36
logo1 A new view on fractional L´ evy models Jeannette Woerner Technische Universit¨ at Dortmund - Motivation for non-semimartingale models - Fractional Brownian motion models - Fractional L´ evy models J.H.C. Woerner (TU Dortmund) 1 / 38

A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

A new view on fractional Levy models

Jeannette WoernerTechnische Universitat Dortmund

- Motivation for non-semimartingale models- Fractional Brownian motion models- Fractional Levy models

J.H.C. Woerner (TU Dortmund) 1 / 38

Page 2: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Motivation

01.0

1.73

23.0

7.74

12.0

2.76

05.0

9.77

28.0

3.79

17.1

0.80

11.0

5.82

01.1

2.83

24.0

6.85

14.0

1.87

05.0

8.88

27.0

2.90

19.0

9.91

12.0

4.93

02.1

1.94

24.0

5.96

16.1

2.97

08.0

7.99

29.0

1.01

21.0

8.02

12.0

3.04

04.1

0.05

0

1000

2000

3000

4000

5000

6000

7000

8000

EWI104s (USA)

Time

Inde

x va

lue

J.H.C. Woerner (TU Dortmund) 2 / 38

Page 3: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

0 2000 4000 6000 8000 10000

­0,050

­0,040

­0,030

­0,020

­0,010

0,000

0,010

0,020

0,030

0,040

EWI­US

time

log­

retu

rns

J.H.C. Woerner (TU Dortmund) 3 / 38

Page 4: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

­0,200­0,150­0,100­0,0500,0000,0500,1000,1500,2000,2500,3000,3500,4000,4500,500

EWI­IE

time

log­

retu

rns

J.H.C. Woerner (TU Dortmund) 4 / 38

Page 5: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

J.H.C. Woerner (TU Dortmund) 5 / 38

Page 6: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Motivation

discrete data Xtn,0 , · · · ,Xtn,n

tn,n = t =fixed, ∆n,i → 0 as n→∞Classical stochastic volatility model

Xt = Yt +

∫ t

0σsdBs

Question:

Do we have to go beyond semimartingales in some situations?How can we cope with jumps?

Possible models may be based on fractional processes e.g.

Xt = Yt +

∫ t

0σsdBH

s + Zt

J.H.C. Woerner (TU Dortmund) 6 / 38

Page 7: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Turbulence

Kolmogorov’s 2/3 law:

In the case of an incompressible viscous fluid with large Reynolds numberthe mean square of the difference of the velocities at two points lying at adistance R (which is neither too large nor too small) is proportional to

r2H with H = 1/3.

Hence a possible model is a fractional Brownian motion based model withH = 1/3:

Xt = Yt +

∫ t

0σsdBs .

J.H.C. Woerner (TU Dortmund) 7 / 38

Page 8: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Fractional Brownian Motion

A fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1),BH = {BH

t , t ≥ 0} is a zero mean Gaussian process with the covariancefunction

E (BHt BH

s ) =1

2(t2H + s2H − |t − s|2H), s, t ≥ 0.

The fBm is a self-similar process, that is, for any constant a > 0, theprocesses{a−HBH

at , t ≥ 0} and {BHt , t ≥ 0} have the same distribution.

For H = 12 , BH coincides with the classical Brownian motion. For

H ∈ ( 12 , 1) the process possesses long memory and for H ∈ (0, 1

2 ) thebehaviour is chaotic.

J.H.C. Woerner (TU Dortmund) 8 / 38

Page 9: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Modelling of jump

Xt Levy process with distribution function Pt .

Ee iuXt = Pt(u) = et(iµu−σ2

2u2+

∫(e iuz−1−iuh(z))ν(dz))

Levy triplet (µ, σ2, ν(dx))

A measure for the activity of the jump component of a Levy process is theBlumenthal-Getoor index β,

β = inf{δ > 0 :

∫(1 ∧ |x |δ)ν(dx) <∞}.

This index ensures, that for p > β the sum of the p-th power of jumps willbe finite.

J.H.C. Woerner (TU Dortmund) 9 / 38

Page 10: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

How can we distinguish between semimaringales andnon-semimartingales?

