A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

Embed Size (px)

Citation preview

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    1/24

    -1

    A new approach to diversity indices – modeling andmapping plant biodiversity of Nallihan(A3-Ankara/Turkey) forest ecosystem in frame of geographic information systems

    HAKAN METE DOGAN1,* and MUSA DOGAN21GIS and RS Department, Central Research Institute for Field Crops (CRIFC), Gulderen Sok.

    Ziraat Loj. No: 3, Yenimahalle, 06070 Ankara, Turkey;  2Biology Department, Middle East Technical 

    University, Ankara, Turkey; *Author for correspondence (e-mail: [email protected]; phone:

    +90-312-327-01-50; fax; +90-312-315-14-66)

    Received 10 February 2004; accepted in revised form 4 August 2004

    Key words: Flora, Geographic information systems, Mapping, Modeling, Plant biodiversity, Plant

    ecology, Remote sensing, Spatial analysis

    Abstract.   Modeling and mapping possibilities of Shannon–Wiener, Simpson, and number of 

    species (NS) indices were researched using geographic information systems (GIS) and remote

    sensing (RS) tools in Nallihan forest ecosystem of Turkey. The relationships between the indices

    and a number of independent variables such as topography, geology, soil, climate, normalized

    difference vegetation index (NDVI), and land cover were investigated to understand relationships

    between plant diversity and ecosystem. Georeferenced field data from the established 56 quadrats

    (50  ·   20 m) were used to calculate the indices. Principle component analysis (PCA) and multipleregression were employed for data reduction and model development, respectively. Three diversity

    maps were produced using the developed models. Residual maps and logical interpretations in

    ecological point of view were used to test the validity of the models. Elevation and climatic factors

    formed the most important components that are effective determinants of plant species diversity,

    but geological formations, soil, land cover and land-use characteristics also influenced plant

    diversity. Considering the different responses of the models, Shannon–Wiener (SWI) and NS

    models were found suitable for rare cover types, while Simpson (SIMP) model might be appro-

    priate for single dominant land covers in the study area.

    Introduction

    Conservation Biology is an emerging discipline dedicated to the preservation of 

    endangered species and habitats. To develop effective protection strategies,experts need to understand the relationship between species and ecosystem.

    Most importantly, they need to decide which areas are the most important to

    protect. Consequently, mapping the areas with high plant biodiversity has a

    priority for decision-makers. Effective management plans and actions can only

    be achieved with this valuable spatial information. Ecologists define species

    diversity on the basis of two factors: species richness and species evenness. The

    number of species (NS) in the community is called species richness, while the

    relative abundance of species is described as species evenness (Molles 1999).

    Biodiversity and Conservation (2006) 15:855–878    Springer 2006

    DOI 10.1007/s10531-004-2937-4

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    2/24

    How environmental structure affect species diversity is one of the most fun-

    damental subject of investigation about communities (Barbour et al. 1987;

    Molles 1999). Although having been much criticized for the imperfect defini-

    tion of the concept of diversity and sampling difficulties, diversity indices are

    still widely used to evaluate, survey, and conserve ecosystems (Pielou 1966;

    Barbour et al. 1987; Riitters et al. 1995; Mouillot and Leprêtre 1999). The most

    popular indices that have been used to quantify landscape composition are

    Shannon’s index, believed to emphasize the richness component of diversity,

    and Simpson’s index, emphasizing the evenness component (Magurran 1988;

    Nagendra 2002). Choosing appropriate methods and tools, it is believed that

    these indices have a potential to map diversity. At this point, geographic

    information systems (GIS) that has been recently recognized by conservationbiologists can be an appropriate and powerful tool in the spatial analyzes

    performed in conservation biology (Kadmon 1997; Dogan 1998; Kress et al.

    1998; Lenton et al. 2000; Dogan 2001). The spatial nature of the biological data

    lets GIS to develop spatial models of which they might also be used as a

    solution for predictive mapping (Franklin 1998; Gottfried et al. 1998). Where

    as the monitoring results and mapping of earlier periods are considered as vital

    information for such kind of GIS databases. This need is fulfilled generally by

    aero-space remotely sensed data (Fjeldsa et al. 1997) in which at some regions

    of the globe the data set can go back to early 1950s via aerial photographs to

    recent via high resolution multispectral global coverages for the diversity

    studies. Within this frame, the aim of this study is to create a new approach to

    the conventional diversity (Shannon-Wiener, Simpson, NS) indices using GISand remote sensing (RS) tools. Consequently, in order to reach this goal plant

    biodiversity of Nallihan forest ecosystem was modeled and mapped within the

    frame of this new approach between the years 2001 and 2002.

