1
A New Explicit Model of Isoprene Oxidation Effects on NOx, Oxidant, and VOC Budgets Kelvin H. Bates* & the Caltech isoprene team: John Crounse, Leah Dodson, Renee McVay, Laura Mertens, Tran Nguyen, Eric Praske, Becky Schwantes, MaH Smarte, Jason St Clair, Alex Teng, Paul Wennberg, John Seinfeld Abstract A nearly complete gas-phase oxidaNon mechanism of isoprene and its major products is developed, incorporaNng results from recent laboratory studies as well as insights from theoreNcal approaches. The explicit mechanism , made available in KPP format for easy use in box modeling, is compiled with the aim of providing accurate atmospheric simulaNons of the impact of isoprene emissions on HO x , NO x , and products known to be involved in condensed phase processes. A reliable representaNon of the role of isoprene photochemistry in these chemical processes is crucial to quanNfying its influence on ozone formaNon and regional climate. AddiNonally, we offer a simplified mechanism appropriate for implementaNon in chemical transport models that retains the essenNal chemistry required to accurately simulate this chemistry under the typical condiNons where isoprene is emiHed and oxidized in the atmosphere. Here, we show preliminary results from the incorporaNon of this simplified mechanism into GEOS-Chem, a global chemical transport model. Outline The following is a list of topics covered in our review, and the major secNons of our explicit isoprene mechanism. Topics in bold (the “greatest hits”) are described on this poster, but feel free to ask about any of the others! 1. Mechanism Development RO 2 + NO reac@ons RO 2 + HO 2 reac@ons • Hydrogen shi‘s (isomerizaNon) 2. Isoprene + OH • LocaNon of OH addiNon •O 2 addi@on to allylic radicals - peroxy radical dynamics Reac@ons of ISOPOO (NO, HO 2 , RO 2 , & isomeriza@on) 3. Isoprene + O 3 4. Isoprene + NO 3 5. Isoprene + Cl 6. Photochemistry of major oxidaNon products • Methyl vinyl ketone (MVK) • Methacrolein (MACR) • Hydroxy hydroperoxides (ISOPOOH) • Epoxydiols (IEPOX) • Nitrates (hydroxy-, carbonyl-, and hydroperoxynitrates) • Methacryloyl peroxynitrate (MPAN) • Hydroperoxy aldehydes (HPALD) • Hydroxymethyl hydroperoxide (HMHP) 7. Preliminary modeling 8. Remaining Challenges Peroxy Radical Dynamics • We use a scheme modified from Teng et al., “Isoprene Peroxy Radical Dynamics,” J. Am. Chem. Soc., 2017. • It is crucial to represent the allylic and peroxy radicals derived from isoprene as a dynamic system, as their isomer (and product) distribuNon can vary with pressure, temperature, and bimolecular lifeNme. • The explicit mechanism individually represents all 10 allylic and peroxy radicals that follow OH addiNon at C1 and C4; the simplified mechanism reduces this to two species, represenNng the steady-state peroxy radical distribuNons. These simplificaNons provide isomer and reacNon pathway branching raNos within 5% of the explicit model for atmospheric condiNons (P = 0.5-1 atm, T > 280 K, k bimolecular <1s -1 ). RO 2 + NO • We implement a new parameterizaNon for the branching raNos of nitrate formaNon (α) from RO 2 + NO reacNons. • Dependence of α on molecular size is derived from Teng, et al., 2015, where n = # of non-H atoms (for n > 4): α 0 = [0.045 × n] 0.2 • Dependence of α on T and P is derived from Arey, et al., 2001; these graphs show α vs T & P for n = 6 and 10: • α is scaled ×1.25/×0.75 for terNary/primary peroxy radicals. • α is further adjusted for funcNonalizaNon (β-/γ-carbonyl, nitrate, hydroxy, and hydroperoxy groups). RO 2 + HO 2 • We formulate RO 2 + HO 2 rate coefficients based on Orlando, et al., 2012, a‘er adding data