∑ν2=n2+1

apν1,ν2(ν1ν2)p−2)1/p

.

Let us establish the interrelation between I1, I2, I3, I4 and A1, A2, A3, A4. By Lemma 3.8, wehave

I1 � A1. (7.2)

To estimate I2 and A2, we use

η1(x, y) :=

n1∑ν1=1

∞∑ν2=1

a∗ν1,ν2 cos ν1x cos ν2y (7.3)

Page 23: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 23

and

η2(x, y) :=

n1∑ν1=1

n2∑ν2=1

a∗ν1,ν2 cos ν1x cos ν2y, (7.4)

where

a∗ν1,ν2 :=

{aν1,ν2 for 1 ≤ ν1 ≤ n1, ν2 > n2

aν1,n2 for 1 ≤ ν1 ≤ n1, 1 ≤ ν2 ≤ n2.

Thens(α1,0)n1,∞ (f − s∞,n2(f)) = (η1 − η2)(α1,0). (7.5)

Let us first estimate I2. It is clear that

I2 . n−α11

{‖η(α1,0)

1 ‖Lp(T2) + ‖η(α2,0)2 ‖Lp(T2)

}.

Now Lemma 3.8 implies that

I2 ≤ n−α11

( n1∑ν1=1

∞∑ν2=1

(a∗ν1,ν2)pν(α1+1)p−21 νp−22

)1/p+ n−α1

1

( n1∑ν1=1

n2∑ν2=1

(a∗ν1,ν2)pν(α1+1)p−21 νp−22

)1/p. n−α1

1

( n1∑ν1=1

∞∑ν2=n2+1

apν1,ν2ν(α1+1)p−21 νp−22

)1/p+ n−α1

1

( n1∑ν1=1

apν1,n2ν(α1+1)p−21 np−12

)1/p. A2 + n−α1

1 n−α22

( n1∑ν1=1

n2∑ν2=bn22 c+1

apν1,ν2ν(α1+1)p−21 ν

(α2+1)p−22

)1/p. A2 +A1. (7.6)

Estimating A2 from above, we write

A2 . n−α11

( n1∑ν1=1

∞∑ν2=1

(a∗ν1,ν2)pν(α1+1)p−21 νp−22

)1/p.

Lemma 3.8 and formulas (7.3)-(7.4) imply

A2 . n−α11 ‖η(α1,0)

1 ‖Lp(T2) . I2 + n−α11 ‖η(α1,0)

2 ‖Lp(T2)

and

A2 . I2 + n−α11

( n1∑ν1=1

n2∑ν2=1

(a∗ν1,ν2)pν(α1+1)p−21 νp−22

)1/p. I2 + n−α1

1

( n1∑ν1=1

apν1,n2ν(α1+1)p−21 np−12

)1/p. I2 +A1.

Page 24: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 24

Now we use (7.2) to getA2 . I2 + I1. (7.7)

Similarly, we getI3 . A1 +A3 (7.8)

andA3 . I3 + I1. (7.9)

Thus, it is shown thatA1 +A2 +A3 � I1 + I2 + I3. (7.10)

Now we consider B := f − sn1,∞ − s∞,n1 + sn1,n2 and

ϕ1(x, y) :=∞∑ν1=1

∞∑ν2=1

bν1,ν2 cos ν1x cos ν2y,

ϕ2(x, y) :=

n1∑ν1=1

∞∑ν2=n2+1

bν1,ν2 cos ν1x cos ν2y,

ϕ3(x, y) :=∞∑

ν1=n1+1

n2∑ν2=1

bν1,ν2 cos ν1x cos ν2y,

ϕ4(x, y) :=

n1∑ν1=1

n2∑ν2=1

bν1,ν2 cos ν1x cos ν2y,

where

bν1,ν2 :=

aν1,ν2 for ν1 > n1, ν2 > n2,

aν1,n2 for ν1 > n1, 1 ≤ ν2 ≤ n2,an1,ν2 for 1 ≤ ν1 ≤ n1, ν2 > n2,

an1,n2 for 1 ≤ ν1 ≤ n1, 1 ≤ ν2 ≤ n2.

ThenB = ϕ1 − ϕ2 − ϕ3 + ϕ4. (7.11)

We first estimate

I4 = ‖B‖Lp(T2) . ‖ϕ1‖Lp(T2) + ‖ϕ2‖Lp(T2) + ‖ϕ3‖Lp(T2) + ‖ϕ4‖Lp(T2).

Lemma 3.8 yields

‖ϕ1‖Lp(T2) �∞∑ν1=1

∞∑ν2=1

bpν1,ν2(ν1ν2)p−2 �

∞∑ν1=n1+1

∞∑ν2=n2+1

apν1,ν2(ν1ν2)p−2

+

∞∑ν1=n1+1

apν1,n2νp−21 np−12 +

∞∑ν2=n2+1

apn1,ν2νp−22 np−11 + apn1,n2

(n1n2)p−1 =: J1 + J2 + J3 + J4.

Page 25: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 25

To estimate ‖ϕ2‖Lp(T2), we consider

ϕ21(x, y) :=

n1∑ν1=1

∞∑ν2=1

b∗ν1,ν2 cos ν1x cos ν2y,

ϕ22(x, y) :=

n1∑ν1=1

n2∑ν2=1

b∗ν1,ν2 cos ν1x cos ν2y,

where

b∗ν1,ν2 :=

{bν1,ν2 for 1 ≤ ν1 ≤ n1, ν2 > n2,

bν1,n2 for 1 ≤ ν1 ≤ n1, 1 ≤ ν2 ≤ n2.Then ‖ϕ2‖Lp(T2) . ‖ϕ21‖Lp(T2) + ‖ϕ22‖Lp(T2). Using Lemma 3.8, we have

‖ϕ21‖Lp(T2) �n1∑ν1=1

∞∑ν2=1

(b∗ν1,ν2)p(ν1ν2)p−2 .

n1∑ν1=1

∞∑ν2=n2+1

bpν1,ν2(ν1ν2)p−2

+

n1∑ν1=1

bpν1,n2νp−21 np−12 .

∞∑ν2=n2+1

apn1,ν2νp−22 np−11 + apn1,n2

(n1n2)p−1 =: J3 + J4,

‖ϕ22‖Lp(T2) �n1∑ν1=1

n2∑ν2=1

(b∗ν1,ν2)p(ν1ν2)p−2 . apn1,n2

(n1n2)p−1 . J4.

Therefore, ‖ϕ2‖pLp(T2). J3 + J4. Similarly, ‖ϕ3‖pLp(T2)

. J2 + J4 and ‖ϕ4‖pLp(T2). J4. Combining

these estimates, we get

I4 .

{ ∞∑ν1=n1+1

∞∑ν2=n2+1

apν1,ν2(ν1ν2)p−2

}1/p

+

{ ∞∑ν1=n1+1

apν1,n2νp−21

}1/p

n1− 1

p

2

+

{ ∞∑ν2=n2+1

apn1,ν2νp−22

}1/p

n1− 1

p

1 + an1,n2(n1n2)1− 1

p .

Note that the latter inequality holds also if n1 = 0 and/or n2 = 0. It is easy to verify that the lastestimate implies

I4 . A1 +A2 +A3 +A4. (7.12)

Let us estimate A4 from above. It is clear that

A4 .

{ ∞∑ν1=1

∞∑ν2=1

bpν1,ν2(ν1ν2)p−2

}1/p

.

Lemma 3.8 yields A4 . ‖ϕ1‖Lp(T2) and, by (7.11), we get A4 . ‖B‖Lp(T2)+‖ϕ2‖Lp(T2)+‖ϕ3‖Lp(T2)+‖ϕ4‖Lp(T2). Then

A4 ≤ I4 + J2 + J3 + J4 ≤ I4 +

{ ∞∑ν1=1

apν1,n2νp−21

}1/p

n1− 1

p

2

+

{ ∞∑ν2=n2+1

apn1,ν2νp−22

}1/p

n1− 1

p

1 + an1,n2(n1n2)1− 1

p . I4 +A2 +A3 +A1.

Page 26: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 26

Using estimates (7.10) and (7.12), we have

A4 ≤ I1 + I2 + I3 + I4. (7.13)

This, (7.10) and (7.12) give us

I1 + I2 + I3 + I4 � A1 +A2 +A3 +A4.

Since Theorem 5.1 implies

ωα1,α2

(f,

1

n1,

1

n2

)pLp(T2)

� I1 + I2 + I3 + I4,

the proof of Theorem 7.2 is now complete. �

Proof of Theorem 7.3. Theorem 5.1 implies

I := ωα1,α2

(f,

1

2n1,

1

2n2

)pLp(T2)

� 2−n1α12−n2α2‖s(α1,α2)2n1 ,2n2‖Lp(T2)

+ 2−n1α1‖s(α1,0)2n1 ,∞(f − s∞,2n2 (f))‖Lp(T2) + 2−n2α2‖s(0,α2)

∞,2n2 (f − s2n1 ,∞(f))‖Lp(T2)

+ ‖f − s2n1 ,∞(f)− s∞,2n2 (f) + s2n1 ,2n2 (f)‖Lp(T2).

Lemmas 3.5 and 3.9 yield

I � 2−n1α1−n2α2

n1∑µ1=0

n2∑µ2=0

λ2µ1,µ222(α1µ1+α2µ2)

1/2

+ 2−n1α1

n1∑µ1=0

∞∑µ2=n1+1

λ2µ1,µ222α1µ1

1/2

+ 2−n2α2

∞∑

µ1=n1+1

n2∑µ2=0

λ2µ1,µ222α2µ2

1/2

+

∞∑

µ1=n1+1

∞∑µ2=n2+1

λ2µ1,µ2

1/2

,

i.e., the required equivalence. �Theorem 7.1 is stated in the paper [31], while Theorems 7.2-7.3 can be found in the papers

[31, 56, 57]. The one-dimensional version of Theorem 7.2 for functions with general monotonecoefficients is proved in [33]. Theorem 7.3 is given in [7] in the case of integer order moduli.

8 The mixed moduli of smoothness of Lp-functions and their derivatives

Let 1 < p < ∞. We start this section with two well-known relations for the one-dimensionalmodulus of smoothness: for f, f (k) ∈ Lp(T), we have the estimate (see [19, p. 46])

ωr+k(f, δ)Lp(T) . δkωr(f

(k), δ)Lp(T), where r, k ∈ N

and its weak inverse (see [19, p. 178])

ωr(f(k), δ)Lp(T) .

∫ δ

0

ωr+k(f, u)Lp(T)

uk+1du, where r, k ∈ N.

Page 27: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 27

The analogues of these inequalities for the mixed moduli of smoothness are given by

δ−r11 δ−r22 ωβ1+r1,β2+r2(f, δ1, δ2)Lp(T2) . ωβ1,β2(f (r1,r2), δ1, δ2)Lp(T2)

.

δ1∫0

δ2∫0

t−r11 t−r22 ωβ1+r1,β2+r2(f, t1, t2)Lp(T2)dt1t1

dt2t2,

where βj , rj > 0, j = 1, 2 (see Theorem 4.1; properties (9) and (10)).Now we provide a generalization of these estimates (see [58]). Note that this idea goes back to

the papers by Besov [8] and Marcinkiewicz [45]. We also remark that the right-hand side inequalitywas done for non-mixed moduli in [26, 91]. Moreover, a similar estimate for mixed moduli ofsmoothness of functions defined on Rd was proved in [89].

