19
A possible linearizer at 35.982 GHz on behalf of the SPARC - LAB collaboration B. Spataro – M. Behtouei (phd) , L. Faillace - M. Migliorati - M.Sciscio’ and A. Variola First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

A possible linearizer at 35.982 GHz

on behalf of the SPARC - LAB collaboration

B. Spataro – M. Behtouei (phd) , L. Faillace- M. Migliorati - M.Sciscio’ and A. Variola

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

Page 2: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Summary

Accelerating electric field estimations

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

Rounded cavity design (hard shape cavity already discussed in Trieste)

Longitudinal and transverse loss parameters estimations

Thermal stress studies

Page 3: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

b = cavity radius

a = iris radius

h = iris thickness

TW cavity shape for the 2p/3 mode

𝑣𝑔𝑟

𝑐

1

𝑐

𝑑𝑑𝛷

𝛷 = 𝑝ℎ𝑎𝑠𝑒 𝑎𝑑𝑣𝑎𝑛𝑐𝑒

b

h

l = cell lenght l/3

I

a

Rounded shape

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

Page 4: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Shunt impedance and quality factor Q estimations of the roundedcavity as function of the iris radius at F = 35.982 GHz

100

120

140

160

180

200

220

240

0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2

Shunt impedance as function of

the iris radius at F = 35.982 GHz

iris radius (mm)

Y = M0 + M1*x + ... M8*x8 + M9*x

9

323,49M0

-151,26M1

20,423M2

0,99992R

F = 35.982 GHz iris radius a = 1.333 mm thickness iris h = 0.667 mm

Rsh / m = 158 M𝛀 /m (144 hard edge)

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

b = 3.657 mm

4000

4050

4100

4150

4200

4250

4300

0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2

Unloaded quality factor Q as functiom

of the iris radius at F = 35.982 GHz

iris radius (mm)

Y = M0 + M1*x + ... M8*x8 + M9*x

9

4012,7M0

-13,146M1

66,804M2

0,99889R

Q = 4110 ( Q = 3718 hard edge)

Page 5: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Dispersion relation of the rounded shape of the TW structure

K = 1.5 %

a = 1.333 mm, h = 0.667 mm mm, b = 3.657 mm

vgr /c = 0.04

35,5

35,6

35,7

35,8

35,9

36

36,1

36,2

-50 0 50 100 150 200

Frequency mode as function of the phase

advance of the TW structure (rounded shape)

Freq 35

phase advance per cell h

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

F = 35.982 GHz (2p/3 mode)

Page 6: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

‘Rounded’ TW cavity fields estimations for the 2p/3 mode at F = 35.983 GHz

Magnetic field distribution of the TM010 mode Electric field distribution of the TM010 mode

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

a/𝞴 = 0.16

vgr/c = 0.04

Rsh/m = 158 M𝛀 /m

b = 3.657 mm (cavity radius)

h = 0.667 mm (iris thickness)

Q = 4110

a = 1.333 mm (iris radius)

Page 7: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Input RF power for different gradients of the rounded shape

Parameter Value

Filling Time, Tf 20 ns

L, length 25 cm

w, frequency 2pi*35.982 GHz

R/Q 38.4 kΩ/m

0.57

Assuming a structure length L = 25 cm ,Tf = 20 ns (filling time), R/Q = 38.4 KΩ/mand = 0.57 (attenuation)

For a CG structure: input group velocity vgr_in/c = 6.7%, output group velocity vgr_out/c = 2.2%,

For a CI structure : vgr = 0.04 c

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

𝑷𝒊𝒏 = 𝟏/𝑻𝒇𝟐𝝉

𝟏−𝒆−𝟐𝝉(𝑬𝒂𝒄𝒄∗𝑳)

𝟐

𝒘( ൗ𝑹 𝑸)𝑳, Wang

Page 8: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Max Esurface = 200 MV/mMax Hsurface = 0.26 MA/m

RF Pulsed HeatingΔT = 10.2 C

(below 50 C safety threshold)

• RF Breakdown rate statistics depends on numerous factors:RF pulsed heating, peak electric and magnetic field, Poynting vector S (modified)• Modified Poynting vector Sc=re(S)+im(S)/6 (A. Grudiev et. al.)• Safety threshold Sc < 6.3 MW/mm2 @50ns pulse

TRF = 50 ns, flat top

35.982 GHz cavity for the Compact light XLS project at Eacc=100MV/m caseRF Pulsed Heating and Modified Poynting Vector estimations

Main RF Parameters

Frequency 35.982 GHz

Accelerating Gradient 100 MV/m

Shunt Impedance 158 M/m

Quality Factor Q0 4110

E-field (V/m) H-field (A/m)

Sc ~ 5 MW/mm2

(below safety threshold)

Page 9: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Max Esurface = 250 MV/mMax Hsurface = 0.33 MA/m

RF Pulsed HeatingΔT = 16.5 C

(below 50 C safety threshold)