    Materials and methods

    Study area

    This study was conducted in Nallihan administrative district of Ankara

    province in Turkey. According to the grid system based on two degrees of 

    latitude and longitude (Davis 1965–1988); the study area is located in the A3

    grid square of Central Anatolia (Figure 1a). This location is within the Irano-Turanian phytogeographical region with some Mediterranean penetrations

    (Davis 1971), and the records of Turkey’s Plant Database (TUBIVES 2003)

    pointed out 119 family, 553 genera, and 1350 plant species in this square.

    Recently, a new   Acantholimon  (Plumbaginaceae) species was published from

    the area (Dogan and Akaydin 2002). The study area is specifically called

    Erenler forest region, and covers 327.31 km2 (32731.29 ha) area. The general

    topography of the study area is mountainous (Figure 1b). Generally, agricul-

    tural lands are concentrated along the river basins, while forests dominate the

    856

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    3/24

    higher elevations. There are 28 settlements in the study area, and majority of 

    them are small villages. Major human effects on the forest can be seen in the

    area like agriculture and urbanization. Moreover, a considerable part of this

    area faces erosion. About 5.6% forest was degraded by natural or anthropo-

    genic causes in the area.

    According to Emberger classification system, the climate of the study area

    showed ‘Semi-arid Upper Mediterranean Bioclimate’ characteristics with cold

    winters (Akman and Daget 1971; Akman 1999). Basically, four climatic sea-

    sons are recognized in the study area. Precipitation is mostly in the form of rain

    Figure 1.   Physiographic setting (a) and physical geography (b) of the study area (projection

    systems of physiographic setting and physical geography maps were defined as geographic with

    European datum (spheroid international 1909) and UTM with European datum (zone: 36, spheroid

    international 1909), respectively).

    857

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    4/24

    throughout the year except winters, and total number of snowy days does not

    exceed 20 days. The main tree species of the study area are black pine (Pinus

    nigra), juniper (Juniperus spp.), red pine (Pinus brutia), and oak (Quercus spp.).

    According to the digital forest stand map, the study area can be generalized in

    six categories as non forest (28.39%), oak forest (0.47%), erosion/stony

    (5.60%), degraded forest (33.85%), Black Pine forest (31.47), and Red Pine

    forest (0.21%).

    Methods

    A flowchart of the methodology is given in Figure 2. Digital geological and soilmaps of the study area were obtained from the General Directorate of Mineral

    Research and Exploration (MTA) and the General Directorate of Rural Af-

    fairs (KHGM), respectively. Topographical and forest stand maps were digi-

    tized in UNIX Arc/Info 7.0.4 and PC Arc/Info 3.5 software (ESRI 1994; ESRI

    1997). The LANDSAT-TM image, acquired on August 21st 2000, was utilized

    to develop land cover and normalized difference vegetative index (NDVI) maps

    in Erdas Imagine 8.5 software (ERDAS 1997). Supervised classification

    method (maximum likelihood parametric rule), 4-5-3 band combination, and

    statistical filtering (7  ·  7) were used to develop a land cover map. The unsigned

    8-bit NDVI model was utilized to establish NDVI classes. Arc/View 3.2 soft-

    ware (ESRI 1996) and Inverse Distance Weighted (IDW) method were em-

    ployed to produce the interpolated surfaces (grid maps) of climatic(temperature, precipitation, and potential evapotranspiration (PET)), and

    additional soil (K2O, P2O5, organic matter, pH, salt, CaCO3, saturation and

    texture) variables. To conduct spatial analysis, all developed maps were con-

    verted to grid themes by using 30  ·  30 m grid size in Arc/View 3.2. Universal

    Transverse Mercator (UTM) projection system (spheroid international-1909,

    datum: European-1950, zone: 36) was applied to all map data.

    Georeferenced point data (791 points) were collected to classify LANDSAT-

    TM image and to conduct accuracy assessment (Figure 3a). Land-use (FAO

    1990) and formation classes (UNESCO 1973) were utilized to identify the main

    land-use and vegetation types in the field. Detailed plant data for diversity

    indices were collected from the established quadrats (Figure 3b). The number

    of quadrats was determined as 56 considering the quadrat surveys of Magurran

    (1981), and the quadrat sites were established according to stratified randomsampling design (McGrew and Monroe 1993). The size of each quadrat was

    20  ·  50 m following Grossman et al. (2003). Plant parameters collected from

    each quadrat were (1) species component, (2) NS, (3) species cover (%), and (4)

    species density (number of plant/m2). From the quadrats, soil samples were

    also taken according to the certain soil sampling methods (Atesalp 1976; Ulgen

    and Yurtsever 1995). On the map of study area, total 570 points were deter-

    mined to aggregate climatic data (Figure 3c). The LOCCLIM software

    (Grieser 2002) was employed with the digital elevation model (DEM) to

    858

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    5/24

    calculate the best estimates of focused climatic variables in each determined

    point. Climatic variables were investigated in both ‘annual’ and ‘seasonal’

    basis. The time period between May and September was taken as seasonal

    because of low precipitation and high PET values within this period.