Theorem 8.1 Let f ∈ L0p(T2), 1 < p < ∞, θ := min(2, p), τ := max(2, p), β1, β2, r1, r2 > 0, and

δ1, δ2 ∈ (0, 12). If 1∫0

1∫0

t−r1θ−11 t−r2θ−12 ωθr1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2

1/θ

<∞,

then f has a mixed derivative f (r1,r2) ∈ Lp(T2) in the sense of Weyl and

ωβ1,β2(f (r1,r2), δ1, δ2)Lp(T2) .

δ1∫0

δ2∫0

t−r1θ−11 t−r2θ−12 ωθr1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2

1/θ

. (8.1)

If f ∈ Lp(T2) has a mixed derivative f (r1,r2) ∈ Lp(T2) in the sense of Weyl, thenδ1∫0

δ2∫0

t−r1τ−11 t−r2τ−12 ωτr1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2

1/τ

. ωβ1,β2(f (r1,r2), δ1, δ2)Lp(T2).

Now we deal with the function classes Mp and Λp defined in Section 2.4.

Theorem 8.2 Let f ∈Mp, 1 < p <∞, β1, β2, r1, r2 > 0, and δ1, δ2 ∈ (0, 12). Then

ωβ1,β2(f (r1,r2), δ1, δ2)Lp(T2) �

δ1∫0

δ2∫0

t−r1p−11 t−r2p−12 ωpr1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2

1/p

.

Theorem 8.3 Let f ∈ Λp, 1 < p <∞, β1, β2, r1, r2 > 0, and δ1, δ2 ∈ (0, 12). Then

ωβ1,β2(f (r1,r2), δ1, δ2)Lp(T2) �

δ1∫0

δ2∫0

t−2r1−11 t−2r2−12 ω2r1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2

1/2

.

Page 28: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 28

Proof of Theorem 8.1. We choose integers n1, n2 such that 2−ni < δi ≤ 2−ni+1, i = 1, 2. ByLemmas 3.5, 3.6, and Theorem 5.1, we have

ωβ1,β2(f (r1,r2), δ1, δ2)p .

∥∥∥∥∥∞∑

ν1=2n1+1

∞∑ν2=n2+1

νr11 νr22 Aν1ν2(x1, x2)

∥∥∥∥∥p

+ 2−n1β1

∥∥∥∥∥2n1∑ν1=1

∞∑ν2=2n2+1

νr1+β11 νr22 Aν1ν2(x1, x2)

∥∥∥∥∥p

+ 2−n2β2

∥∥∥∥∥∞∑

ν1=2n1+1

2n2∑ν2=1

νr11 νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥p

+ 2−n1β12−n2β2

∥∥∥∥∥2n1∑ν1=1

2n2∑ν2=1

νr1+β11 νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥p

=: I1 + I2 + I3 + I4.

where Aν1ν2 is given by (3.1). Estimating I2 as follows

I2 . 2−n1β1

2π∫0

2π∫0

[n1∑ν1=0

∞∑ν2=n2+1

22ν1(r1+β1)+2ν2r242ν1ν2

]p/2dx1 dx2

1/p

,

we use

22νjrj �

νj∑ξj=nj+1

2ξjrjθ

2/θ

, j = 1, 2, (8.2)

and Minkowski’s inequality. Hence,

I2 . 2−n1β1

2π∫0

2π∫0

∞∑ξ2=n2+1

2ξ2r2θ

∞∑ν2=ξ2

n1∑ν1=0

22ν1(r1+β1)42ν1ν2

θ/2p/θ

dx1 dx2

1/p

.

Applying again Minkowski’s inequality for sums and integrals, we have

I2 .

2−n1β1θ∞∑

ξ2=n2+1

2ξ2r2θ

2π∫0

2π∫0

⟨n1∑ν1=0

∞∑ν2=ξ2

22ν1(r1+β1)42ν1ν2

⟩p/2dx1 dx2

θ/p

1/θ

.

Using now

2−njβjθ �∞∑

ξj=nj+1

2−ξjβjθ, j = 1, 2, (8.3)

Page 29: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 29

as well as Lemmas 3.5, 3.6, and Theorem 5.1, we get

I2 .

∞∑

ξ1=n1

2−ξ1β1θ∞∑

ξ2=n2

2ξ2r2θ

∥∥∥∥∥∥2ξ1∑ν1=1

∞∑ν2=2ξ2+1

νr1+β11 Aν1ν2(x1, x2)

∥∥∥∥∥∥θ

p

1/θ

.

∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1θ2ξ2r2θωθr1+β1,r2+β2

(f,

1

2ξ1,

1

2ξ2

)p

1/θ

.

For the estimate of I3 we use the same reasoning:

I3 .

∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1θ2−ξ2β2θ

∥∥∥∥∥∥∞∑

ν1=2ξ1+1

2ξ2∑ν2=1

νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥∥θ

p

1/θ

.

∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1θ2ξ2r2θωθr1+β1,r2+β2

(f,

1

2ξ1,

1

2ξ2

)p

1/θ

.

Now we estimate I1:

I1 .

2π∫0

2π∫0

[ ∞∑ν1=n1+1

∞∑ν2=n2+1

22ν1r1+2ν2r242ν1ν2

]p/2dx1 dx2

1/p

.

∞∑

ξ2=n2

2ξ2r2θ

2π∫0

2π∫0

⟨ ∞∑ν1=n1+1

∞∑ν2=ξ2+1

22ν1r142ν1ν2

⟩p/2dx1 dx2

θ/p

1/θ

.

∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1θ2ξ2r2θ

2π∫0

2π∫0

⟨ ∞∑ν1=ξ1+1

∞∑ν2=ξ2+1

42ν1ν2

⟩p/2dx1 dx2

θ/p

1/θ

.

∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1θ2ξ2r2θ

∥∥∥∥∥∥∞∑

ν1=2ξ1+1

∞∑ν2=2ξ2+1

Aν1ν2(x1, x2)

∥∥∥∥∥∥θ

p

1/θ

.

∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1θ2ξ2r2θωθr1+β1,r2+β2

(f,

1

2ξ1,

1

2ξ2

)p

1/θ

.

Page 30: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 30

To estimate I4, we use the expression (8.3) twice:

I4 . 2−n1β12−n2β2

2π∫0

2π∫0

[n1∑ν1=0

n2∑ν2=0

22ν1(r1+β1)+2ν2(r2+β2)42ν1ν2

]p/2dx1 dx2

1/p

.

∞∑

ξ1=n1

∞∑ξ2=n2

2−ξ1β1θ2−ξ2β2θ

∥∥∥∥∥∥2ξ1∑ν1=1

2ξ2∑ν2=1

νr1+β11 νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥∥θ

p

1/θ

.

∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1θ2ξ2r2θωθr1+β1,r2+β2

(f,

1

2ξ1,

1

2ξ2

)p

1/θ

.

Collecting estimates for Ij , j = 1, 2, 3, 4, we finally get

ωβ1,β2(f (r1,r2), δ1, δ2)p .

∞∑

ξ1=n1+1

∞∑ξ2=n2+1

2ξ1r1θ2ξ2r2θωθr1+β1,r2+β2

(f,

1

2ξ1,

1

2ξ2

)p

1/θ

and (8.1) follows.Now let us prove the reverse inequality. We denote

K :=

δ1∫0

δ2∫0

t−r1τ−11 t−r2τ−12 ωτr1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2

.∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1τ2ξ2r2τωτr1+β1,r2+β2

(f,

1

2ξ1,

1

2ξ2

)p

.

Using Lemmas 3.5, 3.6, and Theorem 5.1,

K .∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1τ2ξ2r2τ

∥∥∥∥∥∥∞∑

ν1=2ξ1+1

∞∑ν2=2ξ2+1

Aν1ν2(x1, x2)

∥∥∥∥∥∥τ

p

+

∞∑ξ1=n1

∞∑ξ2=n2

2ξ1r1τ2−ξ2β2τ

∥∥∥∥∥∥∞∑

ν1=2ξ1+1

2ξ2∑ν2=1

νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥∥τ

p

+

∞∑ξ1=n1

∞∑ξ2=n2

2−ξ1β1τ2ξ2r2τ

∥∥∥∥∥∥2ξ1∑ν1=1

∞∑ν2=2ξ2+1

νr1+β11 Aν1ν2(x1, x2)

∥∥∥∥∥∥τ

p

+

∞∑ξ1=n1

∞∑ξ2=n2

2−ξ1β1τ2−ξ2β2τ

∥∥∥∥∥∥2ξ1∑ν1=1

2ξ2∑ν2=1

νr1+β11 νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥∥τ

p

=: K1 +K2 +K3 +K4.

Page 31: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 31

Let us estimate K2.

K2 .∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1τ2−ξ2β2τ

∥∥∥∥∥∥∞∑

ν1=2ξ1+1

2n2∑ν2=1

νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥∥τ

p

+

+∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1τ2−ξ2β2τ

∥∥∥∥∥∥∞∑

ν1=2ξ1+1

2ξ2∑ν2=2n2+1

νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥∥τ

p

=: K21 +K22.

Using (8.3) and Lemmas 3.5, 3.6, we get

K21 . 2−n2β2τ∞∑

ξ1=n1

2ξ1r1τ

2π∫0

2π∫0

⟨ ∞∑ν1=ξ1+1

n2∑ν2=0

22ν2(r2+β2)42ν1ν2

⟩p/2dx1 dx2

τ/p

.

Using Minkowski’s inequality, (8.2), Lemmas 3.5, 3.6, and Theorem 5.1, we have

K21 . 2−n2β2τ

2π∫0

2π∫0

∞∑ξ1=n1

2ξ1r1τ

⟨ ∞∑ν1=ξ1+1

n2∑ν2=0

22ν2(r2+β2)42ν1ν2

⟩τ/2p/τ dx1 dx2

τ/p

. 2−n2β2τ

2π∫0

2π∫0

∞∑ν1=n1+1

⟨ν1∑

ξ1=n1

2ξ1r1τ

⟩2/τ n2∑ν2=0

22ν2(r2+β2)42ν1ν2

p/2 dx1 dx2

τ/p

. 2−n2β2τ

2π∫0

2π∫0

[ ∞∑ν1=n1+1

n2∑ν2=0

22ν1r122ν2(r2+β2)42ν1ν2

]p/2dx1 dx2

τ/p

. 2−n2β2τ

∥∥∥∥∥∞∑

ν1=2n1+1

2n2∑ν2=1

νr11 νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

. ωτβ1,β2(f (r1,r2), δ1, δ2)p.

Estimating K22 as above, we get:

K22 .∞∑

ξ2=n2

2−ξ2β2τ

2π∫0

2π∫0

[ ∞∑ν1=n1+1

ξ2∑ν2=n2+1

22ν1r122ν2(r2+β2)42ν1ν2

]p/2dx1 dx2

τ/p

.

2π∫0

2π∫0

∞∑ξ2=n2

2−ξ2β2τ

⟨ ∞∑ν1=n1+1

ξ2∑ν2=n2+1

22ν1r122ν2(r2+β2)42ν1ν2

⟩τ/2p/τ dx1 dx2

τ/p

.

Page 32: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 32

Further,

K22 .

2π∫0

2π∫0

∞∑ν2=n2+1

22ν2(r2+β2)

⟨ ∞∑ξ2=ν2

2−ξ2β2τ

⟩2/τ ∞∑ν1=n1+1

22ν1r142ν1ν2

p/2 dx1 dx2

τ/p

.

