26
A Roadmap for Nuclear Energy Technology Tanju Sofu Argonne Na/onal Laboratory Short Course - Physics of Sustainable Energy June 17, 2016 Energy Policy Ins/tute at the University of Chicago

A Roadmap for Nuclear Energy Technology · A Roadmap for Nuclear Energy Technology ... – increase the contribu/ons from a new generaon of improved light water reactors ... Advanced

Embed Size (px)

Citation preview

A Roadmap for Nuclear Energy Technology

TanjuSofuArgonneNa/onalLaboratoryShortCourse-PhysicsofSustainableEnergyJune17,2016EnergyPolicyIns/tuteattheUniversityofChicago

2

Global Nuclear Energy Market §  Renewedinterestinnuclearenergyworldwideislargelydrivenby:

–  needtodevelopcarbon-freeenergysources,and–  rapiddevelopmentofemergingeconomies.

3

Global Nuclear Energy Market (cont.) §  Ci/eswithaprojected2030popula/onof>10M

4

U.S. National Picture

§  IntheU.S.,currentnuclearfleetof~100plantsgeneratesabout20percentofthena/on’sannualelectricity.

5

U.S. National Picture (cont.)

§  ~100nuclearpowerplantsgenerate800millionmegawaX-hoursofenergy,represen/ngover60percentofthena/on’semissions-freeelectricity.

§  CurrentU.S.nucleargenera/onrepresents500milliontonsofavoidedcarbonemissions

–  Asareference,theEPACleanPowerPlanisdesignedtoreducecarbonemissionsby750milliontonsby2030

6

U.S. National Picture (cont.) §  TheU.S.fleetisbasedonlight-waterreactortechnologywhichisadirect

descendantfromtheU.S.Navypropulsionprogram.–  Itistheoldestopera/ngnuclearplantfleetintheworldand

re/rementsbeginaround2030.

7

U.S. Nuclear Cliff

§  Planneddecommissioningoftheexis/ngplantswouldposea“re/rementcliff”

8

U.S. Nuclear Cliff (cont.)

§  Planneddecommissioningoftheexis/ngplantswouldposea“re/rementcliff”–  Theirreplacementwithnaturalgasorcoalfiredplantswillhavea

largeeconomic,environmental,andclimatechangeimpact.

9

Decarbonization of Electricity Production

10

Decarbonization of Electricity Production (cont.)

§  Beginningwith100GWofnuclearcapacityin2014,severalenergysectorscenarios*requirenuclearprojec/onsbetween160-238GWtomeet80%greenhouse-gas(GHG)reduc/ongoalby2040

§  OECDInterna/onalEnergyAgency’s(IEA)2oCScenario(2DS)projectscurrentnuclearcapacityof390GWtomorethandoubleby2050toreach930GW–  Globalshareofnuclearelectricitywouldincreasefrom11%to18%

*DOE’sOfficeofEnergyPolicyandSystemsAnalysis(EPSA)Low-CarbonEnergyFuturesWorkshop(January2016)

11

U.S. Department of Energy R&D Programs

§  U.S.DepartmentofEnergy(DOE)OfficeofNuclearEnergycurrentlypursuesR&Dprogramstooffsetsomeofthean/cipateddecline:–  licenseextensionsfortheplantsintheexis/ngfleet,and–  increasethecontribu/onsfromanewgenera/onofimprovedlight

waterreactors(LWRs)andsmallmodularreactors(SMRs).§  However,thepathrelyingheavilyonLWRsand“once-through”fuel

cyclewillnotbesustainable.§  Nextgenera/onnuclearenergysystemsunderconsidera/onaim

forsignificantadvancesoverexis/ngandevolu/onaryLWRs.–  But,innovatorsfaceaclassic“valleyofdeath”thatmustbebridgedin

ordertorealizecommercialpoten/alofadvancednuclearreactor

12

U.S. Department of Energy Vision for U.S. Nuclear

13

Four Generations of Nuclear Reactor Designs

14

Status of New Builds in U.S.