and refizng for n = # of non-H atoms (excluding the peroxy moiety): We parameterize the radical propagaNng branching raNo (RO 2 + HO 2 à RO + OH + O 2 ) similarly to the RO 2 + NO à nitrate branching raNo, based on funcNonalizaNon: terNary kjhor Preliminary Modeling • A preliminary version of the simplified mechanism (~150 reacNons and 50 species) was incorporated into GEOS-Chem, a chemical transport model. • Comparisons shown below are between our simplified mechanism and the basic chemical mechanism that comes with v.10-01 of GEOS-Chem. • SimulaNons were run for the year 2014 following an 18-month spinup, using GEOS-FP meteorology on a 4˚ x 5˚ grid with 72 verNcal levels. • Maps show annual averages over the boHom 1 km of the troposphere. Ozone: prod ê 2.3%, loading ê 4.1% NO: prod ê 0.9%, loading ê 1.4% OH: prod é 2.7%, loading ê 0.8% -20% +20% 0 -40% +40% 0 -10% +10% 0 OH NO 3 O 3 RIO 2 NO HO 2 isom. RO 2 7.5% 3.2% 89.3% 41.7% 31.3% 4.8% 22.2% é ê éé é ê ê Globally averaged reac@ve pathway branching (1,4)-E-δ (1,2)-β (1,4)-Z-δ (4,1)-E-δ (4,3)-β (4,1)-Z-δ 1.4% 59.8% 2.9% 0.6% 17.2% 18.0% n = 6 280 290 300 310 Temperature (K) 0.2 0.4 0.6 0.8 1 Pressure (atm) 0.06 0.08 0.1 0.12 0.14 0.16 0.18 n = 10 280 290 300 310 Temperature (K) 0.2 0.4 0.6 0.8 1 0.2 0.25 0.3 0.35 0.4 The new mechanism results in: • Increased NO x transport from higher nitrate yields • Increased OH recycling from isomerizaNon pathways • Lower overall O 3 producNon 10 -4 10 -2 10 0 10 2 bimolecular reactivity (s -1 ) -0.15 -0.1 -0.05 0 0.05 0.1 0.15 (full-simple) difference 1-OH trans delta 1-OH beta 1-OH cis delta 4-OH trans delta 4-OH beta 4-OH cis delta 10 -4 10 -2 10 0 10 2 bimolecular reactivity (s -1 ) -0.2 -0.1 0 0.1 0.2 (full-simple) difference beta isomer isomerization delta isomer isomerization beta isomer bimolecular delta isomer bimolecular -4 -2 0 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 fraction reacting via each isomer ISOMER BRANCHING -4 -2 0 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 fraction reacting via each pathway PATHWAY BRANCHING Look for our upcoming paper, “The Gas-Phase Reac@ons of Isoprene and its Major Oxida@on Products”, in Chem. Rev. ISOP(OOH) 2 (*2) -10% +10% FULL MODEL T = 280 K T = 290 K T = 300 K T = 310 K FULL MODEL (FULLSIMPLE) DIFFERENCE (FULLSIMPLE) DIFFERENCE typical tropospheric P vs. T profile α α Le1: isoprene peroxy radical dynamics following the addiNon of OH. Above: dependence of peroxy radical isomer (le‘) and reacNve pathway (right) branching raNos on bimolecular lifeNme (x axis) and temperature (line style) in the new explicit mechanism (top), and the difference between the explicit and simplified models (boHom). > secondary > primary, with increased radical propagaNon for β-/γ-carbonyl, nitrate, hydroxy, and hydroper- oxy groups. 0 5 10 15 n = # of C (old) or C+O (new) 0.5 1 1.5 2 k*10 11 cm 3 molec -1 s -1 RO2 + HO2 rate fitting new: n = #C+O old: n = #C Globally averaged peroxy radical isomer pathway branching é (1,2):(4,3)-β raNo à é MVK:MACR raNo (×2) SOA precursors: global producNon scaled to 500 Tg y -1 isoprene O OH HO Small organics: change from standard v.10-01 mechanism OONO 2 O OH OOH OH HOO 1 pptv 100 0.5 pptv 20 0.5 pptv 5 2 pptv 800 IEPOX 178 Tg y -1 MPAN 32.3 Tg y -1 Dihydroxy- dihydroperoxides 29.2 Tg y -1 Dihydroxy- dinitrates 6.9 Tg y -1 OH ONO 2 OH O 2 NO CO producNon ê 0.7%, loading é 1.2% -15% +15% HCHO producNon ê 1.1%, loading é 3.9% -20% +20% Formic Acid producNon ê 16%, loading é 1.1% -20% +20% Ace@c Acid producNon ê 14%, loading é 4.5% k = 2.82 × 10 -13 ×e (1300/T) × [1 e (-0.231 × n) ] cm 3 molec -1 s -1 RO 2 +HO 2