∥∥∥∥∥∞∑

ν1=2n1+1

∞∑ν2=2n2+1

νr11 νr22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

. ωτβ1,β2(f (r1,r2), δ1, δ2)p.

Similarly,

K3 . 2−n1β1τ

∥∥∥∥∥2n1∑ν1=1

∞∑ν2=2n2+1

νr1+β11 νr22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

+

∥∥∥∥∥∞∑

ν1=2n1+1

∞∑ν2=2n2+1

νr11 νr22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

. ωτβ1,β2(f (r1,r2), δ1, δ2)p.

Finally, we obtain the estimates for K1 and K4:

K1 .∞∑

ξ1=n1

∞∑ξ2=n2

2ξ1r1τ2ξ2r2τ

2π∫0

2π∫0

∞∑ν1=ξ1+1

∞∑ν2=ξ2+1

42ν1ν2

p/2 dx1 dx2

τ/p

.

∥∥∥∥∥∞∑

ν1=2n1+1

∞∑ν2=2n2+1

νr11 νr22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

. ωτβ1,β2(f (r1,r2), δ1, δ2)p

and

K4 .

∥∥∥∥∥∞∑

ν1=2n1+1

∞∑ν2=2n2+1

νr11 νr22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

+ 2−n2β2τ

∥∥∥∥∥∞∑

ν1=2n1+1

2n2∑ν2=1

νr11 νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

+ 2−n1β1τ

∥∥∥∥∥2n1∑ν1=1

∞∑ν2=2n2+1

νr1+β11 νr22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

+ 2−n1β1τ−n2β2τ

∥∥∥∥∥2n1∑ν1=1

2n2∑ν2=1

νr1+β11 νr2+β22 Aν1ν2(x1, x2)

∥∥∥∥∥τ

p

. ωτβ1,β2(f (r1,r2), δ1, δ2)p.

Proof of Theorems 8.2 and 8.3. These proofs are similar to the proof of Theorem 8.1. We usethe following two statements which follow from Lemmas 3.8, 3.9 and Theorems 7.2, 7.3.

Page 33: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 33

Let f ∈Mp, 1 < p <∞, βi, ri > 0, i = 1, 2, n1, n2 ∈ N. Then

ωβ1,β2

(f (r1,r2),

1

n1,

1

n2

)Lp(T2)

� 1

nβ11 nβ22

{n1∑ν1=1

n2∑ν2=1

apν1,ν2ν(β1+r1+1)p−21 ν

(β2+r2+1)p−22

}1/p

+1

nβ11

{n1∑ν1=1

∞∑ν2=n2+1

apν1,ν2ν(β1+r1+1)p−21 ν

(r2+1)p−22

}1/p

+1

nβ22

{ ∞∑ν1=n1+1

n2∑ν2=1

apν1,ν2ν(r1+1)p−21 ν

(β2+r2+1)p−22

}1/p

+

{ ∞∑ν1=n1+1

∞∑ν2=n2+1

apν1,ν2ν(r1+1)p−21 ν

(r2+1)p−22

}1/p

.

Let f ∈ Λp, 1 < p <∞, βi, ri > 0, ni ∈ N, i = 1, 2. Then

ωβ1,β2

(f (r1,r2),

1

2n1,

1

2n2

)p� 1

2n1β1+n2β2

{n1∑µ1=0

n2∑µ2=0

λ2µ1,µ222(µ1(β1+r1)+µ2(β2+r2))

}1/2

+1

2n1β1

{n1∑µ1=0

∞∑µ2=n2+1

λ2µ1,µ222(µ1(β1+r1)+µ2r2)

}1/2

+1

2n2β2

{ ∞∑µ1=n1+1

n2∑µ2=0

λ2µ1,µ222(µ1r1+µ2(β2+r2))

}1/2

+

{ ∞∑µ1=n1+1

∞∑µ2=n2+1

λ2µ1,µ222µ1r1+2µ2r2

}1/2

.

�Note that Theorems 8.1-8.3 deal with the most important case when ωβ(f (r), δ)p is estimated in

terms of ωr+β(f, t)p. However, to completely solve the general problem on the interrelation between

ωβ(f (l), δ)p and ωr+β(f, t)p,

we have to consider two more cases:

(i). l = r− α, 0 < α < r;

(ii). l = r + α, 0 < α < β.

The results covering these cases are provided below:

Theorem 8.4 (i). Let f ∈ L0p(T2), 1 < p <∞, θ := min(2, p), and τ := max(2, p). Let β1, β2, > 0,

0 < α1 < r1, 0 < α2 < r2, and δ1, δ2 ∈ (0, 12).A). If

1∫0

1∫0

t−(r1−α1)θ−11 t

−(r2−α2)θ−12 ωθr1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2 <∞,

Page 34: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 34

then f has a mixed derivative f (r1−α1,r2−α2) ∈ L0p(T2) in the sense of Weyl and

ωβ1,β2(f (r1−α1,r2−α2), δ1, δ2)Lp(T2) . J(θ),

where

J(s) :=

1∫

0

1∫0

t−(r1−α1)s1 min

(1,δ1t1

)β1st−(r2−α2)s2 min

(1,δ2t2

)β2sωsr1+β1,r2+β2(f, t1, t2)p

dt1t1

dt2t2

1/s

.

B). If f ∈ Lp(T2) has a mixed derivative f (r1−α1,r2−α2) ∈ L0p(T2) in the sense of Weyl, then

ωβ1,β2(f (r1−α1,r2−α2), δ1, δ2)Lp(T2) & J(τ).

(ii). Let f ∈ L0p(T2), 1 < p < ∞, θ := min(2, p), and τ := max(2, p). Let r1, r2 > 0, 0 < α1 < β1,

0 < α2 < β2, and δ1, δ2 ∈ (0, 12).A). If

1∫0

1∫0

t−(r1+α1)θ−11 t

−(r2+α2)θ−12 ωθr1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2 <∞, (8.4)

then f has a mixed derivative f (r1+α1,r2+α2) ∈ L0p(T2) in the sense of Weyl and

D(f (r1+α1,r2+α2), τ) . E(f, θ),

where

D(f (r1+α1,r2+α2), s) :=

1∫

δ1

1∫δ2

(δ1t1

)(β1−α1)s(δ2t2

)(β2−α2)sωsβ1,β2(f (r1+α1,r2+α2), t1, t2)Lp(T2)

dt1t1

dt2t2

1/s

and

E(f, s) :=

δ1∫0

δ2∫0

t−(r1+α1)s−11 t

−(r2+α2)s−12 ωθr1+β1,r2+β2(f, t1, t2)Lp(T2) dt1 dt2

1/s

.

B). If f ∈ Lp(T2) has a mixed derivative f (r1+α1,r2+α2) ∈ L0p(T2) in the sense of Weyl, then

E(f, τ) . D(f (r1+α1,r2+α2), θ).

The proof can be found in [58]; see also [59]. As in Theorems 8.2 and 8.3, the sharpness of thisresult can be shown by considering function classes Mp and Λp defined in Section 2.4.

Moreover, in part (ii), D(f (r1+α1,r2+α2), θ) could not be replaced by ωβ1,β2(f (r1+α1,r2+α2), δ1, δ2)Lp(T2).Indeed, we consider

f1(x, y) :=∞∑

n1=1

∞∑n2=1

n−(r1+β1+1− 1

p)

1

lnA1+

1p (2n1)

n−(r2+β2+1− 1

p)

2

lnA2+

1p (2n2)

cosn1x cosn2y,

Page 35: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 35

where p ∈ (1,∞), ri, βi, Ai > 0 (i = 1, 2). Then, by Lemma 3.8, we have f ∈ L0p(T2) and, by

Theorem 7.2,ωr1+β1,r2+β2 (f1, δ1, δ2)Lp(T2) � δr1+β11 δr2+β22 .

Hence condition (8.4) holds and f(r1+α1,r2+α2)1 ∈ L0

p(T2). Moreover, one can easily check that

D(f(r1+α1,r2+α2)1 , p) � E(f1, p) � δβ1−α1

1 δβ2−α22 .

On the other hand,

ωβ1,β2(f(r1+α1,r2+α2)1 , δ1, δ2)Lp(T2) � δβ1−α1

1 δβ2−α22

∣∣ ln δ1∣∣−A1∣∣ ln δ2∣∣−A2

and thus D(f(r1+α1,r2+α2)1 , p) and ωβ1,β2(f

(r1+α1,r2+α2)1 )Lp(T2) indeed have different orders of mag-

nitude.

9 The mixed moduli of smoothness of Lp-functions and their angular approxi-mation

As we already mentioned, Jackson and Bernstein-Stechkin type results are given by the followinginequalities:

Yn1,n2(f)Lp(T2) . ωk1,k2(f,π

n1 + 1,

π

n2 + 1)Lp(T2)

.1

(n1 + 1)k1(n2 + 1)k2

n1+1∑ν1=1

n2+1∑ν2=1

νk1−11 νk2−12 Yν1−1,ν2−1(f)Lp(T2).

The next theorem provides sharper estimates (sharp Jackson and sharp inverse inequality).

Theorem 9.1 Let f ∈ L0p(T2), 1 < p <∞, σ := max(2, p), θ := min(2, p), αi > 0, ni ∈ N, i = 1, 2.

Then

1

nα11

1

nα22

{n1+1∑ν1=1

n2+1∑ν2=1

να1σ−11 να2σ−1

2 Y σν1−1,ν2−1(f)Lp(T2)

}1/σ

. ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

.1

nα11

1

nα22

{n1+1∑ν1=1

n2+1∑ν2=1

να1θ−11 να2θ−1

2 Y θν1−1,ν2−1(f)Lp(T2)

}1/θ

.

The sharpness of this result follows from considering special function classes, see Section 2.4.

Theorem 9.2 Let f ∈Mp, 1 < p <∞, αi > 0, ni ∈ N, i = 1, 2. Then

ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

� 1

nα11

1

nα22

{n1+1∑ν1=1

n2+1∑ν2=1

να1p−11 να2p−1

2 Y pν1−1,ν2−1(f)Lp(T2)

}1/p

.

Page 36: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 36

Theorem 9.3 Let f ∈ Λp, 1 < p <∞, αi > 0, ni ∈ N, i = 1, 2. Then

ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

� 1

nα11

1

nα22

{n1+1∑ν1=1

n2+1∑ν2=1

ν2α1−11 ν2α2−1

2 Y 2ν1−1,ν2−1(f)Lp(T2)

}1/2

.

Proof of Theorem 9.1. Define

Iσ :=1

nα1σnα2σ

n1+1∑ν1=1

n2+1∑ν2=1

να1σ−11 να2σ−1

2 Y σν1−1,ν2−1(f)Lp(T2).

For given ni ∈ N we find integers mi ≥ 0 such that 2mi ≤ ni < 2mi+1, i = 1, 2. Then usingmonotonicity properties of Yν1,ν2(f)Lp(T2) we get

Iσ . 2−(α1m1+α2m2)σm1+1∑µ1=0

m2+1∑µ2=0

2(µ1α1+µ2α2)σY σb2µ1−1c,b2µ2−1c(f)Lp(T2).

Using Lemmas 3.5 and 3.6, we have

Iσ . 2−(α1m1+α2m2)σm1+1∑µ1=0

m2+1∑µ2=0

2(µ1α1+µ2α2)σ

2π∫0

2π∫0

( ∞∑ν1=µ1

∞∑ν2=µ2

∆2ν1ν2

)p/2dx dy

σ/p

.

