31
A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir V. Goncharov, Telma J. Santos CIMA, Departamento de Matem´ atica, Universidade de ´ Evora 27 th IFIP TC7 Conference 2013 on System Modelling and Optimization ote d’Azur, France June, 29 - July, 3, 2015 Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matem´ atica, Universidade de A priori estimates of minimizers 27 th IFIP TC7 Conference 2013 on System M / 31

A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

A priori estimates of minimizers of an integral functionalextending the variational Strong Maximum Principle

Vladimir V. Goncharov, Telma J. Santos

CIMA, Departamento de Matematica, Universidade de Evora

27th IFIP TC7 Conference 2013 on System Modelling and OptimizationCote d’Azur, France

June, 29 - July, 3, 2015

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 1

/ 31

Page 2: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Outline

Inf (Sup)-convolution with a gauge function

Variational properties of the Inf (Sup)-convolution

Strong Maximum Principle. Traditional settings

Variational generalizations. From harmonic functions to convolutions

The problem with a linear perturbation

A priori estimates of minimizers near nonextremum points

”Cross-gap” extension of the Variational Strong Maximum Principle

Back to the limit case. Example

References

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 2

/ 31

Page 3: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Inf (Sup)-convolution with a gauge function

This is the continuation of my talk given 2 years ago at the IFIPConference in Klagenfurt dedicated to varios properties of Inf-Convolutions

So, let me start with basic notations. Given a nonempty closed setC ⊂ Rn and a > 0 the Inf-convolution of a function θ : C → R with agauge function ρF 0(·) is defined as

u+θ,F (x) := inf

y∈Cθ (y) + a ρF 0 (x − y) (1)

Here F is a compact convex subset of Rn with 0 ∈ intF (a gauge), F 0

means the polar set for F and

ρF 0(ξ) := infλ > 0 : ξ ∈ λF 0

Similarly, the Sup-convolution is

u−θ,F (x) := supy∈Cθ (y)− a ρF 0 (y − x) (2)

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 3

/ 31

Page 4: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Inf (Sup)-convolution with a gauge function

Under some supplementary condition on θ or/and C the Inf(Sup)-convolution above can be seen as a viscosity solution of aHamilton-Jacobi-Bellman equation, or as the Minimal Time necessary toachieve C by trajectories of some associated differential inclusion

We are interested instead in the ”minimal” (respectively, ”maximal”)property of this function among all the minimizers of some ”elliptic”Variational Problem

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 4

/ 31

Page 5: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational properties of the Inf (Sup)-convolution

Namely, given an open bounded connected region Ω ⊂ Rn containing Cand a lower semicontinuous convex function f : R+ → R+ ∪ +∞ withf (0) = 0 let us consider the integral functional

u(·) 7→∫Ω

f (ρF (∇u(x))) dx (3)

In order to formulate the first (comparison or extension) result we assumealso Ω to be convex and the boundary ∂F to be smooth

Denote bya := sup f −1(0)

Consider a closed (not necessarily convex) subset C ⊂ Ω and a functionθ(·) defined on C with a kind of slope condition:

θ(x)− θ(y) ≤ aρF 0(x − y), x , y ∈ C (4)

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 5

/ 31

Page 6: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational properties of the Inf (Sup)-convolution

Then the following result holds

Theorem A

The Inf-convolution u+θ,F (·) is a minimizer of the functional (3) on

u0(·) + W1,10 (Ω), which is maximal among all the minimizers with the

same boundary condition. In other words,

If u(·) is a continuous admissible minimizer of (3) on u0 (·) + W1,10 (Ω)

such that

(i) u (x) = u+θ,F (x) = θ (x) ∀x ∈ C

(ii) u (x) ≥ u+θ,F (x) ∀x ∈ Ω

thenu (x) ≡ u+

θ,F (x) , x ∈ Ω

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 6

/ 31

Page 7: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational properties of the Inf (Sup)-convolution

Similarly,

Theorem A’

The Sup-convolution u−θ,F (·) is a minimizer of the functional (3) on

u0(·) + W1,10 (Ω) for a given boundary function u0(·), which is minimal

among all the minimizers in the following sense:

If u(·) is a continuous admissible minimizer of (3) on u0 (·) + W1,10 (Ω)

such that

(i) u (x) = u−θ,F (x) = θ (x) ∀x ∈ C

(ii) u (x) ≤ u−θ,F (x) ∀x ∈ Ω

thenu (x) ≡ u−θ,F (x) , x ∈ Ω

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 7

/ 31

Page 8: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Strong Maximum Principle. Traditional settings