§  Gen-III+designsareanevolu/onarystepinlargeLWRtechnology

§  FirstnewreactorsbeingbuiltinU.S.in30years–  WaXsBar:2015–  Vogtle:Late2017–  V.C.Summer:2018-2020

§  SMRtechnologiesarealsoofgreatinterest–  Passivedecayheatremovalby

naturalcircula/on–  Simplifieddesign,belowgradesi/ng–  Poten/alforreduc/oninEPZ–  Reducedfinancialrisk(flexibilityto

addunits,rightsizeforcoolreplacement)

15

Advanced Reactor Concepts

§  Advancedreactorconceptsunderconsidera/onaimformoredras/cimprovementsoverexis/ngandevolu/onaryLWRs:–  Safety–  Sustainability–  Reliability–  Economics–  Non-prolifera/on

§  SixGenera/on-IVsystemsareconsideredinterna/onally:–  Sodium-cooledFastReactor(SFR)

–  HighTemperatureGas-cooledReactor(HTGR,akaVHTR)

–  Lead-orLead-Bismuth-cooledFastReactor(LFR)

–  Gas-cooledFastReactor(GFR)–  MoltenSaltReactor(MSR)

–  Super-Cri/calWater-cooledReactor(SCWR)

16

Advanced Reactor Concepts (cont.)

17

U.S. Commercial Advanced Reactor Designs

Over30advancedreactordesignsarecurrentlybeingpursuedintheU.S.§  Sodium-cooledFastReactor

–  TerraPower,GeneralElectric,ARCNuclear

§  HighTemperatureGas-cooledReactor–  X-Energy,AREVA,HybridEnergy,UltraSafe

§  MoltenSaltReactor–  Transatomic,Terrestrial,Elysium,FLIBEEnergy,TerraPower

§  Lead-orLBE-cooledFastReactor–  Wes/nghouse,GenIVEnergy,Lake-Chime

§  Gas-cooledFastReactor–  GeneralAtomics

18

DOE Strategic Objectives for Advanced Reactors

§  Enhancetheinnova/oninfrastructurefornucleartechnologiesandimproveaccesstoDOEexper/seandcapabili/es

§  Demonstrateperformanceandre/retechnicalrisks§  Supportthedevelopmentoffuelcyclepathways§  Supporttheestablishmentofanefficientandreliable

regulatoryframework§  Effec/velyleveragepublic/privatesectorresourcesand

policyincen/vestoaidtheprivatesectorinaccelera/ngadvancedreactordeployment

§  Addresshumancapitalandworkforcedevelopmentneeds

19

Advanced Reactor Concepts: Fast Reactors

§  Numerousna/onalandinterna/onalstudieshighlightimportanceofclosed-fuel-cyclesystemsusingreactorswithfast-neutronspectrumespeciallytomeetthesustainabilitygoals–  Efficientresourceu/liza/on–  Wasteminimiza/on

§  Fastreactorconceptsaretypicallyclassifiedbytheircoolant:–  Sodium-cooledfastreactor(SFR)–  Lead-orLead-Bismuth-eutec/c-cooledfastreactor(LFR)–  Gas-cooledfastreactor(GFR)–  Somemolten-salt/fueledfastreactorconceptsarealsoenvisioned

§  SFRsarethemostcommonFRtypeandtheycomeinallshapeandsizes:–  Loop-typeorpool-type–  Small,medium-sizeorlarge–  Breeder,burnerorbreak-eventype–  Varietyoffueltypes(metalalloys,oxide,nitride,carbide)

20

Fast Reactor Concepts

§  Allfastreactorconceptsarebasedonsamebasicprinciples:–  No(inten/onal)neutronmoderators(waterorgraphite),resul/ngina

“fast”(or“hard”)neutronenergyspectrumcomparedto“thermalreactors”(LWRsandHTGRs)

–  Improvedneutroneconomyduetolargerfission-to-capturecrosssec/onra/oandgreaternumberofneutronsperfissionathigh-energies

–  Fastneutronspectrumcanalsobeusedforbreeding,ortransmuta/onoftransuranicwasteproducts•  Longcorelife(somewithoutrefueling)ispossiblewithbreed-and-burnconcepts

–  Highcorepowerdensity(~5×incomparisontoanLWR)–  Highcoreoutlettemperatureallowsgreaterthermalefficiency(~40%)for

energyconversion

21

Design Impacts of Fast Spectrum on Fuel Cycle

§  Highfission/capturera/oisthekeytofavorabletransmuta/onperformanceinafastsystem(eventhesmallPWRfrac/onshappenpredominantlyinfastrange)

§  Netresultislesshigherac/nidegenera/oninafastreactor

–  Facilitatesmass/volumereduc/onforgeologicdisposal

§  Increasesthepercentageofthenaturalfuelresourcethatisusedinafuelcyclefromafew%uptoalmost100%