    Total 752 plant specimens, pressed and dried following the rules and defi-

    nitions explained by Davis and Heywood (1965), were identified in the

    ANKARA Herbarium of Ankara University. The Davis’ Flora of Turkey and

    the East Aegean Island Vol. 1–10 (Davis 1965–1988) were used as the mainreference throughout the herbarium studies. Species diversity indices were

    calculated for each quadrat at the end of this work. The formulas

    H ¢  =   P

    ( pi  loge  pi ) and D =P

    ( pi 2) were employed to calculate Shannon– 

    Wiener and Simpson indices, respectively (Barbour et al. 1987; Molles 1999). In

    both formulas, pi  values indicate the proportional abundance of the  i th species

    in a quadrat. On the other hand, NS index has no formula, and it was deter-

    mined by using the total species number in a quadrat.

    Figure 2.   The flowchart of the methodology (the rounded rectangles indicate the analyses and

    processes, rectangles show output products).

    859

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    6/24

    Spatial analyses and model development were conducted in four steps

    (Figure 2). Kaiser–Meyer–Olkin (KMO)–Bartlett tests were conducted to test

    the suitability of the data for factor analysis. Then, principle component

    Figure 3.   Georeferenced point data for supervised classification (a), established quadrats (b), and

    established point data to derive climatic variables (c).

    860

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    7/24

    analysis (PCA) with varimax rotation was applied for data reduction (SPSS

    2001). Multiple regression, regressing a variable on a series of independent

    variables (Sokal and Rohlf 1995), was chosen to formulate the relationships.

    This was achieved by applying the linear regression with ‘enter’ method in

    SPSS-11 software (SPSS 2001). Applying the models, species richness maps

    were produced in Arc/View 3.2. The reliability of the maps was tested by

    residual maps and ecological interpretations. Residuals were calculated by

    using the observed and computed values of indices in each quadrat, and IDW

    method was employed to map them. To evaluate different indices in the same

    base, interpolating surfaces of the residuals were developed by using standard

    deviation values of each index.

    Results

    Plant species

    Total 239 species belonging to 45 families were determined in the study area.

    According to Davis (1965–1988) and the records of Turkey’s Plant Database

    (TUBIVES 2003); 14 species were detected as endemic for the study area. NS

    recognized in each family is stated in Table 1. Leguminosae, Compositae,

    Labiatae, Rosaceae, Cruciferae, and Gramineae families have more species

    comparing to the others. The full list of identified species was given in

    Appendix 1

    Table 1.   NS recognized in each family.

    Family No. of species Family No. of species Family No. of species

    Leguminosae 37 Ranunculaceae 3 Iridaceae 1

    Compositae 34 Cistaceae 3 Acanthaceae 1

    Labiatae 28 Papaveraceae 3 Anacardiaceae 1

    Rosaceae 15 Fagaceae 3 Chenopodiaceae 1

    Cruciferae 10 Santalaceae 2 Convolvulaceae 1

    Graminae 10 Illecebraceae 2 Coryllaceae 1

    Liliaceae 9 Rhamnaceae 2 Crassulaceae 1

    Boraginaceae 8 Geraniaceae 2 Equisetaceae 1Scrophulariaceae 8 Linaceae 2 Euphorbiaceae 1

    Caryophyllaceae 7 Berberidaceae 2 Globulariaceae 1

    Umbelliferae 7 Cyperaceae 2 Guttiferae 1

    Campanulaceae 5 Paeoniaceae 2 Malvaceae 1

    Rubiaceae 5 Pinaceae 2 Orchidaceae 1

    Cupressaceae 4 Valerianaceae 2 Polygalaceae 1

    Plumbaginaceae 4 Dipsacaceae 1 Urticaceae 1

    Number of determined plant species in this study were given with their families in this table. In this way, overall

    results about the recognized species were summarized efficiently. Details about the determined species were also

    given in Appendix 1.

    861

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    8/24

    Remote sensing data

    Supervised classification obtained 92.16% overall accuracy with a Kappa

    coefficient of 0.8828, and produced a reliable result. Moreover, NDVI map

    delineated the areas where the plants dominated. Therefore, these two map

    layers supplied valuable spatial information that can be effective on plant

    species diversity. The grid maps of land cover and NDVI were given in Fig-

    ure 4 with the original LANDSAT-TM (band 3) image.

