53
A Pulse EPR A Pulse EPR Primer Primer FIDs and Echoes

A Pulse EPR Primer

  • Upload
    bryga

  • View
    59

  • Download
    0

Embed Size (px)

DESCRIPTION

A Pulse EPR Primer. FIDs and Echoes . ESEEM Relaxation Time Measurement 2 + 1, DEER, ELDOR EXSY. Structural Elucidation Dynamics, Distances Measurement of Long Distances Measurement of Slow Inter & Intra-molecular Chemical Exchange and Molecular Motions. Applications. Topics. - PowerPoint PPT Presentation

Citation preview

Page 1: A Pulse EPR Primer

A Pulse EPR PrimerA Pulse EPR PrimerFIDs and Echoes

Page 2: A Pulse EPR Primer

ApplicationsApplications

ESEEM Relaxation Time Measurement2 + 1, DEER, ELDOR

EXSY

Structural ElucidationDynamics, Distances

Measurement of Long Distances

Measurement of Slow Inter & Intra-molecular Chemical Exchange and Molecular Motions

Page 3: A Pulse EPR Primer

TopicsTopics

The Rotating Frame

The Effect of B1

FIDs (Free Induction Decays)

FT (Fourier Transform) Theory

Spin Echoes

Relaxation Times

Page 4: A Pulse EPR Primer

Rotating FrameRotating Frame

The Axis System

x

y

z

B1

B0

M agnet

Page 5: A Pulse EPR Primer

Rotating FrameRotating Frame

The Larmor Frequency

L = - B0

B0

M0

x

y

z

Page 6: A Pulse EPR Primer

Rotating FrameRotating Frame

Linearly and Circularly Polarized Light

Page 7: A Pulse EPR Primer

Rotating FrameRotating Frame

The Rotating Frame

Page 8: A Pulse EPR Primer

Rotating FrameRotating Frame

B1 in both Frames

M0

x

y

z

B1

0

0

B0

M0

x

y

z

0

0

LabFram e

RotatingFram e

Page 9: A Pulse EPR Primer

Rotating FrameRotating Frame

Tip Angles

= - |B1| tp

M0

x

y

z

M

x

z

y

M0

x

y

z

B1

M

x

y

z

B1

M WO N

M WO FF

Page 10: A Pulse EPR Primer

Rotating FrameRotating Frame

Pulse Phases

M

x

y

z

B1

+x

Mx

y

z

B1

+y

M

x

y

z

B1

-y

M

x

y

z

B1

-x

Page 11: A Pulse EPR Primer

Rotating FrameRotating Frame

Transverse Magnetization in Both Frames

M

x

z

y

M

x

z

y

0

LabFram e

R otatingFram e

Page 12: A Pulse EPR Primer

Rotating FrameRotating Frame

Generation of Microwaves

N S

L

M

Page 13: A Pulse EPR Primer

Rotating FrameRotating Frame

Off-resonance Effects

M

x

z

y

M

x

z

y

Page 14: A Pulse EPR Primer

Rotating FrameRotating Frame

The Effective Field

B eff 02 = B 1

2 + B

Page 15: A Pulse EPR Primer

Rotating FrameRotating Frame

Sin(x)/x Behavior

10 8 6 4 2 0 2 4 6 8 10

M

M M-y 0 =

1 + ( / )12

sin 1( + (/ ) 12 )

Page 16: A Pulse EPR Primer

Rotating FrameRotating Frame

Excitation Bandwidth

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 [M H z]

16 ns

32 ns

48 ns

64 ns

Page 17: A Pulse EPR Primer

Relaxation TimesRelaxation Times

Spin Temperature and Populations

M0

x x

y y

z z

M

M

x

z

y

Therm alEquilib rium

/2 Pulse Pu lse

= enantipara lle l

nparalle l

EkT

Page 18: A Pulse EPR Primer

Relaxation TimesRelaxation Times

Longitudinal Magnetization Recovery

2 4 6 8 1 0 2 4 6 8 1 0

t / T 1 t / T 1

M / Mz 0 0

-1

+ 1

/2 Pulse / Pulse

M (t) z = M 0 1- e -t/T1 M (t) z = M 0 1- 2 e -t/T1

Page 19: A Pulse EPR Primer

Relaxation TimesRelaxation Times

Effect of Excessive Repetition Times

M (SRT) z = M 0 1- e -SRT/T1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000Tim e [ns]

Page 20: A Pulse EPR Primer

Relaxation TimesRelaxation Times

Homogeneous & Inhomogeneous Broadening

Homogeneous BroadeningThe lineshape is determined by the relaxation time. The spectrum is the sum of a large number of lines each having the same Larmor frequency and linewidth.

Lorentzian Lineshapes

Inhomogeneous BroadeningThe lineshape is determined by the unresolved couplings. The spectrum is the sum of a large number of narrower homogeneously broadened lines each having the different Larmor frequencies.

Gaussian Lineshapes

Page 21: A Pulse EPR Primer

Relaxation TimesRelaxation Times

A FID (Free Induction Decay)

M (t) -y = M e -t/T2

1

0

1

M y

1

0

1

1

0

1

1

0

1

Page 22: A Pulse EPR Primer

Fourier TheoryFourier Theory

Fourier transforms convert time domain signals into frequency domain signals and vice versa.

