33
A Perspective on Professor Scott Eric Denmark: The Man, The Myth, The Chemist Russell C. Smith Stoltz/Reisman Group Meeting January 24, 2011 O SiR 3 Si O M + Me Me O N O H Me H MeO 2 C Me N NMe P N Me O (CH 2 ) 5 2 Ph OMe OMe OH n-C 5 H 9 PhO 2 S O

A Perspective on Professor Scott Eric Denmark: The Man ... · A Perspective on Professor Scott Eric Denmark: The Man, The Myth, The Chemist Russell C. Smith Stoltz/Reisman Group Meeting

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

A Perspective on Professor Scott Eric Denmark:The Man, The Myth, The Chemist

Russell C. SmithStoltz/Reisman Group Meeting

January 24, 2011

O

SiR3

Si

O–M+

MeMe

ONO

H

MeH

MeO2C

MeN

NMe

PNMe

O(CH2

)5

2

Ph OMe

OMeOH

n-C5H9

PhO2SO

From Humble Beginnings…• Born in Lynbrook, New York on 17 June 1953• Obtained an S. B. degree from M.I.T. in 1975

– Conducted research with both Richard H. Holm (ferredoxin analogs) andDaniel S. Kemp (functionalized cyclophanes).

• Received D. Sc. Tech degree in 1980– Prof. Dr. Albert Eschenmoser (“On the Stereochemistry of the S N’

Reaction”).• 1980– Independent career as assistant professor at the University of

Illinois at Urbana-Champaign.• 1986 – Associate Professor• 1987 – Full Professor• 1991–Reynold C. Fuson Professor of Chemistry.

O

OO

steps HO H

O OSO2

N N

OH

OSO

O O

H

H

B

B

J. Org. Chem. 1981, 46, 3144

To A Thriving Career In Organic Chemistry: Outline• Silicon-Directed Nazarov Cyclization

• Inter/Intramolecular [4+2]/[3+2] Cycloaddition of Nitro Olefins

• Lewis-Base Activation of Lewis Acids – Enantioselective Carbon-Carbon Bond Formation

OOBn

SiMe3

thexylMe2SiO

BF3•OEt2

C6H5Et, 125 °C

thexylMe2SiOHH

O

Me

NO2 CN

+Me

Me

Me

Me 1. SnCl4 CH2Cl2, -78 °C

2. toluene, 80 °C

ONO

Me

HNC

H

Me

Me

Me

Me

EtO

OTBS+

BnMe2SiCHO

SiCl4

N

P

N O

NMe

CH2

Me

Me

2

BnMe2SiCO2Et

OH

To A Thriving Career In Organic Chemistry: Outline• Silicon-Directed Nazarov Cyclization

• Inter/Intramolecular [4+2]/[3+2] Cycloaddition of Nitro Olefins

• Lewis-Base Activation of Lewis Acids – Enantioselective Carbon-Carbon Bond Formation

OOBn

SiMe3

thexylMe2SiO

BF3•OEt2

C6H5Et, 125 °C

thexylMe2SiOHH

O

Me

NO2 CN

+Me

Me

Me

Me 1. SnCl4 CH2Cl2, -78 °C

2. toluene, 80 °C

ONO

Me

HNC

H

Me

Me

Me

Me

EtO

OTBS+

BnMe2SiCHO

SiCl4

N

P

N O

NMe

CH2

Me

Me

2

BnMe2SiCO2Et

OH

Nazarov Cyclization – Background

• Named after the Russian chemist I. N. Nazarov (1900-1957)