    Data reduction

    Initial results of KMO measure of sampling adequacy indicated that factor

    analysis would be an appropriate statistics for data reduction. The best solu-

    tion was found after the second pass with the removal of (1) aspect, (2) slope,

    (3) P2O5, (4) K2O, (5) salt, (6) erosion, and (7) seasonal maximum temperature.

    After the removal of these seven variables the KMO measure of sampling

    adequacy was increased for all indices (Table 2).

    Total five factors were determined according to their Eigenvalues in the

    second pass (Table 3). Consequently, stable models were produced. The sta-

    bility of the models can be seen in the generic differentiation of the factors and

    their responsible variables. For instance, the first component consists of ele-

    vation and climatic variables for all indices that is reasonable because of the

    clear relationship between elevation and climatic factors. Similarly, classes

    derived from satellite images (NDVI and land cover classes) take part in thefifth component of all indices.

    Modeling

    The results of linear (multiple) regression were summarized in Table 4. The

    Analysis of Variance (ANOVA) showed the acceptability of the models from a

    statistical perspective, and the model summary reported the strength of the

    relationship between the models and the dependent variables (Table 4). Large

    values of the multiple correlation coefficient (R) indicated a strong relationship.

    Table 2.   Kaiser–Meyer–Olkin and Bartlett’s Test results for the 22 variables in second pass.

    Second pass SWI index SIMP index Number of species

    KMO measure of sampling adequacy 0.808 0.811 0.808

    Bartlett’s test of sphericity Approx.   v2 2502.219 2454.079 2426.494

    df 210 210 210

    Significance 0.000 0.000 0.000

    This table summarized the KMO measure of sampling adequacy results after the second pass with

    the removal of (1) aspect, (2) slope, (3) P2O5, (4) K2O, (5) salt, (6) erosion, and (7) seasonal

    maximum temperature variables. Increasing KMO and Bartlett’s Test results (0.808 for Shannon– 

    Wiener, 0.811 for Simpson and 0.808 for NS) for the last 22 variables and the low significance levels

    (0.00 for all indices) indicated the suitability of the for data reduction.

    862

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    9/24

    Moreover, the significance values of the F statistic are less than 0.05 in all models,

    which means that the variation explained by the models is not due to chance. The

    unstandardized coefficients were defined as the coefficients of the estimated

    regression model, and they were used in the developed models (Table 5).

    Figure 4.   Original LANDSAT-TM (band 3) image (a), land cover map (b), and NDVI (8 bit)

    classes (c) of the study area.

    863

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    10/24

    Mapping

    The developed grid themes (complementary data set) and map calculator

    functions of Arc/View 3.2 were employed throughout the application process

    of the three models. With the power of GIS, mathematical operations

    were easily conducted on grid themes. Consequently, species diversity maps of 

    focused indices were developed (Figure 5).

    Discussion

    The reliability of species diversity maps was questioned in two ways. These

    were (1) mapping residuals to predict the locations where the models work

    perfectly and (2) logical interpretations in ecological point of view.

    Residual from regression is simply the difference between observed and

    computed value (Berry and Marble 1968; McGrew and Monroe 1993), and is a

    good indicator to show where the models work perfectly or imperfectly. In

    general, low residual values indicate the robust models. Produced residual maps

    were given in Figure 5. The percent area covered by each distinct residual class

    indicated the credibility of three models. The less predictive areas for three

    models covered small percentages (SWI: 7.82%, SIMP: 6.60% and NS: 7.84%),

    while the strongly predictive areas contained significant parts (SWI: 64.85%,

    SIMP: 68.12%, and NS: 67.57%). Moderately predictive areas were alsodetermined as approximately one fourth of the total area (SWI: 27.33%, SIMP:

    25.28% and NS: 24.59%) for each index. Considering strongly and moderately

    predictive areas together, it seems that each model runs very well in itself.

    Overall results of the study indicated that Simpson model worked inversely

    comparing the Shannon–Wiener and NS models (Figure 5). Low Simpson (0– 

    0.42) high Shannon–Wiener (2.70–3.59 and 3.60

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    11/24

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    12/24

         T   a     b     l   e     4 .

        T    h   e   s   t   a   t    i   s   t    i   c   s   o    f    l    i   n   e   a   r    (   m   u    l   t    i   p    l   e    )   r   e   g   r   e   s   s    i   o   n .