2π∫0

2π∫0

( ∞∑ν1=m1+1

∞∑ν2=m2+1

∆2ν1ν2

)p/2dx dy

σ/p

+ 2−α1m1σm1∑µ1=0

2α1µ1σ

2π∫0

2π∫0

(m1∑

ν1=µ1

∞∑ν2=m2+1

∆2ν1ν2

)p/2dx dy

σ/p

+ 2−α2m2σm2∑µ2=0

2α2µ2σ

2π∫0

2π∫0

( ∞∑ν1=m1+1

m2∑ν2=µ2

∆2ν1ν2

)p/2dx dy

σ/p

+ 2(−α1m1−α2m2)σm1+1∑µ1=1

m2+1∑µ2=1

2(µ1α1+µ2α2)σ

2π∫0

2π∫0

(m1∑

ν1=µ1

m2∑ν2=µ2

∆2ν1ν2

)p/2dx dy

σ/p

=: I1 + I2 + I3 + I4.

By Lemma 3.6, we have

I1 . ‖f − s2m1,∞ − s∞,2m2 + s2m1 ,2m2‖σLp(T2).

Now we estimate

I2 = 2−α1m1σm1∑µ1=0

2α1µ1σ

2π∫0

2π∫0

(m1∑

ν1=µ1

∞∑ν2=m2+1

∆2ν1ν2

)p/2dx dy

σ/p

.

Page 37: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 37

Minkowski’s inequality (σ/p ≥ 1) implies

I2 . 2−α1m1σ

2π∫0

2π∫0

m1∑µ1=0

2α1µ1σ

(m1∑

ν1=µ1

∞∑ν2=m2+1

∆2ν1ν2

)σ/2p/σ dx dy

σ/p

.

Taking into account Lemma 3.2, we get

I2 . 2−α1m1σ

2π∫0

2π∫0

m1∑ν1=0

2α1ν1σ

( ∞∑ν2=m2+1

∆2ν1ν2

)σ/2p/σ dx dy

σ/p

.

Since σ/2 ≥ 1, Lemma 3.1 yields

I2 . 2−α1m1σ

2π∫0

2π∫0

[m1∑ν1=0

∞∑ν2=m2+1

2α1ν12∆2ν1ν2

]p/2dx dy

σ/p

.

Then Lemmas 3.5 and 3.6 imply

I2 . 2−α1m1σ‖s(α1,0)2m1 ,∞(f − s∞,2m2 (f))‖σLp(T2).

Similarly,

I3 . 2−α2m2σ‖s(0,α2)∞,2m2 (f − s2m1 ,∞(f))‖σLp(T2)

andI4 . 2−(α1m1+α2m2)σ‖s(α1,α2)

2m1 ,2m2 (f)‖σLp(T2).

Therefore,

Iσ . ‖f − s2m1,∞ − s∞,2m2 + s2m1 ,2m2‖σLp(T2)

+ 2−α1m1‖s(α1,0)2m1 ,∞(f − s∞,2m2 (f))‖σLp(T2) + 2−α2m2‖s(0,α2)

∞,2m2 (f − s2m1 ,∞(f))‖σLp(T2)

+ 2−(α1m1+α2m2)σ‖s(α1,α2)2m1 ,2m2 (f)‖σLp(T2).

Applying Theorem 5.1, we get I . ωα1,α2

(f, 1

2m1 ,1

2m2

)Lp(T2)

. Then using properties of the mixed

modulus of smoothness,

I . ωα1,α2

(f,

1

2m1+1,

1

2m2+1

)Lp(T2)

. ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

.

Thus, the estimate from below in Theorem 9.1 is shown. Now we prove the estimate from above.First,

I5 := ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

. ωα1,α2

(f,

1

2m1,

1

2m2

)Lp(T2)

,

where 2mi ≤ ni < 2mi+1, i = 1, 2. Theorem 5.1 gives

Ip5 . 2−(α1m1+α2m2)p‖s(α1,α2)2m1 ,2m2 (f)‖p

Lp(T2)+ 2−α1m1p‖s(α1,0)

2m1 ,∞(f − s∞,2m2 (f))‖pLp(T2)

+ 2−α2m2p‖s(0,α2)∞,2m2 (f − s2m1 ,∞(f))‖p

Lp(T2)+ ‖f − s2m1,∞ − s∞,2m2 + s2m1 ,2m2‖pLp(T2)

=: I6 + I7 + I8 + I9.

Page 38: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 38

Lemmas 3.5 and 3.6 imply

I6 . 2−(m1α1+m2α2)p

2π∫0

2π∫0

m1∑µ1=0

m2∑µ2=0

22(µ1α1+µ2α2)∆2µ1µ2

p/2

dx dy.

If 2 ≤ p <∞, we use Minkowski’s inequality and Lemma 3.3

I6 . 2−(m1α1+m2α2)p

m1∑µ1=0

m2∑µ2=0

22(µ1α1+µ2α2)

2π∫0

2π∫0

|∆µ1µ2 |p dx dy

2/pp/2

= 2(m1α1+m2α2)p

m1∑µ1=0

m2∑µ2=0

22(µ1α1+µ2α2)‖s2µ1 ,2µ2 (f)− s2µ1 ,b2µ2−1c(f)−

− sb2µ1−1c,2µ2 (f) + sb2µ1−1c,b2µ2−1c(f)‖2Lp(T2)

}p/2. 2−(m1α1+m2α2)p

m1+1∑µ1=0

m2+1∑µ2=0

22(µ1α1+µ2α2)Y 2b2µ1−1c,b2µ2−1c(f)Lp(T2)

p/2

.

If 1 < p < 2, we use Lemma 3.1 and Lemma 3.3

I6 . 2−(m1α1+m2α2)pm1∑µ1=0

m2∑µ2=0

2p(µ1α1+µ2α2)

2π∫0

2π∫0

|∆µ1,µ2 |p dx dy

= 2(m1α1+m2α2)pm1∑µ1=0

m2∑µ2=0

2p(µ1α1+µ2α2)‖s2µ1 ,2µ2 (f)− s2µ1 ,b2µ2−1c(f)−

− sb2µ1−1c,2µ2 (f) + sb2µ1−1c,b2µ2−1c(f)‖pLp(T2)

. 2−(m1α1+m2α2)pm1+1∑µ1=0

m2+1∑µ2=0

2p(µ1α1+µ2α2)Y pb2µ1−1c,b2µ2−1c(f)Lp(T2).

Thus, we show

I6 . 2−(m1α1+m2α2)p

m1+1∑µ1=0

m2+1∑µ2=0

2θ(µ1α1+µ2α2)Y θb2µ1−1c,b2µ2−1c(f)Lp(T2)

p/θ

.

Now let us estimate I7. Lemmas 3.5 and 3.6 imply

I7 . 2−m1α1p

2π∫0

2π∫0

m1∑µ1=0

∞∑µ2=m2+1

22µ1α1∆2µ1,µ2

p/2

dx dy.

Page 39: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 39

Again, for 2 ≤ p <∞, Minkowski’s inequality, Lemmas 3.6 and 3.3 give

I7 . 2m1α1p

m1∑µ1=0

22µ1α1

2π∫0

2π∫0

∞∑µ2=m2+1

∆2µ1µ2

p/2

dx dy

2/pp/2

. 2m1α1p

m1∑µ1=0

22µ1α1

2π∫0

2π∫0

∞∑ν1=µ1

∞∑µ2=m2+1

∆2ν1µ2

p/2

dx dy

2/pp/2

. 2m1α1p

m1+1∑µ1=0

22µ1α1Y 2b2µ1−1c,2m2 (f)Lp(T2)

p/2

. 2−(m1α1+m2α2)p

m1+1∑µ1=0

m2+1∑µ2=0

22(µ1α1+µ2α2)Y 2b2µ1−1c,b2µ2−1c(f)Lp(T2)

p/2

.

If 1 < p ≤ 2, Lemmas 3.1 and 3.3 imply

I7 . 2−m1α1p

2π∫0

2π∫0

m1∑µ1=0

∞∑µ2=m2+1

2µ1α1p|∆µ1µ2 |p dx dy

. 2−m1α1pm1∑µ1=0

2pµ1α1

2π∫0

2π∫0

∞∑ν1=µ1

∞∑µ2=m2+1

|∆ν1µ2 |p dx dy

. 2−m1α1pm1+1∑µ1=0

2pµ1α1Y pb2µ1−1c,2m2

(f)Lp(T2)

. 2−(m1α1+m2α2)pm1+1∑µ1=0

m2+1∑µ2=0

2p(µ1α1+µ2α2)Y pb2µ1−1c,b2µ2−1c(f)Lp(T2).

Thus,

I7 . 2−(m1α1+m2α2)p

m1+1∑µ1=0

m2+1∑µ2=0

2θ(µ1α1+µ2α2)Y θb2µ1−1c,b2µ2−1c(f)Lp(T2)

p/θ

.

Similarly,

I8 . 2−(m1α1+m2α2)p

m1+1∑µ1=0

m2+1∑µ2=0

2θ(µ1α1+µ2α2)Y θb2µ1−1c,b2µ2−1c(f)Lp(T2)

p/θ

.

By Lemma 3.3, we get

I9 . Yp2m1 ,2m2 (f)Lp(T2).

Page 40: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 40

Combining these estimates, we have

Ip5 . 2−(m1α1+m2α2)p

m1+1∑µ1=0

m2+1∑µ2=0

2θ(µ1α1+µ2α2)Y θb2µ1−1c,b2µ2−1c(f)Lp(T2)

p/θ

,

and using properties of Yν1,ν2(f)Lp(T2),

I5 .1

nα11

1

nα22

{n1+1∑ν1=1

n2+1∑ν2=1

να1θ−11 να2θ−1

2 Y θν1−1,ν2−1(f)Lp(T2)

}1/θ

.

Thus, the proof of Theorem 9.1 is complete. �

Proof of Theorem 9.2. Define

Ip :=1

nα1p1

1

nα2p2

n1+1∑ν1=1

n2+1∑ν2=1

να1p−11 να2p−1

2 Y pν1−1,ν2−1(f)Lp(T2).

By Theorem 4.2, we have

Ip .1

nα1p1

1

nα2p2

n1+1∑ν1=1

n2+1∑ν2=1

να1p−11 να2p−1

2 ωpbα1c+1,bα2c+1

(f,

1

ν1 + 1,

1

ν2 + 1

)Lp(T2)

.

Theorem 7.2 implies

Ip .1

nα1p1

1

nα2p2

n1+1∑ν1=1

n2+1∑ν2=1

να1p−11 να2p−1

2

(ν1 + 1)(bα1c+1)p(ν2 + 1)(bα2c+1)p

ν1∑µ1=1

ν2∑µ2=1

apµ1,µ2µ(bα1c+2)p−21 µ

(bα2c+2)p−22

+

1

nα1p1

1

nα2p2

n1+1∑ν1=1

n2+1∑ν2=1

να1p−11 να2p−1

2

(ν1 + 1)(bα1c+1)p

ν1∑µ1=1

∞∑µ2=ν2+1

apµ1,µ2µ(bα1c+2)p−21 µp−22

+

1

nα1p1

1

nα2p2

n1+1∑ν1=1

n2+1∑ν2=1

να1p−11 να2p−1

2

(ν2 + 1)(bα2c+1)p

∞∑µ1=ν1+1

ν2∑µ2=1

apµ1,µ2µ(bα1c+2)p−22 µp−21

+

1

nα1p1

1

nα2p2

n1+1∑ν1=1

n2+1∑ν2=1

να1p−11 να2p−1

2

∞∑µ1=ν1+1

∞∑µ2=ν2+1

apµ1,µ2(µ1µ2)p−2

=: A1 +A2 +A3 +A4.