A New Explicit Model of Isoprene Oxidation Preliminary ... · poster, but feel free to ask about any of the others! 1. Mechanism Development • RO 2 + NO reac@ons • RO 2 + HO 2

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A New Explicit Model of Isoprene Oxidation Preliminary ... · poster, but feel free to ask about any of the others! 1. Mechanism Development • RO 2 + NO reac@ons • RO 2 + HO 2

A New Explicit Model of Isoprene Oxidation EffectsonNOx,Oxidant,andVOCBudgets

KelvinH.Bates*&theCaltechisopreneteam:JohnCrounse,LeahDodson,ReneeMcVay,LauraMertens,TranNguyen,EricPraske,BeckySchwantes,MaHSmarte,JasonStClair,AlexTeng,PaulWennberg,JohnSeinfeld

Abstract

A nearly complete gas-phase oxidaNon mechanismof isoprene and its major products is developed,incorporaNngresultsfromrecentlaboratorystudiesaswellas insights from theoreNcal approaches. The explicitmechanism,made available in KPP format for easy use inbox modeling, is compiled with the aim of providingaccurateatmosphericsimulaNonsoftheimpactofisopreneemissionsonHOx,NOx,andproductsknowntobeinvolvedincondensedphaseprocesses.AreliablerepresentaNonofthe role of isoprene photochemistry in these chemicalprocesses is crucial to quanNfying its influence on ozoneformaNon and regional climate. AddiNonally, we offer asimplified mechanism appropriate for implementaNon inchemical transport models that retains the essenNalchemistry required to accurately simulate this chemistryunderthetypicalcondiNonswhereisopreneisemiHedandoxidized in the atmosphere. Here, we show preliminaryresultsfromtheincorporaNonofthissimplifiedmechanismintoGEOS-Chem,aglobalchemicaltransportmodel.

Outline

Thefollowingisalistoftopicscoveredinourreview,andthemajorsecNonsofourexplicitisoprenemechanism.Topics in bold (the “greatest hits”) are described on thisposter,butfeelfreetoaskaboutanyoftheothers!

1.MechanismDevelopment•RO2+NOreac@ons•RO2+HO2reac@ons•Hydrogenshi`s(isomerizaNon)

2.Isoprene+OH•LocaNonofOHaddiNon•O2addi@ontoallylicradicals-peroxyradicaldynamics•Reac@onsofISOPOO(NO,HO2,RO2,&isomeriza@on)

3.Isoprene+O34.Isoprene+NO35.Isoprene+Cl6.PhotochemistryofmajoroxidaNonproducts

•Methylvinylketone(MVK)•Methacrolein(MACR)•Hydroxyhydroperoxides(ISOPOOH)•Epoxydiols(IEPOX)•Nitrates(hydroxy-,carbonyl-,andhydroperoxynitrates)•Methacryloylperoxynitrate(MPAN)•Hydroperoxyaldehydes(HPALD)•Hydroxymethylhydroperoxide(HMHP)

7.Preliminarymodeling8.RemainingChallenges

PeroxyRadicalDynamics

•WeuseaschememodifiedfromTengetal.,“IsoprenePeroxyRadicalDynamics,”J.Am.Chem.Soc.,2017.

•Itiscrucialtorepresenttheallylicandperoxyradicalsderivedfromisopreneasadynamicsystem,astheirisomer(andproduct)distribuNoncanvarywithpressure,temperature,andbimolecularlifeNme.

•Theexplicitmechanismindividuallyrepresentsall10allylicandperoxyradicalsthatfollowOHaddiNonatC1andC4; the simplified mechanism reduces this to two species, represenNng the steady-state peroxy radicaldistribuNons. These simplificaNons provide isomer and reacNon pathway branching raNos within 5% of theexplicitmodelforatmosphericcondiNons(P=0.5-1atm,T>280K,kbimolecular<1s-1).

RO2+NO

•We implement a newparameterizaNon for the branchingraNosofnitrateformaNon(α)fromRO2+NOreacNons.

•DependenceofαonmolecularsizeisderivedfromTeng,etal.,2015,wheren=#ofnon-Hatoms(forn>4):

α0=[0.045×n]–0.2•DependenceofαonTandPisderivedfromArey,etal.,

2001;thesegraphsshowαvsT&Pforn=6and10:

•αisscaled×1.25/×0.75forterNary/primaryperoxyradicals.•αisfurtheradjustedforfuncNonalizaNon(β-/γ-carbonyl,

nitrate,hydroxy,andhydroperoxygroups).

RO2+HO2

• We formulate RO2 + HO2 rate coefficientsbased onOrlando,et al., 2012, a`er addingdata and refizng for n = # of non-H atoms(excludingtheperoxymoiety):

• We parameterize the radical propagaNng

branchingraNo(RO2+HO2àRO+OH+O2)similarlytotheRO2+NOànitratebranchingraNo, based on funcNonalizaNon: terNarykjhor

PreliminaryModeling

•Apreliminaryversionofthesimplifiedmechanism(~150reacNonsand50species)wasincorporatedintoGEOS-Chem,achemicaltransportmodel.

•Comparisonsshownbelowarebetweenoursimplifiedmechanismandthebasicchemicalmechanismthatcomeswithv.10-01ofGEOS-Chem.