        S    h   a   n   n   o   n  –    W    i   e   n   e   r

        A    N    O    V    A       b

        M   o    d   e

        l    1

        S   u   m   o    f   s   q   u   a   r   e   s

        d    f

        M   e   a   n   s   q   u   a   r   e

         F

        S    i   g   n    i    fi   c   a   n   c   e

        R   e   g   r   e

       s   s    i   o   n

        2    9 .    1    7    3

        2    0

        1 .    4    5    9

        1    7 .    0    5    5

        0 .    0    0    0     a

        R   e   s    i    d

       u   a    l

        2 .    9    9    3

        3    5

        0 .    0    8    6

        T   o   t   a    l

        3    2 .    1    6    7

        5    5    M

       o    d   e    l   s   u   m   m   a   r   y       b

        M   o    d   e

        l    1

         R

         R       2

        A    d    j   u   s   t   e    d     R       2

        S   t   a   n    d   a   r    d   e   r   r   o   r

        0 .    9    5    2     a

        0 .    9    0    7

        0 .    8    5    4

        0 .    2    9    2    4    5    2

        S    i   m   p   s   o   n

        A    N    O    V    A       b

        M   o    d   e

        l    1

        S   u   m   o    f   s   q   u   a   r   e   s

        d    f

        M   e   a   n   s   q   u   a   r   e

         F

        S    i   g   n    i    fi   c   a   n   c   e

        R   e   g   r   e

       s   s    i   o   n

        2 .    6    6    9

        2    0

        0 .    1    3    3

        5 .    0    2    7

        0 .    0    0    0     a

        R   e   s    i    d

       u   a    l

        0 .    9    2    9

        3    5

        0 .    0    2    7

        T   o   t   a    l

        3 .    5    9    8

        5    5    M

       o    d   e    l   s   u   m   m   a   r   y       b

        M   o    d   e

        l    1

         R

         R       2

        A    d    j   u   s   t   e    d     R       2

        S   t   a   n    d   a   r    d   e   r   r   o   r

        0 .    8    6    1     a

        0 .    7    4    2

        0 .    5    9    4

        0 .    1    6    2    9    3    8

    866

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    13/24

        N   u   m    b   e   r   o    f    S    P .

        A    N    O    V    A       b

        M   o    d   e

        l    1

        S   u   m   o    f   s   q   u   a   r   e   s

        d    f

        M   e   a   n   s   q   u   a   r   e

         F

        S    i   g   n    i    fi   c   a   n   c   e

        R   e   g   r   e

       s   s    i   o   n

        1    1    9    8 .    6    9    5

        2    0

        5    9 .    9    3    5

        2 .    0    2    6

        0 .    0    3    3

        R   e   s    i    d

       u   a    l

        1    0    3    5 .    4    3    0

        3    5

        2    9 .    5    8    4

        T   o   t   a    l

        2    2    3    4 .    1    2    5

        5    5    M

       o    d   e    l   s   u   m   m   a   r   y       b

        M   o    d   e    l    1

         R

         R       2

        A    d    j   u   s   t   e    d     R       2

        S   t   a   n    d   a   r    d   e   r   r   o   r

        0 .    7    3    2       d

        0 .    5    3    7

        0 .    2    7    2

        5 .    4    3    9

        T    h   e   r   e   s   u    l   t   s   o    f    l    i   n   e   a   r    (   m   u    l   t    i   p    l   e    )

       r   e   g   r   e   s   s    i   o   n   p   r   o    d   u   c   e    d    f   o   r   e   a   c    h    i   n    d   e   x   w   e   r   e   u   n

        i    fi   e    d    i   n   t    h    i   s   t   a    b    l   e .    T    h   e   a   n   a    l   y   s    i   s   o    f   v   a   r    i   a   n   c   e    (

        A    N    O    V    A    )   s    h   o   w   e    d   t    h   e   a   c   c   e   p   t   t   a    b    i    l    i   t   y   o    f

       t    h   e   m   o    d   e    l   s    f   r   o   m   a   s   t   a   t    i   s   t    i   c   a    l   p   e   r   s   p   e   c   t    i   v   e ,   a   n    d   t    h   e   m   o    d   e    l   s   u   m   m   a   r   y   r   e   p   o   r   t   e    d

       t    h   e   s   t   r   e   n   g   t    h   o    f   t    h   e   r   e    l   a   t    i   o   n   s    h    i   p    b   e   t   w   e   e   n   t    h   e   m   o    d   e    l   s   a   n    d   t    h   e    d   e   p   e   n    d   e   n   t   v   a   r    i   a    b    l   e   s .