The results above can be considered as a natural extension of the StrongMaximum Principle for elliptic equations/variational problems

Let us follow the way from the classic setting for harmonic functions toTheorems above

The Strong Maximum Principle (SMP) for the harmonic functions(solutions of the Laplace equation ∆u = 0):

if a harmonic (in some open connected domain Ω ⊂ Rn) function attendsits minimum (maximum) in an interior point x0 ∈ Ω then it is constant

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 8

/ 31

Page 9: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Strong Maximum Principle. Traditional settings

Next, since ∆u = 0 is the Euler-Lagrange equation in the problem ofminimization of the functional

1/2

∫Ω

‖∇u(x)‖2 dx ,

one can formulate the Variational Strong Maximum Principle bysubstituting in the place of 1

2 t2 in the functional above any convex lower

semicontinuous function f : R+ → R+ ∪ +∞ with f (0) = 0

So we have the rotationally invariant functional∫Ω

f (‖∇u(x)‖) dx (5)

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 9

/ 31

Page 10: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Strong Maximum Principle. Traditional settings

Then, the Variational SMP can be formulated as follows

Given an open bounded connected region Ω ⊂ Rn there is no continuousnonconstant minimizer of the functional (5) on u0(·) + W1,1

0 (Ω) admitingits minimal (maximal) value in Ω,

or, equivalently,

if a continuous nonnegative (nonpositive) minimizer u(·) of (5) onu0(·) + W1,1

0 (Ω) touches zero at some point x0 ∈ Ω then u(x) ≡ 0

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 10

/ 31

Page 11: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Strong Maximum Principle. Traditional settings

The necessary and sufficient conditions guaranteeing the validity of theVariational SMP for (5) were proposed by A. Cellina in 2002:

(H1) ∂f ∗(0) = 0 (strict convexity at 0)

(H2) ∂f (0) = 0 (smoothness at 0)

Here f ∗ means the Legendre-Fenchel transform of f

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 11

/ 31

Page 12: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational generalizations

First we slightly extend the Cellina’s result to the functional with a generalgauge-type symmetry: ∫

Ω

f (ρF (∇u (x))) dx (6)

where F ⊂ Rn is a closed convex bounded set with 0 ∈ intF , and ρF (·) isthe Minkowski functional associated to F

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 12

/ 31

Page 13: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational generalizations

Then we assume that the hypothesis (H1) fails, i.e.,

∂f ∗(0) = f −1(0) = [−a, a]

for some a > 0 (the function f (·) is extended symmetrically to R)

In this case SMP in the traditional sense is obviously wrong, but it can beextended by considering in the place of the identical zero (or constant)another ”test” function, namely,

θ + a ρF 0(x − x0)

where θ ∈ R and x0 ∈ Ω

This is a particular case of the Inf-convolution when the set C = x0

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 13

/ 31

Page 14: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational generalizations

We have the following local result

Let Ω ⊂ Rn and a continuous minimizer u (·) of the functional (6) onu0(·) + W1,1

0 (Ω) be such that for some x0 ∈ Ω and δ > 0

u (x) ≥ u (x0) + aρF 0 (x − x0) ∀x ∈ x0 + δF 0 ⊂ Ω

Then

u (x) = u (x0) + aρF 0 (x − x0) ∀x ∈ x0 +δ

‖F‖ ‖F 0‖+ 1F 0

Here ‖F‖ and ‖F 0‖ are the radii of the spheres centred at the origincircumscribed around F and inscribed into F , respectively

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 14

/ 31

Page 15: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational generalizations

The previous result can be formulated globally whenever the gauge F hassmooth boundary (equivalently, ρF (ξ) is differentiable at each ξ 6= 0, or F 0

is rotund) and the region Ω is densely star-shaped w.r.t. x0 ∈ Ω (inparticular, Ω can be convex)

Ω ∈ Rn is said to be densely star-shaped w.r.t. x0 ∈ Ω if Ω ⊂ StarΩ(x0)where

StarΩ(x0) := x : λx + (1− λ)x0 ∈ Ω for all λ ∈ [0, 1]

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 15

/ 31

Page 16: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational generalizations

Namely, under these hypotheses

the inequality

u (x) ≥ u (x0) + aρF 0 (x − x0) ∀x ∈ Ω

implies that

u (x) = u (x0) + aρF 0 (x − x0) ∀x ∈ Ω

Observe that if a = 0 then one immediately obtains from above thetraditional Variational SMP (although under some suplementaryassumptions such as the star-sharpness of Ω)