Two important characteristics of Brownian semimartingales:

Correlation between neighbouring increments is zero.

[nt]∑i=1

(X i+1n− X i

n)(X i

n− X i−1

n)→ 0

Quadratic variation is finite

J.H.C. Woerner (TU Dortmund) 10 / 38

Page 11: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Correlation based method:

Assuming a model of the type

Xt = Yt +

∫ t

0σsdBH

s

we look at the quantity:

Sn =

∑[nT ]−1i=1 (X i+1

n− X i

n)(X i

n− X i−1

n)∑[nT ]

i=1 (X in− X i−1

n)2

→ CH =1

2(22H − 2)

confidence interval for Brownian motion based model:−cγ

√√√√√∑[nt]

i=1 |X in− X i−1

n|4

3(∑[nt]

i=1 |X in− X i−1

n|2)2, cγ

√√√√√∑[nt]

i=1 |X in− X i−1

n|4

3(∑[nt]

i=1 |X in− X i−1

n|2)2

,where cγ denotes the γ-quantile of a N(0, 1)-distributed random variable.

J.H.C. Woerner (TU Dortmund) 11 / 38

Page 12: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Problems:

∑[nT ]i=1 (X i

n− X i−1

n)2 is not robust to jumps.

Replace it by bipower variation

n−1+2H

[nT ]−1∑i=1

|X in− X i−1

n||X i+1

n− X i

n| p→ KH

∫ t

0σ2

s ds,

with KH = E (|B2 − B1||B1 − B0|) = 2π (CH arcsin(CH) +

√1− C 2

H).

J.H.C. Woerner (TU Dortmund) 12 / 38

Page 13: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Bipower Version:

Rn =

∑[nt]−1i=1 (X i+1

n− X i

n)(X i

n− X i−1

n)∑[nt]−1

i=1 |X i+1n− X i

n||X i

n− X i−1

n|

p→ CH

KH,

where KH = E (|B2 − B1||B1 − B0|) = 2π (CH arcsin(CH) +

√1− C 2

H)CH

KH− cγ

√√√√√v2∑[nt]−2

i=1 |X i+2n− X i+1

n|4/3|X i+1

n− X i

n|4/3|X i

n− X i−1

n|4/3

µ34/3

(∑[nt]−1i=1 |X i+1

n− X i

n||X i

n− X i−1

n|)2

,

CH

KH+ cγ

√√√√√v2∑[nt]−2

i=1 |X i+2n− X i+1

n|4/3|X i+1

n− X i

n|4/3|X i

n− X i−1

n|4/3

µ34/3

(∑[nt]−1i=1 |X i+1

n− X i

n||X i

n− X i−1

n|)2

.

J.H.C. Woerner (TU Dortmund) 13 / 38

Page 14: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Comparison of Sn and Rn

Inverting SN and Rn we get estimates for H.If no jumps are present Sn and Rn lead to the same estimate for H

If jumps are present Rn leads to the true H, whereas for Sn thedenominator gets larger hence H gets smaller than the true one.

Hence we can use both to distinguish between semimartingale andnon-semimartingales and a comparison of both to detect jumps even inthe non-smimartingale case.

J.H.C. Woerner (TU Dortmund) 14 / 38

Page 15: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

J.H.C. Woerner (TU Dortmund) 15 / 38

Page 16: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

● ●

● ●

● ●

● ●

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Estimators R_n inverted and S_n inverted for US

values omitted

estim

ated

H

● ●

● ●

● ●

● ●

J.H.C. Woerner (TU Dortmund) 16 / 38

Page 17: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

J.H.C. Woerner (TU Dortmund) 17 / 38

Page 18: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

● ●

●●

● ●

●●

● ●

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Estimators R_n inverted and S_n inverted for IE

values omitted

estim

ated

H ● ●

●●

● ●

● ●● ●

J.H.C. Woerner (TU Dortmund) 18 / 38

Page 19: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

J.H.C. Woerner (TU Dortmund) 19 / 38

Page 20: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Comparison of non-normed power variation

∑i

|∫ ti

ti−1

σsdBs |pp→

0 : p > 2∫ t

0 σ2s ds : p = 2∞ : p < 2

and the case for the Levy model∑i

|∫ ti

ti−1

σsdLs |p

p→{ ∑

(|∫ uu− σsdLs |p : 0 < u ≤ t) : p > β

∞ : p < β

under appropriate regularity conditions, where β denotes theBlumenthal-Getoor index of L.