        L   a   r   g   e   v   a    l   u   e   s   o    f   t    h   e   m   u    l   t    i   p    l   e   c   o

       r   r   e    l   a   t    i   o   n   c   o   e    ffi   c    i   e   n   t    (     R    )    i   n    d    i   c   a   t   e    d   a   s   t   r   o   n   g   r   e    l   a   t    i   o   n   s    h    i   p .    M   o   r   e   o   v   e   r ,   t    h   e   s    i   g   n    i    fi   c   a   n   c   e   v   a    l   u   e   s   o    f   t    h   e     F   s   t   a   t    i   s   t    i   c   a   r   e    l   e   s   s   t    h   a   n    0 .    0    5    i   n

       a    l    l   m   o    d   e    l   s ,   w    h    i   c    h   m   e   a   n   s   t    h   a   t   t

        h   e   v   a   r    i   a   t    i   o   n   e   x   p    l   a    i   n   e    d    b   y   t    h   e   m   o    d   e    l   s    i   s   n   o   t    d   u   e   t   o   c    h   a   n   c   e .

         N   o    t   e   :    F   o   r   a    b    b   r   e   v    i   a   t    i   o   n   s   s   e   e    T   a    b    l   e    3 .

         a    P   r   e    d    i   c   t   o   r   s   :    (    C   o   n   s   t   a   n   t    ) ,    S    P    V    S    D

     ,    G    E    O ,    P    H ,    S    L    D    P    T ,    O    R    G    M ,    N    D    V    I ,    M    I    N

        T    A ,    T    E    X    T    R ,    S    O    I    L    G ,    C    A    C    O    3 ,    P    R    C    P    S ,    S    T

        R ,    P    E    T    A    N ,    M    E    T    S ,

        P    R    C    P    A ,    M    A    X    T    A ,    M    I    N    T    S ,    E

        L    E    V ,    P    E    T    S    E ,    M    E    T    A .

           b    D   e   p   e   n    d   e   n   t   v   a   r    i   a    b    l   e   :    S    W    I .

         c    D   e   p   e   n    d   e   n   t   v   a   r    i   a    b    l   e   :    S    i   m   p   s   o   n .

           d    P   r   e    d    i   c   t   o   r   s   :    (    C   o   n   s   t   a   n   t    ) ,    P    E    T    S    E ,    O    R    G    M ,    N    D    V    I ,    G    E    O ,    S    L    D    P    T ,    P    H ,    S    P    V

        S    D ,    T    E    X    T    R ,    S    O    I    L    G ,    C    A    C    O    3 ,    P    R    C    P    S ,    S    T    R ,    M    E    T    S ,    P    R    C    P    A ,

        M    A    X    T    A ,    M    I    N    T    A ,    P    E    T    A    N ,    M

        I    N    T    S ,    E    L    E    V ,    M    E    T    A .

         e    D   e   p   e   n    d   e   n   t   v   a   r    i   a    b    l   e   :    N   u   m    b   e   r

       o    f   s   p   e   c    i   e   s .

    867

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    14/24

    The relationships between the indices and elevation can be recognized when

    the elevation (Figure 1) and diversity maps (Figure 5) were examined together.

    A direct relationship between the elevation and indices was detected for

    Shannon–Wiener and NS models. On the other hand, this relationship turned

    an inverse character in Simpson model. Depending on these results, animportant question arises: which model has the capacity to delineate real sit-

    uation in the field? In basic, there are two general concepts: (1) a monotonic

    decrease in species richness with increasing elevation (Stevens 1992; Huston

    1994; Rahbek 1995; Brown and Lomolino 1998) and (2) a peak in richness at

    intermediate elevations (800–1400 m) exemplified by a hum-shaped distribu-

    tion (McCoy 1990; Rahbek 1997; Fleishman et al. 1998). Considering the

    elevation range (144–1740 m) of the study area, Simpson model might be

    found reasonable within the first concept. On the other hand, Shannon–Wiener

    Figure 5.   Plant species diversity and residual maps of Shannon–Wiener (a), Simpson (b), and NS

    (c) models.

    868

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    15/24

         T   a     b     l   e     5 .

        D   e   v   e    l   o   p   e    d   m   o    d   e    l   s   o    f   e   a   c    h    i   n    d   e   x    (    S    h   a   n   n   o   n  –    W    i   e   n   e   r ,    S    i   m   p   s   o   n ,   a   n    d   n   u   m    b   e   r   o    f   s   p   e   c    i   e   s    ) .