• SimulaNons were run for the year 2014 following an 18-month spinup,usingGEOS-FPmeteorologyona4˚x5˚gridwith72verNcallevels.

•MapsshowannualaveragesovertheboHom1kmofthetroposphere.

Ozone:prodê2.3%,loadingê4.1%

NO:prodê0.9%,loadingê1.4% OH:prodé2.7%,loadingê0.8%

-20% +20%0 -40% +40%0

-10% +10%0

OH

NO3

O3

RIO2

NOHO2

isom. RO2

7.5% 3.2%

89.3%

41.7% 31.3%

4.8%22.2%

é

ê

éé é

ê ê

Globallyaveragedreac@vepathwaybranching

(1,4)-E-δ

(1,2)-β

(1,4)-Z-δ(4,1)-E-δ

(4,3)-β

(4,1)-Z-δ

1.4%

59.8%

2.9%0.6%

17.2%

18.0%

n = 6

280 290 300 310Temperature (K)

0.2

0.4

0.6

0.8

1

Pres

sure

(atm

)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

n = 10

280 290 300 310Temperature (K)

0.2

0.4

0.6

0.8

1 0.2

0.25

0.3

0.35

0.4

Thenewmechanismresultsin:•IncreasedNOxtransportfrom

highernitrateyields• Increased OH recycling from

isomerizaNonpathways•LoweroverallO3producNon

10-4 10-2 100 102

bimolecular reactivity (s-1)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(full-

sim

ple)

diff

eren

ce

1-OH trans delta1-OH beta1-OH cis delta4-OH trans delta4-OH beta4-OH cis delta

10-4 10-2 100 102

bimolecular reactivity (s-1)

-0.2

-0.1

0

0.1

0.2

(full-

sim

ple)

diff

eren

ce

beta isomer isomerizationdelta isomer isomerizationbeta isomer bimoleculardelta isomer bimolecular

10-4 10-2 100 1020

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fract

ion

reac

ting

via

each

isom

er

ISOMER BRANCHING

10-4 10-2 100 1020

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fract

ion

reac

ting

via

each

pat

hway

PATHWAY BRANCHING

Lookforourupcomingpaper,“TheGas-PhaseReac@onsofIsopreneanditsMajorOxida@onProducts”,inChem.Rev.

ISOP(OOH)2(*2)

-10% +10%

FULLMODEL

10-4 10-2 100 102 104

bimolecular reactivity (s-1)

0

0.2

0.4

0.6

0.8

1

fract

ion

of b

imol

ecul

ar re

actio

ns th

roug

h ea

ch p

athw

ay

FULL MODEL: fraction reacting via each pathway

T = 280 KT = 290 KT = 300 KT = 310 K

FULLMODEL

(FULL–SIMPLE)DIFFERENCE

(FULL–SIMPLE)DIFFERENCE

typicaltroposphericPvs.Tprofile

α α

Le1:isopreneperoxyradicaldynamicsfollowingtheaddiNonofOH.Above:dependenceofperoxyradical isomer (le`)andreacNvepathway

(right)branchingraNosonbimolecularlifeNme(xaxis)andtemperature(linestyle) in thenewexplicitmechanism(top),and thedifferencebetweentheexplicitandsimplifiedmodels(boHom).

> secondary >primary, withincreasedradicalpropagaNon forβ-/γ-carbonyl,nitrate, hydroxy,and hydroper-oxygroups.

0 5 10 15n = # of C (old) or C+O (new)

0.5

1

1.5

2

k*10

11 c

m3 m

olec

-1 s

-1

RO2 + HO2 rate fitting

new: n = #C+Oold: n = #C

Globallyaveragedperoxyradicalisomerpathwaybranching

é(1,2):(4,3)-βraNoàéMVK:MACRraNo(×2)

SOAprecursors:globalproducNonscaledto500Tgy-1isoprene

OOHHO

Smallorganics:changefromstandardv.10-01mechanism

OONO2

O

OHOOH

OH

HOO

1pptv 100

0.5pptv 20

0.5pptv 5

2pptv 800

IEPOX178Tgy-1

MPAN32.3Tgy-1

Dihydroxy-dihydroperoxides29.2Tgy-1

Dihydroxy-dinitrates6.9Tgy-1 OH

ONO2

OH

O2NO

COproducNonê0.7%,loadingé1.2%

-15% +15%

HCHOproducNonê1.1%,loadingé3.9%

-20% +20%

FormicAcidproducNonê16%,loadingé1.1%

-20% +20%

Ace@cAcidproducNonê14%,loadingé4.5%

k=2.82×10-13×e(1300/T)×[1–e(-0.231×n)]cm3molec-1s-1RO2+HO2