Simple examples show that the latter assumption can not be avoided

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 16

/ 31

Page 17: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Variational generalizations

Considering in the place of a singleton x0 an arbitrary nonempty closedsubset C ⊂ Ω and in the place of a real number θ a Lipschitz continuousfunction θ(·) defined on C and satisfying the slope condition (4) thegeneralized Strong Maximum Principle admits form of an ExtremalExtention Principle (from a barrier inside Ω) as formulated above

But for this we need to assume the set Ω to be convex and F to havesmooth boundary

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 17

/ 31

Page 18: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

The problem with a linear perturbation

Let us extend now the SMP in another way by considering the same”elliptic” integral functional but with linear perturbations:∫

Ω

[f (ρF (∇u(x))) + σu(x)] dx (7)

or ∫Ω

[f (ρF (∇u(x)))− σu(x)] dx (8)

with some real σ > 0

In the case f ρF (ξ) = 12‖ξ‖ the Euler-Lagrange equation for the problems

(7) and (8) is the Poison equation (with the constant non zero right-handside)

∆u(x) = ±σ

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 18

/ 31

Page 19: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

The problem with a linear perturbation

We are interested in the following: how far the minimizers in (7) and (8)defer from the minimizers in the homogeneous case (with σ = 0) in theirextreme properties

In other words, we want to obtain some estimates of minimizers in aneighbourhood of their local minimum or maximum points that in thelimit case (σ = 0) would turn back the standart SMP (or its extensions)

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 19

/ 31

Page 20: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

The problem with a linear perturbation

Indeed, such estimates can be made by using a class of a priori minimizersin the problems (7) and (8) found by A. Cellina in 2007

Namely A. Cellina proved that the functions

ω+x0,k

(x) :=n

σf ∗(σnρF 0(x − x0)

)+ k

(respectively,

ω−x0,k(x) := −n

σf ∗(σnρF 0(x0 − x)

)+ k),

x0 ∈ Ω, k ∈ R, minimize the functional (7) (respectively, (8)) on the classof Sobolev functions with the same boundary conditions

Here f ∗(·) means the Legendre-Fenchel conjugate of f (·) (symmetricallyextended to R)

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 20

/ 31

Page 21: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

The problem with a linear perturbation

In order to be defined on whole Ω the following inclusions, naturally,should hold:

Ω ⊂ x0 ± b · nσF 0 (9)

where b := sup(domf ∗) (equivalently, b > 0 is such that f (·) is affine on[b,+∞[)

So, if Ω is enough small (or b > 0 is enough large, in particular, ifb = +∞, i.e., f (·) never becomes affine) then x0 satisfying the conditions(9) exist

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 21

/ 31

Page 22: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

A priori estimates of minimizers near nonextremum points

First, by using the solutions ω±x0,k(·) we obtain the following estimates of

minimizers near their nonextremum points

Let u(·) be a continuous minimizer in the problem (7), β > 0 be smallenough and x0 ∈ Ω satisfying the inclusion (9) be not a local maximumpoint of u(·) in the sense that

u(x0) < k − n

σf ∗(σnβ)

wherek := max

x∈x0+βF 0u(x)

Thenu(x) ≤ k − n

σ

[f ∗(σnβ)− f ∗

(σnρF 0(x − x0)

)]for all x ∈ x0 + βF 0 ⊂ Ω (i.e., ρF 0(x − x0) ≤ β)

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 22

/ 31

Page 23: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

A priori estimates of minimizers near nonextremum points

Similarly,

If u(·) is a continuous minimizer in (8), β > 0 is small enough and x0 ∈ Ωis not a local minimum of u(·) and, moreover,

u(x0) > k +n

σf ∗(σnβ)

wherek := min

x∈x0−βF 0u(x),

thenu(x) ≥ k +

n

σ

[f ∗(σnβ)− f ∗

(σnρF 0(x0 − x)

)]for all x ∈ x0 − βF 0 ⊂ Ω (ρF 0(x0 − x) ≤ β)

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 23

/ 31

Page 24: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

”Cross-gap” extension of the Variational SMP

Finally, from the above estimates we deduce the following estimate

Let u(·) be a continuous minimizer in the problem (7). If x0 ∈ Ω is alocal maximum point of u(·), namely, there is δ > 0 withu(x0) ≥ u(x) for all x ∈ x0 − δF 0 ⊂ Ω. Then, in a slightly smallerneighbourhood of x0 (namely, in x0 − δ