• Proved later that the cyclization proceeds through a divinylketone

• Incorporation of nucleophile gave further insight into mechanism

MeOH, H2O

HgSO4, H2SO4

O

Me

Me

Me

O

O

Me

O

Me

H3PO4, HCO2H

90 °C

O

PhPh

H2SO4

Ac2O, 25-30 °C

NaOH

Ph Ph

O

OH

Org. React. 1994, 45, 1-158

Nazarov Cyclization – Mechanism

• Promoted by thermal or photochemical initiation

O

R

R

H+OH

R

R

*

**

R

R

OH

* *

O

RR AcOH, H3PO4

50 °C

254 nm, C6H6

O

O

H

H

R R

R R

Org. React. 1994, 45, 1-158

Nazarov Cyclization – Mechanism

• Remote substituents can cause changes in the torquoselectivityof the cyclization

O

R

R

H+OH

R

R

*

**

R

R

OH

* *

counterclockwise

clockwise

O

R2

R1

O

R1 R2

O

R1 R2

+

H

H

O

R1 R2

O

R1 R2

+

H

H

Org. React. 1994, 45, 1-158

Silicon-Directed Nazarov Cyclization

Use of Si functionality directs collapse of cation

J. Am. Chem. Soc. 1982, 104, 6242.

CHO

+

MgBr

Me3Si

1. THF, -20 °C

2. NH4Cl

OH

SiMe3

O

SiMe3

NiO2

Et2O, 0 °C

O

SiMe3

FeCl3 (1.05 equiv)

CH2Cl2

OH

H

OH

H

55%, 100% cis

OH

H

84%, 100% cis

OH

H

74%, 85/15 cis/trans

O

Me

Me

95%, 59/41 cis/trans

SDNC – Effect of Allylic Position• Larger substituents promote increased levels of torquoselectivity

(presence of vinyl silane)O

R

SiMe3

FeCl3

CH2Cl2

R

H

H

O

R

H

H

O

+

(C,T) (C,C)

761090OCH2Ph

63694t-Bu

76694Ph

663070CH2=CH2

992278Me

yield, %(C,C)(C,T)R

Tetrahedron 1986, 48, 2821

SDNC – Effect of Silicon Functionality

701090I-Pr3Si

151387Ph3Si

831486MePh2Si

631684Me2PhSi

992278Me

yield, %(C,C)(C,T)R

Tetrahedron 1986, 48, 2821

O

Me

SiR3

FeCl3

CH2Cl2

Me

H

H

O

Me

H

H

O

+

(C,T) (C,C)

O

Me

H

H

For SiMe3 = 54/46

for Si(i-Pr)3 = 79/21

Formation of Enantioenriched Carbocycles ViaSDNC

OSiMe3 OSiMe3MXn

anti

syn

OSiMe3MXn

H H

OSiMe3MXn

H H

O

H H

O

H H

H

H

OSiMe3

FeCl3

CH2Cl2, -50 °C

OH

H H

58%, 88% ee

O

H H

Br2

CCl4

BrBr Br

70% yield

J. Org. Chem. 1990, 55, 5544

Total Synthesis of Silphinene: Application ofSDNC

Me

Me

Me

Me

Tetrahedron 1997, 53, 2103

Presence of silicon functionality directs formation of cyclopentenone

OH

Me

Me

RO

OBn

R = SiMe2thexyl

MnO2

CH2Cl2, 20 °C

OHC

Me

Me

RO

OBn

98% yieldH H

Me3SiMgBr

THF, -30 °C

80% yield

Me

Me

RO

OBn

SiMe3

HO

H

MnO2

CH2Cl2, -40 °CMe

Me

RO

OBn

SiMe3

O

H

BF3•OEt2

C6H5Et, 125 °C

Me

Me

RO

O

H

silphinene

To A Thriving Career In Organic Chemistry: Outline• Silicon-Directed Nazarov Cyclization

• Inter/Intramolecular [4+2]/[3+2] Cycloaddition of Nitro Olefins

• Lewis-Base Activation of Lewis Acids – Enantioselective Carbon-Carbon Bond Formation