Changing the order of summation, we get

A1 .1

nα1p1

1

nα2p2

n1+1∑µ1=1

n2+1∑µ2=1

apµ1,µ2µ(α1+1)p−21 µ

(α2+1)p−22 =: B1.

We proceed by estimating A2.

A2 .1

nα1p1

1

nα2p2

n1+1∑ν1=1

n2+1∑ν2=1

ν(α1−bα1c−1)p−11 να2p−1

2

ν1∑µ1=1

n2∑µ2=ν2

apµ1,µ2µ(bα1c+2)p−21 µp−22

+1

nα1p1

1

nα2p2

n1+1∑ν1=1

n2+1∑ν2=1

ν(α1−bα1c−1)p−11 να2p−1

2

ν1∑µ1=1

∞∑µ2=n2+1

apµ1,µ2µ(bα1c+2)p−21 µp−22 =: A11 +A12.

Page 41: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 41

Changing the order of summation, since bα1c+ 1 > α1 and α2 > 0, we get

A11 .1

nα1p1

1

nα2p2

n1+1∑µ1=1

n2+1∑µ2=1

apµ1,µ2µ(α1+1)p−21 µ

(α2+1)p−22 = B1.

It is clear that

A12 .1

nα1p1

n1+1∑ν1=1

ν(α1−bα1c−1)p−11

ν1∑µ1=1

∞∑µ2=n2+1

apµ1,µ2µ(bα1c+2)p−21 µp−22 .

Once again, changing the order of summation, we have

A12 .1

nα1p1

n1+1∑µ1=1

∞∑µ2=n2+1

apµ1,µ2µ(α1+1)p−21 µp−22 =: B2.

Thus, A2 . B1 +B2 .Similarly, we get A3 . B1 +B3 and A4 . B1 +B2 +B3 +B4, where

B3 :=1

nα2p2

∞∑µ1=n1+1

n2+1∑µ2=1

apµ1,µ2µp−21 µ

(α1+1)p−22

and

B4 :=

∞∑µ1=n1+1

∞∑µ2=n2+1

apµ1,µ2(µ1µ2)p−2.

Combining the estimates for A1, A2 , A3, and A4,

Ip .1

nα1p1 nα2p

2

n1∑ν1=1

n2∑ν2=1

apν1,ν2ν(α1+1)p−21 ν

(α2+1)p−22 +

1

nα1p1

n1∑ν1=1

∞∑ν2=n2+1

apν1,ν2ν(α1+1)p−21 νp−22

+1

nα2p2

∞∑ν1=n1+1

n2∑ν2=1

apν1,ν2νp−21 ν

(α2+1)p−22 +

∞∑ν1=n1+1

∞∑ν2=n2+1

apν1,ν2(ν1ν2)p−2.

Theorem 7.2 yields I . ωα1,α2

(f, 1

n1, 1n2

)Lp(T2)

, i.e., the estimate from below is obtained.

To get the estimate from above, by Theorem 7.2, we have

apn1,n2(n1n2)

p−1 .1

n(α1]+1)p1 n

(bα2c+1])p2

n1∑ν1=bn1/2c+1

n2∑ν2=bn2/2c+1

apν1,ν2ν(bα1c+2)p−21 ν

(bα2c+2)p−22

. ωpbα1c+1,bα2c+1

(f,

1

n1,

1

n2

)Lp(T2)

.

Moreover,

np−11

∞∑ν2=n2+1

apn1,ν2νp−22 .

1

n(bα1c+1)p1

n1∑ν1=bn12 c+1

∞∑ν2=n2+1

apν1,ν2ν(bα1c+2)p−21 νp−22

. ωpbα1c+1,bα2c+1

(f,

1

n1,

1

n2

)Lp(T2)

,

np−12

∞∑ν1=n1+1

apν1,n2νp−21 . ωpbα1c+1,bα2c+1

(f,

1

n1,

1

n2

)Lp(T2)

,

Page 42: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 42

and

∞∑ν1=n1+1

∞∑ν2=n2+1

apν1,ν2νp−21 νp−22 . ωpbα1c+1,bα2c+1

(f,

1

n1,

1

n2

)Lp(T2)

.

Again, using Theorem 7.2, we have

ωpα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

.1

nα1p1 nα2p

2

n1∑ν1=1

n2∑ν2=1

να1p−11 να2p−1

2 (νp−11 νp−12 apν1,ν2)

+1

nα1p1

n1∑ν1=1

να1p−11

(νp−11

∞∑ν2=n2+1

apν1,ν2νp−22

)+

1

nα2p2

n2∑ν2=1

να2p−12

(νp−12

∞∑ν1=n1+1

apν1,ν2νp−21

)+

∞∑ν1=n1+1

∞∑ν2=n2+1

apν1,ν2(ν1ν2)p−2.

Then applying the above mentioned inequalities, we have

ωpα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

.1

nα1p1 nα2p

2

n1∑ν1=1

n2∑ν2=1

να1p−11 να2p−1

2 ωpbα1c+1,bα2c+1

(f,

1

ν1,

1

ν2

)Lp(T2)

+1

nα1p1

n1∑ν1=1

να1p−11 ωpbα1c+1,bα2c+1

(f,

1

ν1,

1

n2

)Lp(T2)

+1

nα2p2

n2∑ν2=1

να2p−12 ωpbα1c+1,bα2c+1

(f,

1

n1,

1

ν2

)Lp(T2)

+ ωpbα1c+1,bα2c+1

(f,

1

n1,

1

n2

)Lp(T2)

.

Properties of the mixed moduli of smoothness imply

ωpα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

.1

nα1p1 nα2p

2

n1∑ν1=1

n2∑ν2=1

να1p−11 να2p−1

2 ωpbα1c+1,bα2c+1

(f,

1

ν1,

1

ν2

)Lp(T2)

.

Then, by Theorem 4.2,

ωpα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

.1

nα1p1 nα2p

2

n1∑ν1=1

n2∑ν2=1

να1p−11 να2p−1

2

ν(bα1c+1)p1 ν

(bα2c+1)p2

ν1∑µ1=1

ν2∑µ2=1

µbα1c1 µ

bα2c2 Yµ1−1,µ2−1(f)Lp(T2)

p

.

By Hardy’s inequality (Lemma 3.2), we get

ωpα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

.1

nα1p1 nα2p

2

n1∑µ1=1

n2∑µ2=1

µα1p−11 µα2p−1

2 Y pµ1−1,µ2−1(f)Lp(T2).

Thus, the proof of Theorem 9.2 is now complete. �

Page 43: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 43

Proof of Theorem 9.3. Here, it is enough to show that ωα1,α2

(f, 1

2m1 ,1

2m2

)Lp(T2)

� I, where

I := 2−(m1α1+m2α2)

m1∑µ1=1

m2∑µ2=1

22(µ1α1+µ2α2)Y 22µ1−1,2µ2−1(f)Lp(T2)

1/2

.

Lemmas 3.3 and 3.9 imply

I � 2−(m1α1+m2α2)m1∑µ1=1

m2∑µ2=1

22(µ1α1+µ2α2)‖f − s2µ1−1,∞(f)− s∞,2µ2−1(f) + s2µ1−1,2µ2−1(f)‖2Lp(T2)

1/2

� 2−(m1α1+m2α2)

m1∑µ1=1

m2∑µ2=1

22(µ1α1+µ2α2)∞∑

ν1=µ1

∞∑ν2=µ2

λ2µ1,µ2

1/2

� 2−(m1α1+m2α2)

m1∑µ1=1

m2∑µ2=1

λ2µ1,µ222(µ1α1+µ2α2)

1/2

+ 2−m1α1

m1∑µ1=1

∞∑µ2=m2+1

λ2µ1,µ222µ1α1

1/2

+ 2−m2α2

∞∑

µ1=m1+1

m2∑µ2=1

λ2µ1,µ222µ2α2

1/2

+

∞∑

µ1=m1+1

∞∑µ2=m2+1

λ2µ1,µ2

1/2

.

Using now Theorem 7.3, we finally get I � ωα1,α2

(f, 1

2m1 ,1

2m2

)Lp(T2)

. �

Theorem 9.1 was proved in the case of αi ∈ N in the paper [55]. For the proof of Theorem9.2, see [31]. The one-dimensional sharp Jackson inequality was proved in [87]. The history of thistopic and new results can be found in [14].

10 Interrelation between the mixed moduli of smoothness of different ordersin Lp

We have stated above (see Theorem 4.1) that the following properties of mixed moduli are wellknown:

ωβ1,β2(f, δ1, δ2)Lp(T2) . ωα1,α2(f, δ1, δ2)Lp(T2);

ωα1,α2(f, δ1, δ2)Lp(T2)

δα11 δα2

2

.ωβ1,β2(f, δ1, δ2)Lp(T2)

δβ11 δβ22

;

ωα1,α2(f, δ1, δ2)Lp(T2) . δα11 δα2

2

∫ 1

δ1

∫ 1

δ2

ωβ1,β2(f, t1, t2)Lp(T2)

tα11 tα2

2

dt1t1

dt2t2,

where f ∈ L0p(T2), 1 < p <∞, and 0 < αi < βi, δi ∈ (0, 12), i = 1, 2.

The following theorem sharpens all these estimates.

Page 44: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 44

Theorem 10.1 Let f ∈ L0p(T2), 1 < p < ∞, τ := max(2, p), θ := min(2, p), 0 < αi < βi,

δi ∈ (0, 12), i = 1, 2. Then

δα11 δα2

2

1∫

δ1

1∫δ2

[t−α11 t−α2

2 ωβ1,β2(f, t1, t2)Lp(T2)

]τ dt1t1

dt2t2

1/τ

. ωα1,α2(f, δ1, δ2)Lp(T2)

. δα11 δα2

2

1∫

δ1

1∫δ2

[t−α11 t−α2

2 ωβ1,β2(f, t1, t2)Lp(T2)

]θ dt1t1

dt2t2

1/θ

.

These estimates are the best possible in the sense of order. This can be shown using the followingtwo equivalence results for the function classes Mp and Λp defined in Section 2.4.

Theorem 10.2 Let f ∈Mp, 1 < p <∞, 0 < αi < βi, δi ∈ (0, 12), i = 1, 2. Then

ωα1,α2(f, δ1, δ2)Lp(T2) � δα11 δα2

2

1∫

δ1

1∫δ2

[t−α11 t−α2

2 ωβ1,β2(f, t1, t2)Lp(T2)

]p dt1t1

dt2t2

1/p

.

Theorem 10.3 Let f ∈ Λp, 1 < p <∞, 0 < αi < βi, δi ∈ (0, 12), i = 1, 2. Then

ωα1,α2(f, δ1, δ2)Lp(T2) � δα11 δα2

2

1∫

δ1

1∫δ2

[t−α11 t−α2

2 ωβ1,β2(f, t1, t2)Lp(T2)

]2 dt1t1

dt2t2

1/2

.

Proof of Theorem 10.1. We consider

I := δα11 δα2

2

1∫δ1

1∫δ2

[t−α11 t−α2

2 ωβ1,β2(f, t1, t2)Lp(T2)

]τ dt1t1

dt2t2

1/τ

.

For given δi ∈ (0, 12), we take integers ni such that 1ni+1 ≤ δi <

1ni, i = 1, 2. Then

Iτ . n−α1τ1 n−α2τ

2

n1∑µ1=1

n2∑µ2=1

µα1τ−11 µα2τ−1

2 ωτβ1,β2

(f,

1

µ1,

1

µ1

)Lp(T2)

.