J.H.C. Woerner (TU Dortmund) 20 / 38

Page 21: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Non-normed Power Variation for fractional Brownianmotion

∑i

|∫ ti

ti−1

σsdBHs |p

p→

0 : p > 1/H

µ1/H

∫ t0 σ

1/Hs ds : p = 1/H∞ : p < 1/H

,

where H > 1/2. The integral is a pathwise Riemann-Stieltjes integraland we need that σ is a stochastic process with paths of finite q-variation,q < 1

1−H .Hence one over the Hurst exponent plays a similar role as theBlumenthal-Getoor index.

J.H.C. Woerner (TU Dortmund) 21 / 38

Page 22: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Log-Power Variation Estimators

Theorem

Assume that for some k ∈ IR and p ∈ (a, b)(1

n

)1−pk

V np (X )t

p→ C , (1)

with a random variable C , 0 < C <∞, then

ln( 1nV n

p (X )t)

p ln 1n

p→{

k : pk 6= 11/p : pk = 1

(2)

holds as n→∞.

J.H.C. Woerner (TU Dortmund) 22 / 38

Page 23: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Models based on a fractional Brownian motion

Theorem

We look at models based on a fractional Brownian motion of the form

Xt = Yt +

∫ t

0σsdBH

s + δZt ,

where Y Holder continuous of order γ ∈ (H, 1] and σ possesses strong qvariation with q < 1

1−H and Z denotes a pure jump process withBlumenthal-Getoor index β < 1/H, then we obtain

ln( 1nV n

p (X )t)

p ln 1n

p→{

H : 0 < p ≤ 1/H or p > 1/H, δ = 01/p : p > 1/H, δ 6= 0

as n→∞.

J.H.C. Woerner (TU Dortmund) 23 / 38

Page 24: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Purely continuous model

Hmin

1

p

estimate

0 < Hmin < 1

J.H.C. Woerner (TU Dortmund) 24 / 38

Page 25: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Pure jump model

0.5

1

βmax

1

1 βmax 2

p

estimate

0 < βmax < 2, 12 <

1βmax

<∞

J.H.C. Woerner (TU Dortmund) 25 / 38

Page 26: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Mixed model

0.5

A

1

1 B 2

p

estimate

0 < βmax < 2, 0 < Hmin < 10 < min( 1

βmax,Hmin) < 1, 1 < max(βmax ,

1Hmin

) <∞

J.H.C. Woerner (TU Dortmund) 26 / 38

Page 27: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Normed log-Power Variation

Let

Xt = Yt +

∫ t

0σsdBH

s + δZt

with H < 3/4 and assume that β < 1/(2H) and Y is Holder continuous ofthe order γ with p(γ − H) > 1/2 and σ is Holder continuous of the ordera > 1

2(p∧1) , then we obtain for n→∞ and p > 0 if δ = 0 and

β/(2(1− βH)) < p < 1/(2H) if δ 6= 0, then we obtain for n→∞ andp > 0 if δ = 0 and β/(2(1− βH)) < p < 1/(2H) if δ 6= 0

p log(2)õ2pV

np (X )t√

V n2p(X )t(A + B − 2C )

log

(V n

p (X )t

2∑[nt/2]

i=1 |X 2in−X 2(i−1)

n

|p

)p log(2)

− H

d→ N(0, 1),

J.H.C. Woerner (TU Dortmund) 27 / 38

Page 28: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

where µp =2p/2Γ( p+1

2)

Γ(1/2) , A = δp(0) + 2∑

j≥1(γp(ρH(j))− γp(0))

with δp(0) = 2p( 1√π

Γ(p + 12 )− 1

πΓ(p+12 )2),

γp(x) = (1− x2)p+ 12 2p

∑∞k=0

(2x)2k

π(2k)! Γ(p+12 + k)2,

ρH(n) = 12

((n + 1)2H + |n − 1|2H − 2n2H

),

B = 2(δp(0) + 2∑

j≥1(γp(ρH(j))− γp(0))) with

ρH(n) =((2n+2)2H+|2n−2|2H−2|2n|2H)