Me

NO2 CN

+Me

Me

Me

Me 1. SnCl4 CH2Cl2, -78 °C

2. toluene, 80 °C

ONO

Me

HNC

H

Me

Me

Me

Me

OOBn

SiMe3

thexylMe2SiO

BF3•OEt2

C6H5Et, 125 °C

thexylMe2SiOHH

O

EtO

OTBS+

BnMe2SiCHO

SiCl4

N

P

N O

NMe

CH2

Me

Me

2

BnMe2SiCO2Et

OH

Intramolecular Cycloaddition of Nitrosoalkenes

• Reactivity of Nitrosoalkenes

– Intermediate nitrosoalkene can act as 2π or 4π cycloadditioncomponent

R

NOH

R'

Cl

base–

- HXR

NO

R'

Nuc–

R

NOH

R'

Nuc

J. Org. Chem. 1984, 49, 4714

Me

OMeN

Me2t-BuSiO

Cl CsF (3.0 equiv)

CH3CN, 20 °C

ON

OMe

H

R

H

70% yield + 13% isomer75/25 E/Z

50/50 E/Z 32% yield (3.4/1 ratio of isomers

Nitroolefins as 4π Components in Cycloadditions

• Nitro groups serve as useful functionality for further elaboration

Me

N+-O O Me

SnCl4

toluene, -29 °C

80% yield

NO Me

HH

Me

-O

> 98/2 trans/cis

H

N+-O O Me

SnCl4

CH2Cl2, -70 °C

NO Me

HH

H

-O

KOt-amyl

-70 °C

OMe

H

H

HON

OMe

H

H

HON

HCl

CH2O

J. Am. Chem. Soc. 1986, 108, 1306

Me

N+-O O Me

SnCl4

CH2Cl2, -70 °C

NO Me

HH

Me

-O

CO2Me NO Me

HH

O

Me

MeO2C

Helv. Chim. Acta. 1986, 69, 1971

Intramolecular [3+2] CycloadditionN+

O-O

MeZ'Z

+

MeMe

MeMe

1. SnCl4 toluene, -78 °C

2. toluene, 70 °C

NOO

Me

Me

Me

Me

Z'

ZMe

HH

72>100:107CO2EtH

7820:138HCO2Et

yield, %dstime, h[3+2]

time, h[4+2]

Z’Z

N+O-O

Me +

MeMe

MeMe

1. SnCl4 CH2Cl2, -78 °C

2. toluene, 80 °C

NOO

Me

Me

Me

Me

Z'

ZMe

Z'

Z

HH

93>100:1725CO2EtH

902.6:11410HCO2Et

yield, %dstime, h[3+2]

time, min[4+2]

Z’Z

J. Am. Chem. Soc. 1990, 112, 311

Tandem Double Intramolecular [4+2]/[3+2]Cycloaddition

• Fused/bridged C(6)

• Fused/bridged C(5)

N+

O

O-

Me 1. SnCl4 toluene, -78 °C

2. NaHCO3 toluene, 80 °C

CO2Me

82% yield

N

OO

MeO2CH

HMe

H

OHH

NH

HOMe

HH

O

Ra-NiH2 (160 psi)

MeOH, rt

71% yield

AcN

N+O-O

Me

1. SnCl4 CH2Cl2, -78 °C

2. NaHCO3 toluene, 100 °C

79% yield

1. Ra-NiH2 (160 psi)MeOH, rt

2. Ac2O, py

82% yield

MeO

N OO

H

MeO

MeAcO

Me

Org. Lett. 2001, 3, 2907

Cycloaddition can be rendered diastereoselective by presence of chiralauxiliary

Total Synthesis of (+)-Crotanecine N

HHO OH

OH

N

OH

HO

HHO

rosmarinecine (intra)

N

OHHHO

hastanecine (inter)

N

HHO

macronecine (inter)