Further, Theorem 9.1 implies

Iτ . n−α1τ1 n−α2τ

2

n1+1∑µ1=1

n2+1∑µ2=1

µα1τ−β1τ−11 µα2τ−β2τ−1

2

{µ1+1∑ν1=1

µ2+1∑ν2=1

νβ1θ−11 νβ2θ−12 Y θν1−1,ν2−1(f)Lp(T2)

}τ/θ.

Since τ/θ ≥ 1, using Lemma 3.2, we get

Iτ . n−α1τ1 n−α2τ

2

n1+1∑µ1=1

n2+1∑µ2=1

µα1τ−11 µα2τ−1

2 Y τµ1−1,µ2−1(f)Lp(T2).

Page 45: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 45

By Theorem 9.1, we have

Iτ . ωτα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

,

which implies

I . ωα1,α2

(f,

1

n1 + 1,

1

n2 + 1

)Lp(T2)

≤ ωα1,α2(f, δ1, δ2)p.

The estimate “. ωα1,α2(f, δ1, δ2)p” is proved.Let us verify the part “ωα1,α2(f, δ1, δ2)p .”. For given δi ∈ (0, 12), we take integers ni such that

1ni+1 ≤ δi <

1ni, i = 1, 2. Then, by Theorem 9.1, we get

ωα1,α2(f, δ1, δ2)Lp(T2) . ωα1,α2

(f,

1

n1,

1

n2

)Lp(T2)

. n−α11 n−α2

2

{n1+1∑ν1=1

n2+1∑ν2=1

να1θ−11 να2θ−1

2 Y θν1−1,ν2−1(f)Lp(T2)

}1/θ

.

Then Theorem 4.2 gives us

ωα1,α2(f, δ1, δ2)Lp(T2) . n−α11 n−α2

2

{n1+1∑ν1=1

n2+1∑ν2=1

να1θ−11 να2θ−1

2 ωθβ1,β2

(f,

1

ν1,

1

ν2

)Lp(T2)

}1/θ

. δα11 δα2

2

1∫

δ1

1∫δ2

[t−α11 t−α2

2 ωβ1,β2 (f, t1, t2)Lp(T2)

]θ dt1t1

dt2t2

1/θ

,

which completes the proof of Theorem 10.1. �

Proof of Theorem 10.2. Denoting

A := δα11 δα2

2

1∫

δ1

1∫δ2

[t−α11 t−α2

2 ωβ1,β2 (f, t1, t2)Lp(T2)

]p dt1t1

dt2t2

1/p

,

and choosing integers ni such that 1ni+1 ≤ δi <

1ni, i = 1, 2, we have

Ap � n−α1p1 n−α2p

2

n1∑µ1=1

n2∑µ2=1

µα1p−11 µα2p−1

2 ωpβ1,β2(f,

1

µ1,

1

µ2

)Lp(T2)

.

Then Theorem 9.2 yields

Ap � n−α1p1 n−α2p

2

n1∑µ1=1

n2∑µ2=1

µα1p−β1p−11 µα2p−β2p−1

2

µ1+1∑ν1=1

µ2+1∑ν2=1

νβ1p−11 νβ2p−12 Y pν1−1,ν2−1(f)Lp(T2)

� n−α1p1 n−α2p

2

n1+1∑ν1=1

n2+1∑ν2=1

να1p−11 να2p−1

2 Y pν1−1,ν2−1(f)Lp(T2).

Page 46: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 46

Finally, by Theorem 9.2, we have Ap � ωα1,α2

(f, 1

n1, 1n2

)Lp(T2)

, which completes the proof. �

Proof of Theorem 10.3. As above, let

B := δα11 δα2

2

1∫

δ1

1∫δ2

[t−α11 t−α2

2 ωβ1,β2 (f, t1, t2)Lp(T2)

]2 dt1t1

dt2t2

1/2

.

and 12ni+1 ≤ δi < 1

2ni , i = 1, 2. Then

B2 � 2−n1α12−n2α2

n1∑µ1=1

n2∑µ2=1

22µ1α1+2µ2α2ω2β1,β2

(f,

1

2µ1,

1

2µ2

)Lp(T2)

.

Using now Theorem 9.3, we have

B2 � 2−n1α12−n2α2

n1∑µ1=1

n2∑µ2=1

22µ1α1+2µ2α2−2µ1β1−2µ2β2µ1+1∑ν1=1

µ2+1∑ν2=1

22ν1β1+2ν2β2Y 22ν1−1,2ν2−1(f)Lp(T2)

� 2−2(n1α1+n2α2)n1+1∑ν1=1

n2+1∑ν2=1

22(ν1α1+ν2α2)Y 22ν1−1,2ν2−1(f)Lp(T2).

By Theorem 9.3, we get B � ωα1,α2

(f, 1

2n1 ,1

2n2

)Lp(T2)

� ωα1,α2

(f, δ1, δ2

)Lp(T2)

. �

The one-dimensional version of Theorem 10.2 for functions with general monotone coefficientswas stated in [83].

11 Interrelation between the mixed moduli of smoothness in various (Lp,Lq)metrics

For functions on T, the classical Ul’yanov inequality ([97], see also [25]) states that

ωα(f, δ)Lq(T) .

δ∫0

[t−θωα(f, t)Lp(T)

]q dt

t

1/q

,

where f ∈ Lp(T), 1 < p < q < ∞, θ := 1p −

1q , and α ∈ N. Very recently, this inequality was

generalized using the fractional modulus of smoothness (α > 0) as follows (see [60, 75, 91]):

ωα(f, δ)Lq(T) .

δ∫0

[t−θωα+θ(f, t)Lp(T)

]q dt

t

1/q

.

Below, we present an analogue of the sharp Ul’yanov inequality for the mixed moduli of smoothness(see [61]).

Page 47: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 47

Theorem 11.1 Let f ∈ L0p(T2), 1 < p < q <∞, θ := 1

p −1q , α1 > 0, α2 > 0. Then

ωα1,α2(f, δ1, δ2)Lq(T2) .

δ1∫0

δ2∫0

[(t1t2)

−θωα1+θ,α2+θ(f, t1, t2)Lp(T2)

]q dt1t1

dt2t2

1/q

. (11.1)

Proof. For given δi ∈ (0, 1), there exist integers ni such that 12ni+1 ≤ δi <

12ni , i = 1, 2. Then, by

Theorem 5.1, we get

I := ωα1,α2(f, δ1, δ2)Lq(T2) . ωα1,α2

(f,

1

2n1,

1

2n2

)Lq(T2)

. ‖f − s2n1 ,∞ − s∞,2n2 + s2n1 ,2n2‖Lq(T2)

+ 2−α1n1‖s(α1,0)2n1 ,∞(f − s∞,2n2 )‖Lq(T2) + 2−α2n2‖s(0,α2)

∞,2n2 (f − s2n1 ,∞)‖Lq(T2)

+ 2−α1n1−α2n2‖s(α1,α2)2n1 ,2n2 (f)‖Lq(T2) =: I1 + I2 + I3 + I4.

To estimate I1, we use Lemmas 3.3 and 3.4

I1 .

{ ∞∑ν1=n1

∞∑ν2=n2

2(ν1+ν2)θqY q2ν1−1,2ν2−1(f)Lp(T2)

}1/q

.

Further, by Theorem 4.2, we get

I1 .

{ ∞∑ν1=n1

∞∑ν2=n2

2(ν1+ν2)θqωqα1+θ,α2+θ

(f,

1

2ν1,

1

2ν2

)Lp(T2)

}1/q

=: J.

Let us now estimate I2. Define ϕ(x, y) := s(α1,0)2n1 ,∞(f). Then I2 = 2−α1n1‖ϕ − s∞,2n2 (ϕ)‖Lq(T2).

Lemma 3.13 implies, for a.e. x,

2π∫0

|ϕ− s∞,2n2 (ϕ)|q dy .∞∑

ν2=n2

2ν2θq

2π∫0

|ϕ− s∞,2ν2 (ϕ)|p dy

q/p

.

Therefore,

2π∫0

2π∫0

|ϕ− s∞,2n2 (ϕ)|q dy dx .∞∑

ν2=n2

2ν2θq2π∫0

2π∫0

|ϕ− s∞,2ν2 (ϕ)|p dy

q/p

dx.

Using Minkowski’s inequality, we have

2π∫0

2π∫0

|ϕ− s∞,2ν2 (ϕ)|p dy

q/p

dx .

2π∫0

2π∫0

|ϕ− s∞,2ν2 (ϕ)|q dx

p/q

dy

q/p

.

Page 48: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 48

Since ϕ− s∞,2ν2 (ϕ) = s(α1,0)2n1 ,∞(f − s∞,2ν2 (f)), then Lemma 3.14 implies, for a.e. y,

2π∫0

|s(α1,0)2n1 ,∞(f − s∞,2ν2 (f))|q dx

1/q

.

2π∫0

|s(α1+θ,0)2n1 ,∞ (f − s∞,2ν2 (f))|p dx

1/p

.

This gives

2π∫0

2π∫0

|s(α1,0)2n1 ,∞(f − s∞,2ν2 (f))|q dx

p/q

dy .

2π∫0

2π∫0

|s(α1+θ,0)2n1 ,∞ (f − s∞,2ν2 (f))|p dx dy.

Thus,

I2 . 2−α1n1

{ ∞∑ν2=n2

2ν2θq‖s(α1+θ,0)2n1 ,∞ (f − s∞,2ν2 (f))‖q

Lp(T2)

}1/q

= 2n1θ

{ ∞∑ν2=n2

2ν2θq[2−(α1+θ)n1‖s(α1+θ,0)

2n1 ,∞ (f − s∞,2ν2 (f))‖Lp(T2)

]q}1/q

.

Now using Theorem 5.1, we get

I2 .

{2n1θq

∞∑ν2=n2

2ν2θqωqα1+θ,α2+θ

(f,

1

2n1,

1

2ν2

)Lp(T2)

}1/q

. J.

Similarly, one can show that I3 . J and I4 . J . Combining the estimates for I1, I2, I3, and I4, weget

I .

{ ∞∑ν1=n1

∞∑ν2=n2

2(ν1+ν2)θqωqα1+θ,α2+θ

(f,

1

2ν1,

1

2ν2

)Lp(T2)

}1/q

.

Taking into account monotonicity properties of the mixed moduli of smoothness, we finally have

I .

2

1n1+1∫0

21

n2+1∫0

[(t1t2)

−θωα1+θ,α2+θ (f, t1, t2)Lp(T2)

]q dt1t1

dt2t2

1/q

.

.

δ1∫0

δ2∫0

[(t1t2)

−θωα1+θ,α2+θ (f, t1, t2)Lp(T2)

]q dt1t1

dt2t2

1/q

.

Page 49: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 49

11.1 Sharpness

Let us show that it is impossible to obtain the reverse part & of inequality (11.1), i.e., in general,(11.1) is not an equivalence. Let us construct a function f0(x, y) ∈ L0

p(T2) such that the terms onthe left- and right-hand side of (11.1) have different orders as functions of δ1 and δ2. Consider

f0(x, y) :=∞∑ν1=0

∞∑ν2=0

aν1,ν2 cos 2ν1x cos 2ν2y, where aν1,ν2 :=(ν1 + 1)β1(ν2 + 1)β2

2α1ν1+α2ν2,

1 < p < q <∞, θ := 1p −

1q , βi > −1

2 , αi > θ, (i = 1, 2). By Theorem 7.3, we get

ωα1,α2

(f0,

1

2n1,

1

2n2

)Lq(T2)

� (n1 + 1)β1+12 (n2 + 1)β2+

12

2α1ν1+α2ν2

and

ωα1+θ,α2+θ

(f0,

1

2n1,

1

2n2

)Lp(T2)

� (n1 + 1)β1(n2 + 1)β2

2α1ν1+α2ν2.