22H+1

C = 2γp(2H−1)− 2µ2p + 2

∑j≥1(γp(ρH(j))− γp(0)) with

ρH(n) = ρH(n)+ρH(n+1)2H

J.H.C. Woerner (TU Dortmund) 28 / 38

Page 29: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

111111111111111111111111111111111111111111

11111111111

1111111111111111111111111

11

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

lpv for US (mean) with 95%−c.i. (H=0.5)

power

estim

ated

H

22222222222222222222222222222222222222222222222222222222222222222222222222222222

33333333333333333333333333333333333333333333333333333333333333333333333333333333

44444444444444444444444444444444444444444444444444444444444444444444444444444444

55555555555555555555555555555555555555555555555555555555555555555555555555555555

J.H.C. Woerner (TU Dortmund) 29 / 38

Page 30: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

11111111111111111111111111111111111111111111111111111111111111111111111111111111

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

lpv for IE (mean) with 95%−c.i. (H=0.5)

power

estim

ated

H

22222222222222222222222222222222222222222222222222222222222222222222222222222222

33333333333333333333333333333333333333333333333333333333333333333333333333333333

44444444444444444444444444444444444444444444444444444444444444444444444444444444

55555555555555555555555555555555555555555555555555555555555555555555555555555555

J.H.C. Woerner (TU Dortmund) 30 / 38

Page 31: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

J.H.C. Woerner (TU Dortmund) 31 / 38

Page 32: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Problems:

- How can we relax the assumption of normally distributed increments?

- How can we manage to produce peaks like in the energy data?

J.H.C. Woerner (TU Dortmund) 32 / 38

Page 33: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Fractional Levy motion

joint with Sebastian EngelkeIdea: Use the same moving average kernel as for fractional Brownianmotion.

Linear fractional stable motion (Samorodnitsky and Taqqu (1994))

Lα,H(t) =

∫|t − s|H−1/α − |s|H−1/αSα(ds),

where Sα denotes an α-stable random measure α ∈ (0, 2) and H ∈ (0, 1).Moving average fractional Levy motion (Benassi et.al (2004),Marquardt (2006))

XH(t) =

∫|t − s|H−1/2 − |s|H−1/2L(ds),

where L denotes a Levy process with finite second moment and H ∈ (0, 1).

J.H.C. Woerner (TU Dortmund) 33 / 38

Page 34: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Moving average fractional Levy motion

Unifying approach:

XH(t) =

∫|t − s|H−1/β − |s|H−1/βLβ(ds),

where L denotes a Levy process with Blumenthal-Getoor index β and finitep-th moment, p < β and H ∈ (0, 1).Properties:- stationary increments- for p < β the p-th absolute moment exists- if the p-th absolute moment of the driving Levy process exists, then italso exists for H ∈ (max(0, 1/β − 1/p), 1) and is infinite if H ≤ 1/β − 1/p.

J.H.C. Woerner (TU Dortmund) 34 / 38

Page 35: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Further properties

- Under the additional assumption that Lβ is square integrable withβ ∈ (1, 2] and H ∈ (0, 1− (1/β − 1/2)), the we have long-rangedependence for H + 1/β > 1 and chaotic behaviour for H + 1/β < 1.

- Under some regularity assumption on the driving Levy measure we haveinfinite strong p-variation for p < 1/H.

J.H.C. Woerner (TU Dortmund) 35 / 38

Page 36: A new view on fractional L evy modelsambitprocesses.au.dk/fileadmin/pdfs/ambit/Woerner.pdf · logo1 A new view on fractional L evy models Jeannette Woerner Technische Universit at

logo1

Conclusion

- Data of the world index suggests that non-semimartingale models mightbe suitable for modelling their behaviour.

- Fractional Brownian motion models may explain this behaviour.

- Both correlation based methods and log-power variation may be used todetect jumps in this setting.

- Fractional Levy motions behave similarly, but additional allow for moreflexibility in the distributions and may reproduce peaks as in energy data.

J.H.C. Woerner (TU Dortmund) 36 / 38