1+‖F‖‖F 0‖F0) the inequality

u(x) ≥ u(x0)− n

σf ∗(σnρF 0(x0 − x)

)(10)

holds

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 24

/ 31

Page 25: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

”Cross-gap” extension of the Variational SMP

And, symmetrically,

If u(·) is a continuous minimizer in the problem (8) and x0 ∈ Ω is alocal minimum point of u(·) (with some δ > 0 we have u(x0) ≤ u(x)for all x ∈ x0 + δF 0 ⊂ Ω), then

u(x) ≤ u(x0) +n

σf ∗(σnρF 0(x − x0)

)(11)

for all x ∈ x0 + δ1+‖F‖‖F 0‖F

0

Observe that the right-hand side of the inequality (10) (for a minimizer ofthe functional with the positive perturbation σu(x)) is exactly ω−x0.u(x0)(x)

(a Cellina’s minimizer of the functional with the negative perturbation−σu(x)) and vice versa

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 25

/ 31

Page 26: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

”Cross-gap” extension of the Variational SMP

So, close to extremum points of a continuous minimizer u(·) (maximum orminimum, respectively, depending on sign of the perturbation) we have agap between u(x0) and

u(x0) +n

σf ∗(σnρF 0(x − x0)

),

oru(x0)− n

σf ∗(σnρF 0(x0 − x)

)containing the values of u(·)

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 26

/ 31

Page 27: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Back to the limit case. Example

This ”cross-gap” shrinks to zero (i.e., to validity of the traditional SMP)as σ → 0± whenever the conjugate f ∗ is differentiable at the origin and(f ∗)′(0) = 0 (equivalently, f is stricly convex at the origin, orf −1(0) = 0)

If, instead, f −1(0) = [−a, a], a > 0, then f ∗ is affine (= ±at) near theorigin. Therefore, the ”cross-gap” is reduced to the interval between u(x0)and

u(x0)± aρF 0 (±(x − x0))

This, in turn, easily implies the (local) extreme properties of theconvolutions (with C = x0) what we talked about at the beginning

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 27

/ 31

Page 28: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Back to the limit case. Example

Let p > 1 and q > 1 be its conjugate number, i.e., 1/p + 1/q = 1.Consider the function f (t) = tp

p , t ≥ 0, which satisfies all the standing

assumptions and whose conjugate is f ∗(t) = tq

q , t ≥ 0

Let us given a continuous minimizer u(·) in the problem

Minimize

∫Ω

[1

p‖∇u(x)‖p + σu(x)

]dx : u(·) ∈ u(·) + W1,1

0 (Ω)

Assuming that x0 ∈ Ω is a local maximum point of u(·) from the above

result we conclude that near x0 this minimizer satisfies a lower estimate

u(x0) ≥ u(x) ≥ u(x0)− 1

q

n

σ

(σn‖x − x0‖

)q= u(x0)−

(σn

)q−1‖x − x0‖q

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 28

/ 31

Page 29: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

Back to the limit case. Example

Symmetrically,

If u(·) is a continuous minimizer in

Minimize

∫Ω

[1

p‖∇u(x)‖p − σu(x)

]dx : u(·) ∈ u(·) + W1,1

0 (Ω)

,

and x0 ∈ Ω is a local minimum point of u(·) we have the following(upper) estimate, which holds in a neighbourhood of x0:

u(x0) ≤ u(x) ≤ u(x0) +(σn

)q−1‖x − x0‖q

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 29

/ 31

Page 30: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

References

A. Cellina, On the Strong Maximum Principle, Proc. Amer. Math.Soc. 130 (2002), 413-418

A. Cellina, Uniqueness and comparison results for functionalsdepending on u and ∇u, SIAM J. on Control and Optim. 46 (2007),711-716

V. V. Goncharov, T. J. Santos, Local estimates for minimizers ofsome convex integral functional of the gradient and the StrongMaximum Principle, Set-Valued and Var. Anal. 19 (2011), 179-202

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 30

/ 31

Page 31: A priori estimates of minimizers of an integral functional ... · A priori estimates of minimizers of an integral functional extending the variational Strong Maximum Principle Vladimir

MERCI BEAUCOUP DE VOTRE ATTENTION

Vladimir V. Goncharov, Telma J. Santos (CIMA, Departamento de Matematica, Universidade de Evora)A priori estimates of minimizers27th IFIP TC7 Conference 2013 on System Modelling and Optimization Cote d’Azur, France June, 29 - July, 3, 2015 31

/ 31