HO

CO2i-Pr

O

NO2

+

O

Ph SiMe2Ph

OMeAl

2

toluene, -14 °C

73% yield

NOO

OO

SiMe2Ph

OG*H

H

i-PrO2C

H

L-selectride

CH2Cl, -78 °C

91% yield

NOO

OHO

SiMe2Ph

OG*H

H

i-PrO2C

H

Ra-Ni

200 psi H2EtOH

58% yield

N

O

HO SiMe2Ph

OH

HH

HO 94.9% ee

N

O

MeO3S OH

OH

HH

HO

1. CH(OMe)3 TsOH2. Me2SO2Cl, Et3N

3. HOOAc, KBr HOAC, NaOAc4. 90% TFA

BH3, THF NMeO3S OH

OHH

HH

HO

BH3Et3N, MeOH

120-130 °C

N

HHO OH

OH

J. Am. Chem. Soc.1997, 119, 125

1-Azafenestranes: Planarization of sp3 Carbon Center

N+

H H

H

BH3–

BF3•OEt2 N+

H H

H

BF3–

X-ray quality

1

2

5

8

N-C(1)-C(5)C(8)-C(1)-C(2)

121.8°121.9°119.2°121.2°119.8°120.7°

NO2 Cu(CN)ZnI

then PhSeBr

NO2

SePh

H2O2 NO2

Ot-Bu

AlMe3CH2Cl2, -78°C

NO

O

H H

Ot-Bu

H

ON+

-O Ot-Bu

H

+

2.6 1

HN

H H

H

OH

Ra-Ni, H2

10% H2O in EtOAc

N+

H H

H

BH3–

PPh3, DIAD

then BH3•THF-78 °C to rt

To A Thriving Career In Organic Chemistry: Outline• Silicon-Directed Nazarov Cyclization

• Inter/Intramolecular [4+2]/[3+2] Cycloaddition of Nitro Olefins

• Lewis-Base Activation of Lewis Acids – Enantioselective Carbon-Carbon Bond Formation