• RF Breakdown rate statistics depends on numerous factors:RF pulsed heating, peak electric and magnetic field, Poynting vector S (modified)• Modified Poynting vector Sc=re(S)+im(S)/6• Safety threshold Sc < 6.3 MW/mm2 @50ns pulse

TRF = 50 ns, flat top

35.982 GHz cavity for the Compact light XLS project at Eacc=125MV/m caseRF Pulsed Heating and Modified Poynting Vector estimations

Main RF Parameters

Frequency 35.982 GHz

Accelerating Gradient 125 MV/m

Shunt Impedance 158 M/m

Quality Factor Q0 4110

Sc ~ 8 MW/mm2

about 30% over safety threshold

Page 10: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

• Hot spot = 40 C (standard operation). Possible to vary by adjusting water flux and temperature.• Stress Analysis shows yield strength (Von Mises) < 20 MPa (below safety threshold for copper ~ 70 MPa) • Maximum displacement ~ 1 m (frequency shift negligible)

• Cooling system will be optimized during final engineering (water jacket or brazed channels) in order to avoid water-to-vacuum leaks.

Thermal Simulation, single cell (35.982 GHz)

Pavg = 2 kW/mWater Flux=3 l/minHot spot ~ 40 C

*simplified cooling system for preliminary simulations

Yield strength < 20 MpaMax displacement~ 1 m

Stress Analysis (Von Mises), single cell (35.982 GHz)

CoolingChannels*

35.982 GHz cavity for the Compact light XLS projectThermal and Stress Analyses

Page 11: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

2.800 mm

0.667 mm

7.320 mm2.660 mm

Wake fields studies on the 35.982 GHz structure (CST and ABCI software)

a/𝞴 = 0.16

vgr/c = 0.04

Rsh/m = 158 M𝛀 /m

Q = 4110

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

Page 12: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

20 mm

252 mm

5 cells

90 cells

Wake fields studies on the 35.982 GHz structure (CST and ABCI software)

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

= 1 mm (bunch lenght)

= 0.5 mm (bunch lenght) [in order to confirm the K. Bane’s scaling scales for shortest bunches]

Page 13: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Longitudinal Loss factor[V/pC]

Transverse loss factor ( V/pC/m]

5 cells 18.2 16000

15 cells 54.3 46400

45 cells 161.5 136500

90 cells 319.4 268900

Bunch length (rms) : 1 mm

Wake fields studies on the 35.982 GHz structure

(CST and ABCI software)

252 mm90 cells

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

Page 14: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Longitudunal loss parameter as function of the

cells number of the structure at F = 35.982 GHz

Kl(V/pC)

y = 3,5585x

cells number

Wake fields studies on the 35.982 GHz structure

0

5 104

1 105

1,5 105

2 105

2,5 105

3 105

0 20 40 60 80 100

Transverse loss parameter as function of the

cells number of the structure at F = 35.982 GHz

Kt(V/pC/m)

y = 2999,5x

cells number

By assuming N = 90 cells (L= 252 mm), Kl 319.4 V/pC, Q = 100 pC

Elosses 32 KeV

Assuming N = 90 cells (L=252 mm), 𝑲𝒕 2.689 105V/pC/m, 𝒚(𝟎) = 10 10-6 m, Q = 100 pC ; E = 20 MeV

=𝒚(𝟎)

𝑬/𝒆Q 𝑲𝒕 13.45 10-6 rad

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

Page 15: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Longitudinal wakefields as function of the bunch head for a = 1 mm bunch lengthwith a = 1.333 mm, b = 3.657 mm, h = 0.667 mm (whole structure estimations)

KL = 319.35 V/pC

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

Page 16: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

First XLS Annual Meeting ALBA, Barcelona, Spain 10-12 December 2018

KT=268900 V/pC/m

Transverse wakefields as function of the bunch head for a = 1 mm bunch lengthwith a = 1.333 mm, b = 3.657 mm, h = 0.667 mm (whole structure estimations)

Page 17: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Longitudinal and transverse loss parameter as function of the bunch length (shorter bunches)

Y = 17.56 x-0.5 + 9.2

5 cells simulations

Y = 1.9 e4 x0.5 + 4 e3

(K. Bane-SLAC) (K. Bane-SLAC)

𝑲𝒕 ∝ 𝞈𝟐 𝞼1

𝒂𝟒

Longitudinal Transverse

Page 18: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Longitudinal and transverse loss parameter at F = 35.982 GHz as function of the iris aperture awith = 0.5 mm

5-cells structure

Y = 16.87 x-2 + 24.12

(K. Bane-SLAC) (K. Bane-SLAC)

Y = 1.6 e4 x-4 + 1.46 e4

𝑲𝒕 ∝ 𝞈𝟐 𝞼1

𝒂𝟒

Longitudinal Transverse

= 0.5 mm = 0.5 mm

Page 19: A possible linearizer at 35.982 GHz · Wake fields studies on the 35.982 GHz structure 0 5 10 4 1 10 5 1,5 10 5 2 10 5 2,5 10 5 3 10 5 0 20 40 60 80 100 Transverse loss parameter

Thank you very much for your attention