        M

       o    d   e    l   s

        S    h   a   n   n   o   n  –    W    i   e   n   e   r    i   n    d   e   x   =

        2    2 .    2    9

        6    +

        (    0 .    0    0    8    *    E    L    E    V    )    +

        (    1 .    6    8    8    *    M    E    T    A    )    +

        (    0 .    9    4    4    *    M    I    N    T    S    )    +

        (    0 .    0    9    7    *    P    R    C    P    A    )    +

        (    0 .    2    2    6    *    G    E    O    )    +

        (    0 .    0    7    1    *    O    R    G    M    )    +

        (    0 .    0    2    0    *    C    A    C    O    3    )    +    (    0 .    0    0    5    *    S    O    I    L    G    )    +    (    0 .    1    3    9    *    S    P    V    S    D    )   

        (    0 .    9    8    1    *    M    E    T    S    )

       

        (    1 .    0    6    8    *    M    A    X    T    A    )   

        (    0 .    2    8    9    *    M    I    N    T    A    )   

        (    0 .    1    4    3    *    P    R    C    P    S    )   

        (    0 .    1    6    8    *    P    E    T    A    N    )   

        (    0 .    0    3    2    *    P    E    T    S    E    )   

        (    0 .    0    0    4    *    S    T    R    )   

        (    0 .    0    0    8    *    T    E    X    T    R    )   

        (    0 .    3    7    8    *    P    H    )   

        (    0 .    0    8    1    *    S    L    D    P    T    )   

        (    0 .    0    0    2    *    N    D    V    I    )

        S    i   m   p   s   o   n    i   n    d   e   x   =

        1    0 .    4    2    4    +    (    0 .    4    3    7    *    M    I    N    T    A    )    +    (    0 .    0    8    7    *    P    R    C    P    S    )    +    (    0 .    0    2    8

        *    P    E    T    S    E    )    +    (    0 .    0    7    9    *    T    E    X    T    R    )    +    (    0 .    0    0    4    *

        O    R    G    M    )    +    (    0 .    0    3    0    *    S    L    D    P    T    )    +    (    0 .    2    6    9    *

        P    H    )    +

        (    0 .    0    0    1    *    N    D    V    I    )   

        (    0 .    0    0

        2    *    E    L    E    V    )   

        (    0 .    0    0    9    *    M    E    T    A    )   

        (    0 .    2    2    0    *

        M    E    T    S    )   

        (    0 .    2    9    3    *    M    A    X    T    A    )   

        (    0 .    4    2    8    *    M

        I    N    T    S    )   

        (    0 .    0    6    4    *    P    R    C    P    A    )   

        (    0 .    0    2    7    *

        P    E    T    A    N    )   

        (    0 .    0    0    3    *    S    T    R    )       (    0 .    0    6    4    *    G    E    O    )   

        (    0 .    0    0    1    *    S    O    I    L    G    )   

        (    0 .    0    1    1    *    C    A    C    O    3    )   

        (    0 .    0    5    3    *    S    P    V    S    D    )

        N   u   m    b   e   r   o    f   s   p   e   c    i   e   s    i   n    d   e   x   =

           2    4    4 .    8    0    4    +    (    0 .    1    3    6    *    E    L    E    V    )    +    (    0 .    3    4    0    *    O    R    G    M

        )    +    (    0 .    1    7    5    *    C    A    C    O    3    )    +    (    4 .    9    3    5    *    T    E    X    T    R    )    +    (    1    1 .    5    6    5    *    S    O    I    L    G    )    +    (    1 .    0    9    9    *    G    E    O    )    +

        (    0 .    0    2    6    *    N    D    V    I    )    +    (    0 .    3    6    5    *    S    P    V    S    D    )    +    (    2    3 .    0    8    9    *    M    E    T    A    )    +    (    4 .    7    6    6    *    M    E    T    S    )    +    (    3 .    8    0    4    *    M    A    X    T    A    )    +    (    6 .    6    9    7    *    M    I    N    T    A    )    +    (    1 .    1    5    2    *    P    R    C    P    S    )    +    (    3 .    9    3    2    *    P    E    T    S    E    )

       

        (    5 .    6    4    2    *    P    H    )   

        (    0 .    3    9    5    *    S    T    R    )   

        (    0 .    4    0    2    *    S    L    D    P    T    )   

        (    2 .    0    7    9    *    M    I    N    T    S    )   

        (    0 .    2    0    4    *    P    R    C    P    A    )   

        (    1    0 .    7    7    0    *    P    E    T    A    N    )