EtO

OTBS+

BnMe2SiCHO

SiCl4

N

P

N O

NMe

CH2

Me

Me

2

BnMe2SiCO2Et

OH

OOBn

SiMe3

thexylMe2SiO

BF3•OEt2

C6H5Et, 125 °C

thexylMe2SiOHH

O

Me

NO2 CN

+Me

Me

Me

Me 1. SnCl4 CH2Cl2, -78 °C

2. toluene, 80 °C

ONO

Me

HNC

H

Me

Me

Me

Me

Lewis-Base Activation of Lewis Acids

• Preparative Examples

PMe3 + BH3P

B

MeMeMe

H H

Hstable Adductmp = 100 °Cstable in H2O

CHO ZnEt2

Ti(Oi-Pr)4 (1.2 equiv)-20 °C, 1.5 h

NHTf

NHTf OH

Et

98% ee

ZnEt2

Ti(Oi-Pr)4 (1.2 equiv)23 °C, 12 h

OH

Et

REVIEW: Angew. Chem Int. Ed. 2008,47, 1560

Me

Me

OLi

Ph

MeIdioxolane

4 eq. HMPA

t1/2 = < 1 min

Ph

O

Me

MeMe

MeIdioxolane

Ph

O

Me

MeMe

t1/2 = 80 min

Lewis-Base Activation of Lewis Acids – Principles• Gutmann Analysis

REVIEW: Angew. Chem Int. Ed. 2008,47, 1560

D

L

LL

+

A

X

X X

Lewis Base

Lewis Acid

e.g. BR3

D A

LL

L X X

X

!+

!–

!+

!–

increasednegative charge

increasedpositivecharge

D A

LL

L X

X

+

X–

D

L

LL

+

A

Lewis Base

Lewis Acid

e.g. SiCl4

D A

LL

L X X

X

!+

!–

!+

!–

increasednegative charge

increasedpositivecharge

D A

LL

L X

X

+

X–

X

XX

X

XX

cationic Lewis Acid

cationic Lewis Acid

Lewis-Base Activation of Lewis Acids – Principles• Hybridization of Silicon

REVIEW: Angew. ChemInt. Ed. 2008,47, 1560

Aldol Reaction of Silicon-Substituted Enolates

• UncatalyzedOSiCl3

OMe

+

R

O

H

1. CH2Cl2, 0 °C

2. sat. aq NaHCO3

O

R

OH

H

99t-Bu89(E)-cinnamyl

96Cy98Phyield, %R

OSiCl3

+R H

O

P

N

N

O

N

Me

Me

Ph

Ph

R = Ph (E)-cinammyl

1. 0.1 equiv

CH2Cl2, -78 °C

2. sat. aq. NaHCO3

O

R

OH

Ph, anti/syn 65/1, 93% ee(E)-cinnamyl, anti/syn >99/1, 88% ee

J. Am. Chem. Soc. 1996, 118, 7404

Addition to Ketones – Silyl Ketene Acetals

Ph Et

O

O

O O

Me

Ph

Me

OO

Me

O

F3C

Me

O

MeO

Me

O

95%, 83% ee 91%, 76% ee 94%, 68% ee 97%, 49% ee

86%, 8% ee 91%, 32% ee 90%, 80% ee 94%, 35% ee

OSiCl3

OMe

+

R

O

R'

1. CH2Cl2, 0 °C

2. sat. aq NaHCO3

O

R

OH

R'

N N

O O

OBu

t-Bu

BuO

t-Bu

J. Am. Chem. Soc. 2002, 124, 4234

Vinylogous Aldol

R1 H

O+

OR2

OTBS

R5

R4

R3

SiCl4, CH2Cl2, -78 °C

N

P

N O

NMe

CH2

Me

Me

2R1

OH

OR2

O

R5

R4

R3

Ph

OH

OEt

O

89%, >99:1 !/", 98% ee

Ph

OH

OMe

O

Me

93%, >99:1 !/", 99% ee

OH

OEt

OMe

73%, >99:1 !/", 95% ee

Ph

Ph

OH

Ot-Bu

O

Me

92%, >99:1 !/", 89% ee, 98% de

OH

Ot-Bu

O

Me

71%, >99:1 !/", 82% ee, 98% de

Ph

Ph H

O+

OTBS

OO

SiCl4, CH2Cl2, -78 °C Ph

OH

O

OO

MeMe MeMe

92% yield, >99:1 !/", 74% ee

chiral phosphoramide

J. Am. Chem. Soc. 2003, 125, 2800

Formation of Quaternary Centers – Silyl Ketene IminesCHO

+CR1

R2

NTBS CN

R1 R2

OH5 mol% chiral phosphormaide

SiCl4 CH2Cl2, -78 °C

CN

Ph Me

OH

87%, 95/5 dr, 97% ee

PhCN

Et

OH

F3C73%, 97/3 dr, 99% ee

PhCN

Et

OH

74%, 87/13 dr, 89% ee

Me

CHO

+CPh

Me

NTBS CN

Ph Me

OH5 mol% chiral phosphormaide

SiCl4 CH2Cl2, -78 °C

RR

929099:12-furyl7697>99:11-naphthyl8499>99:12-Me8899>99:14-CF3

yield, %ee, %drR

J. Am. Chem. Soc. 2007, 129, 14864

N-Silyl Oxyketene Imines – Aldol Surrogates

C

R1

NR3Si

OPg

+

H

O

R2

catOH

R2NC

OPg R1

cross-benzoin

glycolate-Aldol

R1R2

O

OH

R3

O

R2

OH

OPg R1

N-Silyl Oxyketene Imines – Aldol SurrogatesRNC

Ot-Bu

KHMDS (1.2 equiv)i-Pr3SiCl (1.1 equiv)