Using these estimates, one can easily see that

ωα1,α2(f0, δ1, δ2)Lq(T2) � δα11 δα2

2

(ln

2

δ1

)β1+ 12(

ln2

δ2

)β2+ 12

andδ1∫0

δ2∫0

[(t1t2)

−θωα1+θ,α2+θ (f0, t1, t2)Lp(T2)

]q dt1t1

dt2t2

1/q

� δα1−θ1 δα2−θ

2

(ln

2

δ1

)β1 (ln

2

δ2

)β2.

(11.2)Thus, the inequality

ωα1,α2(f, δ1, δ2)Lq(T2) &

δ1∫0

δ2∫0

[(t1t2)

−θωα1+θ,α2+θ(f, t1, t2)Lp(T2)

]q dt1t1

dt2t2

1/q

does not hold for f0.Finally, we would like to mention that inequality (11.1) improves the classical Ul’yanov in-

equality for the mixed moduli of smoothness given by ([54])

ωα1,α2(f, δ1, δ2)Lq(T2) .

δ1∫0

δ2∫0

[(t1t2)

−θωα1,α2(f, t1, t2)Lp(T2)

]q dt1t1

dt2t2

1/q

. (11.3)

Indeed, for f0 we have

ωα1,α2(f0, t1, t2)Lp(T2) � tα11 tα2

2

(ln

2

t1

)β1+ 12(

ln2

t2

)β2+ 12

Page 50: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 50

and therefore for this functionδ1∫0

δ2∫0

[(t1t2)

−θωα1,α2(f0, t1, t2)Lp(T2)

]q dt1t1

dt2t2

1/q

� δα1−θ1 δα2−θ

2

(ln

2

δ1

)β1+ 12(

ln2

δ2

)β2+ 12

.

Thus, for the function f0 the integrals in the right-hand sides of (11.1) and (11.3) have differentorders of magnitude as functions of δ1 and δ2 (cf. (11.2) and (11.3)).

References

[1] T. I. Amanov, Spaces of Differentiable Functions With Dominating Mixed Derivatives. NaukaKaz. SSR, Alma-Ata, 1976.

[2] A. P. Antonov, Smoothness of sums of trigonometric series with monotone coefficients, Rus-sian Mathematics (Iz. VUZ) 51 (4) (2007), 18–26.

[3] K. I. Babenko, Approximation by trigonometric polynomials in a certain class of periodicfunctions of several variables. Dokl. Akad. Nauk SSSR 132 (1960), 982– 985; English transl.in Soviet Math. Dokl. 1 (1960), 672–675.

[4] N. S. Bakhvalov, Embedding theorems for classes of functions with several bounded deriva-tives, Vestn. Mosk. Univ., Ser. I, 18 (4) (1963), 7–16.

[5] D. B. Bazarkhanov, Characterizations of the Nikol’skij-Besov and Lizorkin-Triebel FunctionSpaces of Mixed Smoothness, Proc. Steklov Inst. 243 (2003), 46–58; translation from Functionspaces, approximations, and differential equations, Collected papers. Dedicated to the 70thbirthday of Oleg Vladimirovich Besov, corresponding member of RAS, Tr. Mat. Inst. Steklova,243 (2003), 53–65.

[6] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.

[7] M. Berisha, On the coefficients of double lacunary trigonometric series, Serdica, 14(1) (1988),68–74.

[8] O. V. Besov, On some conditions for derivatives of periodic functions to belong to Lp, Nauchn.Dokl. Vyssh. Shkoly Fiz.-Mat. Nauki, 1 (1959), 13–17 (in Russian).

[9] O. V. Besov, V. P. Il’in, S. M. Nikol’skii, Integral Representations of Functions and ImbeddingTheorems, J. Wiley and Sons, New York, 1978, 1979; translated from Russian: Nauka,Moscow, 1975.

[10] A. Brudnyi, Y. Brudnyi, Methods of Geometric Analysis in Extension and Trace Problems,Vol. 1, Springer, 2012.

[11] P. L. Butzer, H. Dyckhoff, E. Gorlich, R. L. Stens, Best trigonometric approximation, frac-tional order derivatives and Lipschitz classes, Canad. J. Math., 29(4) (1977), 781–793.

Page 51: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 51

[12] W. Chen, Z. Ditzian, Mixed and directional derivatives, Proc. Amer. Math. Soc. 108 (1990),177–185.

[13] C. Cottin, Mixed K-functionals: a measure of smoothness for blending-type approximation,Math. Z., 204 (1990), 69–83.

[14] F. Dai, Z. Ditzian, S. Tikhonov, Sharp Jackson inequality, J. Approx. Theory, 151(1) (2008),86–112.

[15] F. Dai, Y. Xu, Analysis on h-harmonics and Dunkl Transforms, Birkhauser Verlag, to appear.

[16] W. Dahmen, R. DeVore, K. Scherer, Multi-dimensional spline approximation, SIAM J. Nu-mer. Anal., 17(3) (1980), 380–402.

[17] O. V. Davydov, Sequences of rectangular Fourier sums of continuous functions with givenmajorants of the mixed moduli of smoothness, Sb. Math., 187(7) (1996), 981–1004.

[18] R. A. DeVore, S.V. Konyagin, V.N. Temlyakov, Hyperbolic wavelet approximation, Constr.Approx., 14 (1998), 1–26.

[19] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer, 1993.

[20] R. A. DeVore, P.P. Petrushev, V.N. Temlyakov, Multivariate trigonometric polynomial ap-proximations with frequencies from the hyperbolic cross, Math. Notes, 56 (1994), 900–918.

[21] Z. Ditzian, Moduli of continuity in Rn and D ⊂ Rn, Trans. Amer. Math. Soc., 282(2) (1984),611–623.

[22] Z. Ditzian, On the Marchaud-type inequality, Proc. Amer. Math. Soc., 103 (1988), 198–202.

[23] Z. Ditzian, The modulus of smoothness and discrete data in a square domain, IMA Journalof Numerical Analysis, 8 (1988), 311–319.

[24] Z. Ditzian, V. H. Hristov, K. G. Ivanov, Moduli of smoothness and K-functionals in Lp,0 < p < 1, Constr. Approx., 11(1) (1995), 67–83.

[25] Z. Ditzian, S. Tikhonov, Ul’yanov and Nikol’skii-type inequalities, J. Approx. Theory, 133(1)(2005), 100—133.

[26] Z. Ditzian, S. Tikhonov, Moduli of smoothness of functions and their derivatives, StudiaMath., 180(2) (2007), 143–160.

[27] D. Dung, T. Ullrich, Whitney type inequalities for local anisotropic polynomial approxima-tion, J. Approx. Theory, 163(11) (2011), 1590–1605.

[28] M. I. Dyachenko, Uniform convergence of double Fourier series for classes of functions withanisotropic smoothness, Mat. Zametki, 59(6) (1996), 937–943.

[29] M. I. Dyachenko, Some problems in the theory of multiple trigonometric series, Russian Math.Surveys 47(5) (1992), 103–171; translated from Uspekhi Mat. Nauk 47(5) (1992), 97–162.

Page 52: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 52

[30] M. Dyachenko, S. Tikhonov. A Hardy-Littlewood theorem for multiple series, J. Math. Anal.Appl., 339 (2008), 503–510.

[31] M. G. Esmaganbetov, Existence conditions of the mixed Weyl derivatives in Lp([0, 2π]2)(1 <p < ∞) and their structural properties. Deposited at the VINITI, manuscript N 1675-82,17.02.1982.

[32] G. Garrigos, R. Hochmuth, A. Tabacco, Wavelet characterizations for anisotropic Besovspaces with 0 < p < 1, Proc. Edinb. Math. Soc., II. Ser. 47(3) (2004), 573–595.

[33] D. Gorbachev, S. Tikhonov, Moduli of smoothness and growth properties of Fourier trans-forms: two-sided estimates, J. Approx. Theory, 164(9) (2012), 1283–1312.

[34] M. Hansen, Nonlinear approximation and function spaces of dominating mixed smoothness,Ph.D. thesis, FSU, Jena, Germany, 2010.

[35] M. Hansen, W. Sickel, Best m-Term Approximation and Sobolev–Besov Spaces of dominatingmixed smoothness — the Case of Compact Embeddings, Constr. Approx., 36(1) (2012), 1–51.

[36] R. Hochmuth, Wavelet characterizations for anisotropic Besov spaces, Appl. Comput. Har-mon. Anal., 12(2) (2002), 179–208.

[37] H. Johnen, K. Scherer, On the equivalence of the K-functional and moduli of continu-ity and some applications, Constructive theory of functions of several variables (Proc.Conf., Math. Res. Inst., Oberwolfach 1976), Lecture Notes in Math., 571, Springer-Verlag,Berlin–Heidelberg 1977, 119–140.

[38] B. S. Kashin, V. N. Temlyakov, On a norm and approximate characteristics of classes ofmultivariable functions, Theory of functions, CMFD, 25, PFUR, M., (2007), 58–79; Englishversion: Journal of Mathematical Sciences, 155(1) (2008), 57–80.

[39] V. Kolyada, F. Perez Lazaro, Inequalities for partial moduli of continuity and partial deriva-tives, Constr. Approx., 34(1) (2011), 23–59.

[40] M. Krbec, H.-J. Schmeisser, Imbeddings of Brezis–Wainger type. The case of missing deriva-tives, Proceedings of the Royal Society of Edinburgh, Section: A Mathematics, 131(3) (2001),667–700.

[41] L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math., 31(1970), 279–285.

[42] P. I. Lizorkin, Properties of functions in the spaces Λrp θ, Trudy Mat. Inst. Steklov 131 (1974),158–181; English transl. in Proc. Steklov Inst. Math. 131 (1974), 165–188.

[43] P. I. Lizorkin, S. M. Nikol’skii, Classification of differentiable functions on the basis of spaceswith dominating mixed smoothness, Trudy Mat. Inst. Steklov, 77 (1965), 143–167.

[44] P. I. Lizorkin, S. M. Nikol’skii, Function spaces of mixed smoothness from the decompositionpoint of view, Trudy Mat. Inst. Steklov, 187 (1989), 143–161; English transl. in Proc. SteklovInst. Math., 187(3) (1990), 163–184.

Page 53: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 53

[45] J. Marcinkiewicz, Sur quelques integrales du type de Dini, Ann. Soc. Polon. Math., 17 (1938),42–50.

[46] F. Moricz, On double cosine, sine, and Walsh series with monotone coefficients, Proc. Amer.Math. Soc., 109 (1990), 417–425.

[47] F. Moricz, A. Veres, On the absolute convergence of multiple Fourier series Acta Math.Hungar., 117(3) (2007), 275–292.

[48] J. Musielak, On the absolute convergence of multiple Fourier series, Ann. Polon. Math., 5(1958), 107–120.

[49] S. M. Nikol’skii, Functions with dominating mixed derivatives satisfying multiple Holder con-ditions, Sib. Mat. Zh., 4(6) (1963), 1342–1364; English transl. in Amer. Math. Soc. Transl.,Ser. 2, 102 (1973), 27–51].