Page 23: A Pulse EPR Primer

Fourier TheoryFourier Theory

Time Behavior of Magnetization

M

x

z

y

Cos( t)

Sin( t)

M (t) -y = M cos( t)

M (t) x = M sin( t)

Page 24: A Pulse EPR Primer

Fourier TheoryFourier Theory

The Complex Axis System

M (t) t = M e -i t

e i = cos( ) + i s in( )

Im

Re

M

Page 25: A Pulse EPR Primer

Fourier TheoryFourier Theory

The Fourier Transform

F( ) = f(t) e -i t d t

+

-

f(t) = 1

F( ) 2 e i t d

+

-

Page 26: A Pulse EPR Primer

Fourier TheoryFourier Theory

Even functions (f(-t) = f(t) or symmetric) have purely real Fourier transforms.

Odd functions (f(-t) = -f(t) or anti-symmetric) have purely imaginary Fourier transforms.

Some Fourier Facts

Page 27: A Pulse EPR Primer

Fourier TheoryFourier Theory

An exponential decay in the time domain is a lorentzian in the frequency domain.

A gaussian decay in the time domain is a gaussian in the frequency domain.

Some Fourier Facts

Page 28: A Pulse EPR Primer

Fourier TheoryFourier Theory

Quickly decaying signals in the time domain are broad in the frequency domain.

Slowly decaying signals in the time domain are narrow in the frequency domain.

Some Fourier Facts

Page 29: A Pulse EPR Primer

Fourier TheoryFourier Theory

A Simple Fourier Transform

Page 30: A Pulse EPR Primer

Fourier TheoryFourier Theory

Page 31: A Pulse EPR Primer

Fourier TheoryFourier Theory

0 0

0

0

0 0

0 0

0 0

e - / 2 e - / 2

erf( / 2 ) 2

( + ) + 0 ( )0

( + ) - 0 ( )0

0

0

0 S in( )/

(1 /T2) + 2 2

(1 /T 2) + 2 2

1/T2

0t

0t

0t

0t

0t

e -t / T2

e - t / 2 2

(t+ ) - (t- )

cos( t) 0

s in ( t) 0

f (t) F ( ) Re Im

0 0

0

0

a)

d)

b)

c)

e)

Page 32: A Pulse EPR Primer

Fourier TheoryFourier Theory

Addition Properties

f(t) + g(t) = F( ) + G ( )

f (t) F ( )

0

0t

0 0

0

0t

0 0

0

0t

0 0

+

=

+

=

Page 33: A Pulse EPR Primer

Fourier TheoryFourier Theory

Shift Properties

0 0

0t

f (t) F( ) R e Im

0 0

0 0

0t

0 0

t

f(t - t) F ( ) e -i t f(t) F ( - ) e i t

Page 34: A Pulse EPR Primer

Fourier TheoryFourier Theory

Convolution Properties

f(t) * g(t) = f( ) g(t- ) d

+

-

* =

Page 35: A Pulse EPR Primer

Fourier TheoryFourier Theory

Convolution Theorem

f(t) * g(t) F ( ) G ( )

F( ) * G ( ) f(t) g(t)

Page 36: A Pulse EPR Primer

Fourier TheoryFourier Theory

A Practical Example

-A +A

R e

Im

0

Page 37: A Pulse EPR Primer

Fourier TheoryFourier Theory

A Practical Example

* =

Use Convolution

Page 38: A Pulse EPR Primer

Fourier TheoryFourier Theory

A Practical Example

Use Addition

cos(A t) 1+ cos(A t)1

+ =

+ =

t

Page 39: A Pulse EPR Primer

Fourier TheoryFourier Theory

A Practical Example

Use the Convolution Theorem

X =

Page 40: A Pulse EPR Primer

Fourier TheoryFourier Theory

Linewidth Effects

f (t) F ( )

Page 41: A Pulse EPR Primer

Fourier TheoryFourier Theory

Splitting Effects f (t) F( )

Page 42: A Pulse EPR Primer

Fourier TheoryFourier Theory

Field Effects f (t) F ( )

Page 43: A Pulse EPR Primer

Fourier TheoryFourier Theory

Field vs Frequency

Fie ld Sw eep

Frequency

Page 44: A Pulse EPR Primer

Fourier TheoryFourier Theory

Field vs Frequency

B 0

0 - 00 +

Page 45: A Pulse EPR Primer

EchoesEchoes

Spin Echoes

2

Page 46: A Pulse EPR Primer

EchoesEchoes

Spin Echoes

Page 47: A Pulse EPR Primer

EchoesEchoes

Spin Echoes with Inhomogeneous

Broadening

Page 48: A Pulse EPR Primer

EchoesEchoes

Phase Memory Time, TM

Echo H eight( ) e -2 /T M

Page 49: A Pulse EPR Primer

EchoesEchoes

Spectral Diffusion

Page 50: A Pulse EPR Primer

EchoesEchoes

Spin Lattice Relaxation

Page 51: A Pulse EPR Primer

EchoesEchoes

ESEEM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 [M Hz]

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000[ns]

Page 52: A Pulse EPR Primer

EchoesEchoes

Stimulated Echo

2 2 2

t1

2 t1 t1 + 2 2 t1+ 2 t1+ 2 2 0

HahnEcho

HahnEcho

H ahnEcho

Stim ulatedEcho

R efocusedEcho

Page 53: A Pulse EPR Primer

EchoesEchoes

Effect of Pulse Lengths with Two Equal

Pulses