THF, -78 °C

C

Ot-Bu

N(i-Pr)3Si

R

where R = Me, Er, i-Bu, Bn, allyl

RC

Ot-Bu

N(i-Pr)3Si

+H

O

R

N

P

N O

NMe

CH2

Me

Me

2

SiCl4, i-Pr2EtNCH2Cl2, -78 °C

Aryl

OH

R

t-BuO CN

OH

Me

t-BuO CN

84%, 96:4 dr, 99% ee

OH

t-BuO CN

93%, 99:1 dr, 99% ee

Ph

OH

t-BuO CN

90%, 99:1 dr, 99% ee

OH

t-BuO CN

91%, 98:2 dr, 97% ee

Ph

OH

t-BuO CN

93%, 99:1 dr, 97% ee

Ph

OH

t-BuO CN

91%, 99:1 dr, 99% ee

Ph

CO2Me

Me

O

Nat. Chem. 2010, 2, 937

O

O

OH OH OH OH OH OH

OH

OH

Me

Me

Me

Total Synthesis of RK-397• Synthesis of Polyol Fragment

OH

BnMe2Si 1. Red-Al

2. DMSO (COCl)2 Et3N

BnMe2SiCHO

N

P

N O

NMe

CH2

Me

Me

2

SiCl4

OEt

OTBS+

BnMe2SiCO2Et

OH

75%, 96% ee

BnMe2SiCO2Et

OPhCHO

KHMDS

O

Ph

74%, 19/1 dr

BnMe2SiC(O)Me

O O

Ph

1. MeNHOMe-HCl i-PrMgCl

2. MeMgBr

1. TMSOTf, DIPEA

2. SiCl4, Hg(OAc)23.

CHO

OPMB

Me

P

N

N

Ph

PhN

O

Me

Me

BnMe2Si

O O

Ph

OHO

Me

OPMB

Me

Me

BnMe2Si

O O

Ph

OO

Me

OPMB

Me

Me

1. NaBH42. PhC(OMe)2 CSA

Ph

O

O

OH OH OH OH OH OH

OH

OH

Me

Me

Me

Total Synthesis of RK-397

• Synthesis of Polyene Fragment

8 of 10 stereocenters were generated by substrate control

SiMe2OHBnMe2Si

+ OTHPI

1. NaH

2. Pd2(dba)3•CHCl3 BnMe2Si OTHP

77%, 3/1 dr

ICO2Et

Pd(dba)2

OTHP

79%, 5/1 drOEt

O

93%OEt

O

1. TsOH, I22. PBr3, py

3. P(OEt)3

P(OEt)3

O

Awards/Recognition• Eli Lilly Research Grantee, 1983• Beckman Endowment Research

Award, 1983• University of Illinois Center for

Advanced Study, Beckman Fellow,Spring 1985

• A. P. Sloan Foundation Fellow,1985-1987

• NSF Presidential YoungInvestigator Award, 1985-1990

• Procter and Gamble UniversityExploratory Research ProgramAward, 1986-89

• University Scholar, University ofIllinois, 1986-1989

• School of Chemical SciencesTeaching Award, University ofIllinois, 1986

• Stuart Pharmaceuticals Award inChemistry, ICI Americas, 1987

• A. C. Cope Scholar Award,American Chemical Society, 1989

• Fellow, American Association forthe Advancement of Science, 1990

• Reynold C. Fuson Professor ofChemistry, 1991

• Pedler Medal (Royal Society ofChemistry), 2002-2003

• ACS Award for Creative Work inSynthetic Organic Chemistry, 2003

• Yamada-Koga Prize (JapanResearch Foundation for OpticallyActive Compounds), 2006

• Fellow, Royal Society of Chemistry(FRSC), 2006

• Prelog Medal (ETH-Zürich,Switzerland), 2007

• Robert Robinson Medal andLectureship (Royal Society ofChemistry), 2009-2010

• H. C. Brown Award for CreativeResearch in Synthetic Methods(ACS), 2009

• Fellow, American Chemical Society,2009 (inaugural year)