0.000.100.200.300.400.500.600.700.800.901.00

U235

U238

Np237

Pu238

Pu239

Pu240

Pu241

Pu242

Am241

Am243

Cm244

Fission/Absorption

PWRSFR

22

History of Fast Reactor Development

§  SFRhistorydatesbacktodaysofEnricoFermi’sdiscussionswithLeoSzilard,EugeneWignerandothersinApril1944regardingtheconceptofareactorforproduc/onoffuelandelectricity–  Acompactfastreactordesignwasenvisionedbutchallengingheat

removalrequirementswererecognized–  Heavyliquidmetal(Pb-Bi)wasconsidered,butthepumpingadvantage

forthelightersodium(>10Xlessdense)withthesamevolumetricheatcapacitywasnoted

§  Inthefallof1947,WalterZinnproposedaconcepttotheU.S.AECthatwouldlaterbedevelopedintothedesignofExperimentalBreederReactor-I–  Construc/onofEBR-IattheNa/onalReactorTes/ngSta/oninIdaho

beganin1949–  CooledwithNaK,EBR-I(CP-4)firstproducedelectricityonDecember20,

1951

23

History of Fast Reactor Development (cont.)

EBR-I Produces Electricity, December 20, 1951

24

History of Fast Reactor Development (cont.) §  Since1950s,fastreactortechnologyhas

beenpursuedanddemonstratedworldwide,leadingtotheconstruc/onandopera/onofseveralexperimentalandprototypereactors–  Thesefastreactorshaveachievedover

400reactor-yearsofopera/on

§  UShasbuiltandoperatedsixSFRs–  Firstusablenuclearelectricitywas

generatedbyEBR-Iin1951–  EBR-II(20MWe)wasoperatedat

Argonne’sIdahositefrom1963to1994–  FERMI-1wasfirstcommercialSFR(61

MWe)in1965–  FastFluxTestFacility(400MWt)

operatedfrom1980to1992

§  NewSFRsunderconsidera/onincludeBN-1200andMBIR(Russia),PRISMandTWR-P(U.S.),4S,JSFR(Japan),ASTRID(France),PGSFR(S.Korea)

Facility Country 1stCri0cal Coolant

BR-2 Russia 1956 Mercury

BR-5/BR-10 Russia 1958 Sodium

DFR UK 1959 NaK

Rapsodie France 1967 Sodium

BOR-60 Russia 1968 Sodium

KNK-II Germany 1972 Sodium

BN-350 Kazakhstan 1972 Sodium

Phenix France 1973 Sodium

PFR UK 1974 Sodium

BN-600 Russia 1980 Sodium

JOYO Japan 1982 Sodium

FBTR India 1985 Sodium

Super-Phenix France 1985 Sodium

MONJU Japan 1995 Sodium

CEFR China 2010 Sodium

BN-800 Russia 2015 Sodium

PFBR India 2015 Sodium

SFRsOutsideU.S.

25

Characteristics of Sodium-cooled Fast Reactors (SFRs)

§  Liquid-metalsodiumcoolant–  ~100/mesmoreeffec/veheattransfermediumcomparedtowater–  Widemargin(~350oC)toboiling–  Compa/blewithstructuralcomponentsandmetallicfuels

§  Hightemperatureopera/on(>500oCcoreoutlettemperature)–  Allowsgreaterthermalefficiency(~40%)forenergyconversion

§  Lowpressureprimaryandintermediatecoolantsystem–  NoLOCAconcern,noneedforcoolantinjec/on–  Guardvessel(andguardpipes)to“maintain”coolantinventory

§  Dedicatedsystemsfordecayheatremovaltoanul/mateheatsink–  LargecoreΔT(150oCinanSFRvs.~30oCinanLWR)facilitatesrelianceonpassive

systemsdrivenbynaturalcircula/onfordecayheatremoval

§  Lowdesignpressureforcontainment–  Basisistheheatproducedbyapoten/alsodiumfire

§  Simpleropera/onandaccidentmanagement–  Longgraceperiodforcorrec/veac/on,ifneeded

26

Summary and Conclusions

§  Pending“re/rementcliff”ofexis/ngU.S.nuclearfleetrepresen/ngover60percentofthena/on’semission-freeelectricityposealargeeconomic,environmental,andclimatechangeimpact.

§  Tomeetthechallenge,DOEhasdevelopedtheVisionandStrategyforDevelopmentandDeploymentofAdvancedReactors–  hXp://energy.gov/ne/downloads/dray-vision-andstrategy-development-and-

deployment-advanced-reactors

§  DOEvisionis–  SupportthecurrentLightWaterReactorfleet–  Pursuetheconstruc/on/opera/onofGenera/onIII+reactors–  Supportthedevelopment/licensing/deploymentofSmallModularReactors–  Supportdesign/licensing/deploymentofadvanced(non-LWR)Gen-IVreactors

§  Amongthespectrumofadvancedreactors,closed-fuel-cyclesystemsusingreactorswithfast-neutronspectrumespeciallytomeetthesustainabilitygoalsofferaXrac/veop/ons.