[50] S. M. Nikol’skii, Stable boundary-value problems of a differentiable function of several vari-ables, Mat. Sb. 61(103), N 2 (1963), 224–252.

[51] S. M. Nikol’skii, Approximation of Functions of Several Variables and Embedding Theorems.Springer-Verlag, 1975.

[52] E. D. Nursultanov, On the coefficients of multiple Fourier series from Lp-spaces, Izv. Ross.Akad. Nauk Ser. Mat., 64 (1) (2000), 95–122; translation in Izv. Math., 64 (1) (2000),93–120.

[53] M. K. Potapov, On “angular” approximation, Proc. Conf. Constructive Function Theory(Budapest, 1969), Akad. Kiado, Budapest, 1971, 371–379.

[54] M. K. Potapov, Imbedding of classes of functions with a dominating mixed modulus ofsmoothness, Trudy Mat. Inst. Steklov., 131 (1974), 199–210.

[55] M. K. Potapov, The Hardy-Littlewood and Marcinkiewicz-Littlewood-Paley theorems, angu-lar approximation, and embedding of some classes of functions, Mathematica (Cluj), 14(37),2, (1972), 339–362.

[56] M. K. Potapov, B.V. Simonov, B. Lakovich, On estimates for the mixed modulus of continuityof a function with a transformed Fourier series, Publ. Inst. Math., Nouv. Ser., 58(72) (1995),167–192.

[57] M. K. Potapov, B. V. Simonov, Generalized classes of the Besov-Nikol’skij and Weyl-Nikol’skijfunctions: Their interrelations, Proc. Steklov Inst. Math. 214 (1996), 243–259; translationfrom Tr. Mat. Inst. Steklova 214 (1997), 250–266.

[58] M. K. Potapov, B. V. Simonov, S. Yu. Tikhonov, On Besov, Besov-Nikol’skii classes and onthe estimates of mixed smoothness moduli of fractional derivatives, Proc. Steklov Inst. Math.,243 (2003), 234–246; translated from Tr. Mat. Inst. Steklova, 243 (2003), 244–256.

[59] M. K. Potapov, B. V. Simonov, S. Yu. Tikhonov, Transformation of Fourier series using powerand weakly oscillating sequences, Mat. Zametki, 77(1) (2005), 99–116; translation in Math.Notes, 77(1) (2005), 90–107.

Page 54: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 54

[60] M. K. Potapov, B. V. Simonov, S. Yu. Tikhonov, Relations between moduli of smoothness indifferent metrics, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 3 (2009), 17–25; translationin Moscow Univ. Math. Bull. 64 (2009), 105–112.

[61] M. K. Potapov, B.V. Simonov, S. Yu. Tikhonov, Relations between the mixed moduli ofsmoothness and embedding theorems for Nikol’skii classes, Proceedings of the Steklov Insti-tute of Mathematics, 269 (2010), 197–207; translation from Russian: Trudy Matem. Inst. V.A. Steklova, 269 (2010), 204–214.

[62] M. K. Potapov, B.V. Simonov, S. Yu. Tikhonov, Constructive characteristics of mixed moduliof smoothness of positive orders, to be published in Proceedings of VII ISAAC Congress,Moscow, 2011.

[63] N. N. Pustovoitov, The orthoprojection widths of some classes of periodic functions of twovariables with a given majorant of the mixed moduli of continuity, Izvestiya: Mathematics,64(1) (2000), 121–141.

[64] A. K. Ramazanov, A. R. K. Ramazanov, Mixed moduli of continuity and their applications inpolynomial approximations with interpolation, Analysis Mathematica, 35 (3) (2009), 213–232.

[65] K. V. Runovskii, Several questions of approximation theory, Disser. Cand. Nauk, Moscow,MGU, 1989.

[66] K. V. Runovskii, A direct theorem on approximation “by angle” in the spaces Lp, 0 < p < 1,Math. Notes, 52 (5) (1992), 1140–1142.

[67] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory andApplications. Gordon and Breach Science Publishers, Yverdon, 1993.

[68] H.-J. Schmeisser, On spaces of functions and distributions with mixed smoothness propertiesof Besov–Triebel– Lizorkin type. I, II, Math. Nachr. 98 (1980), 233–250; 106 (1982), 187–200.

[69] H.-J. Schmeisser, Recent developments in the theory of function spaces with dominatingmixed smoothness, Nonlinear Analysis, Function Spaces and Applications, Proceedings ofthe Spring School held in Prague, May 30-June 6, 2006. 8. Czech Academy of Sciences,Mathematical Institute, Praha (2007), 145–204.

[70] H.-J. Schmeisser, W. Sickel, Spaces of functions of mixed smoothness and approximation fromhyperbolic crosses, J. Approx. Theory, 128 (2004). 115–150.

[71] H.-J. Schmeisser, H. Triebel. Topics in Fourier Analysis and Function Spaces, Wiley, Chich-ester, 1987.

[72] L. Schumaker, Spline Functions: Basic Theory, Cambridge Univ. Press, 2007.

[73] B. Simonov, I. Simonova, On the Fourier coefficients of some functions. Deposited at theVINITI, manuscript N 1675-82, 17.04.1982.

[74] B. V. Simonov, S. Yu. Tikhonov, Embedding theorems in constructive approximation, Sb.Math., 199(9) (2008), 1367–1407; translation from Mat. Sb., 199(9) (2008), 107–148.

Page 55: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 55

[75] B. Simonov, S. Tikhonov, Sharp Ul’yanov-type inequalities using fractional smoothness, J.Approx. Theory, 162(9) (2010), 1654–1684.

[76] J. O. Stromberg, Computation with wavelets in higher dimensions. Proceedings of the Inter-national Congress of Mathematicians, Vol. III (Berlin, 1998). Doc. Math. 1998, Extra Vol.III, 523–532.

[77] Y. Sun, H. Wang, Representation and approximation of multivariate periodic functions withbounded mixed moduli of smoothness, Proc. Steklov Inst. Math., 219 (1997), 350–371; trans-lation from Tr. Mat. Inst. Steklova 219 (1997), 356–377.

[78] R. Taberski, Differences, moduli and derivatives of fractional orders, Comment. Math. PraceMat. 19(2) (1976/77), 389–400.

[79] V. N. Temlyakov, Approximation of functions with a bounded mixed difference by trigono-metric polynomials, and the widths of some classes of functions, Mathematics of the USSR-Izvestiya, 20(1) (1983), 173–187.

[80] V. N. Temlyakov, Approximations of functions with bounded mixed derivative, Trudy Mat.Inst. Steklov., 178 (1986), 3–113.

[81] V. N. Temlyakov, Approximation of Periodic Functions, Nova Science Pub. Inc. 1994.

[82] S. Tikhonov, On modulus of smoothness of fractional order, Real. Analysis Exchange, 30(2)(2004/2005), 507–518.

[83] S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl.,326(1) (2007), 721–735.

[84] S. Tikhonov, Best approximation and moduli of smoothness: computation and equivalencetheorems, J. Approx. Theory, 153 (2008), 19–39.

[85] S. Tikhonov, Weak type inequalities for moduli of smoothness: the case of limit value param-eters, J. Fourier Anal. Appl., 16 (4) (2010), 590–608.

[86] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press:Oxford, 1963.

[87] M. F. Timan, On Jackson’s theorem in Lp spaces, Ukrain. Mat. Zh. 18 (1) (1966), 134–137(in Russian).

[88] M. F. Timan, Difference properties of functions of several variables, Math. USSR - Izvestiya,3(3) (1969), 633–642; translation from Izv. Akad. Nauk SSSR, Ser. Mat. 33(3) (1969), 667–676.

[89] M. Tomic, The converse theorem of approximation by angle in various metrics for non-periodicfunctions, Facta Univ., Ser. Math. Inf., 16 (2001), 45–60.

[90] M. Tomic, On representation of derivatives of functions in Lp, Matematicki Vesnik, 62(3)(2010), 235–250.

Page 56: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

M. Potapov, B. Simonov, and S. Tikhonov 56

[91] W. Trebels, Inequalities for moduli of smoothness versus embeddings of function spaces, Arch.Math., 94 (2010), 155–164.

[92] W. Trebels, On the approximation behavior of the Riesz means in Lp(Rn), in: Approximationtheory (Proc. Internat. Colloq., Inst. Angew. Math. Univ. Bonn, Bonn, 1976), R. Schabackand K. Scherer (eds.), Lect. Notes Math. 556, 428–438, Springer, Berlin, 1976.

[93] H. Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, EMSTracts in Mathematics, 2010.

[94] H. Triebel, A diagonal embedding theorem for function spaces with dominating mixed smooth-ness properties, Banach Center Publications 22, Warsaw, (1989), 475–486.

[95] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Springer,2010.

[96] T. Ullrich, Function spaces with dominating mixed smoothness, characterization by differ-ences, Jenaer Schriften zur Mathematik und Informatik, Math/Inf/05/06 (2006).

[97] P. L. Ul’yanov, The imbedding of certain function classes Hωp , Izv. Akad. Nauk SSSR Ser.

Mat., 32(3) (1968), 649–686.

[98] J. Vybıral, Function spaces with dominating mixed smoothness, Dissertationes Math., 436(2006).

[99] J. Vybıral, W. Sickel, Traces of functions with a dominating mixed derivative in R3, Czech.Math. J., 57(4) (2007), 1239–1273.

[100] H. Wang, Widths between the anisotropic spaces and the spaces of functions with mixedsmoothness, J. Approx. Theory, 164(3) (2012), 406–430.

[101] G. Wilmes, On Riesz-type inequalities and K-functionals related to Riesz potentials in Rn ,Numer. Funct. Anal. Optimization, 1 (1979), 57–77.

[102] G. Wilmes, Some inequalities for Riesz potentials of trigonometric polynomials of several vari-ables, in: Harmonic Analysis in Euclidean Spaces, (Proc. Sympos. Pure Math., Williamstown,1978), Part I, Amer. Math. Soc., Providence, 1979, 175–182.

[103] I. E. Zhak, M. F. Timan, On summation of double series, Mat. Sb. (N.S.), 35(77), 1 (1954),21–56.

[104] L. V. Zhizhiashvili, Some problems in the theory of simple and multiple trigonometric andorthogonal series, Russian Mathematical Surveys, 28 (2)(170) 1973, 65–119.

[105] L. V. Zhizhiashvili, Some Problems of Multidimensional Harmonic Analysis, Tbilisi Univ.Press, Tbilisi, 1996.

[106] L. V. Zhizhiashvili, Trigonometric Fourier series and Their Conjugates, Kluwer Acad. Publ.,1996.

[107] A. Zygmund, Trigonometric Series. Cambridge Univ. Press, Cambridge, 1959.

Page 57: › sat › papers › 18 › 18.pdf · Mixed Moduli of Smoothness in L p, 1 < p < 1: A Survey M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov 11 April 2013 Abstract In this paper

Mixed Moduli of Smoothness in Lp, 1 < p <∞: A Survey 57

M. PotapovDepartment of Mechanics and MathematicsMoscow State UniversityMoscow 119991 [email protected]

B. SimonovDepartment of Applied MathematicsVolgograd State Technical University,Volgograd 400005 [email protected]

S. TikhonovICREA and Centre de Recerca MatematicaApartat 50, Bellaterra, Barcelona 08193 [email protected]

http://www.icrea.cat/Web/ScientificStaff/Sergey-Tikhonov-479