        T    h    i   s   t   a    b    l   e   s   t   a   t   e   s   t    h   e   m   o    d   e    l   s    (   r   e   g   r   e   s   s    i   o   n   e   q   u   a   t    i   o   n   s    )   a   c   c   o   r    d    i   n   g   t   o   t    h   e   r   e   s   u    l   t   s

       o    f   m   u    l   t    i   p    l   e   r   e   g   r   e   s   s    i   o   n .    I   n   t    h   e   e   q   u   a   t    i   o   n   s ,   t    h   e   u   n    d   e   r   s   t   a   n    d   a   r    d    i   z   e    d   c   o   e    ffi   c    i   e   n   t   s   a   r   e   t    h   e

       c   o   e    ffi   c    i   e   n   t   s   o    f   t    h   e   e   s   t    i   m   a   t   e    d   r   e   g   r   e   s   s    i   o   n   m   o    d   e    l .    E   a   c    h   m   o    d   e    l   a    l   s   o    h   a   s   a   c   o   n   s   t   a   n   t   v   a    l   u   e   s   u   c    h   a   s   ;    2    2 .    2    9    6    f   o   r    S    h   a   n   n   o   n  –    W    i   e   n   e   r ,    1    0 .    4    2    4    f   o   r    S    i   m   p   s   o   n ,   a   n    d       2    4    4 .    8    0    4    f   o   r

       n   u   m    b   e   r   o    f   s   p   e   c    i   e   s .

         N   o    t   e   :    F   o   r   a    b    b   r   e   v    i   a   t    i   o   n   s   s   e   e    T   a    b

        l   e    3 .

    869

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    16/24

    and NS models could be found acceptable according to the second concept. So,

    the question remains as to which diversity index reflected the reality. According

    to The Ecological Society of America Committee on Land Use (Dale et al.

    2000); Shannon’s index of diversity has greater sensitivity to rare cover types

    and it needs to be given greater importance during interpretation. However,

    Simpson’s index of diversity might be preferred in landscapes where a single

    dominant land cover type is of interest. Therefore, the appropriateness of the

    models depends on the aims what the decision-makers seek. Shannon–Wiener

    and NS Models might be useful to detect the areas where rare and endangered

    species in focus. On the other hand, Simpson model could be best fit to

    determine the areas where dominant species in point of concentration.

    Conclusion

    In this study, we tested the modeling and mapping capabilities of some diversity

    indices by using a new approach. The forest ecosystem was handled as a whole,

    and the relationship between the plant biodiversity and the factors effective on

    ecosystem were investigated. The complementary data about topography,

    geology, soil, forest, climate, land cover, and NDVI supplied very important

    information, and played the backbone role at the spatial analysis and modeling

    stages. The importance of quantitative field data was also emphasized. The

    results showed that plant diversity can be modeled by using index values and

    complementary data set. Both GIS and RS are important tools at the analysisand visualizing (mapping) stages. According to the results; both Shannon– 

    Wiener and NS models could be successful to reveal the richness aspect of 

    species diversity, while Simpson model might be acceptable to delineate the

    evenness aspect indicating single dominant land cover types. Although this

    study suggested an applicable method, it is implied that researchers should be

    cautious to select appropriate index according to their aims.

    Acknowledgements

    The authors wish to thank the following individuals for their contributions in

    various parts of this research study: Vedat Toprak, Lutfi Suzen, Unal Sorman,

    and Zuhal Akyurek from Middle East Technical University (METU); OsmanKetenoglu from Ankara University (AU); Ali Mermer, Ediz Unal, Tuncay

    Porsuk, Oztekin Urla, and Hakan Yildiz from the GIS and RS Department of 

    Central Research Institute for Field Crops (CRIFC-GIS and RS); Murat

    Cetiner and Irfan Artuc from the Nallihan Forest Management District

    (NFMD). Thanks are also due to METU Research Fund for making financial

    assistance, Soil and Fertilizer Research Institute for analyzing soil samples, and

    the Keeper of the Ankara (ANK) Herbarium for making the herbarium

    facilities available.

    870

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    17/24

    Appendix 1   List of identified species in the study area (endemics were stated in bold and marked

    with are asterisk (*))

    No. Species name Family

    1   Alhagi pseudalhagi  (Bieb.) Desv. Leguminosae

    2   Anthyllis vulneraria  L. subsp.   boissieri  (Sag.) Bornm. Leguminosae

    3   Astragalus angustifolius  Lam. subsp.   angustifolius   Leguminosae

    4   Astragalus densifolius  Lam. Leguminosae

    5   Astragalus glycyphyllos   L. subsp.   glycyphylloides   (DC.)

    Matthews

    Leguminosae

    6   Astragalus lycius Boiss. Leguminosae

    7   Astragalus macrocephalus  Willd. subsp.   Macrocephalus   Leguminosae

    8   Astragalus microcephalus  Willd. Leguminosae

    9   Astragalus micropterus  Fischer Leguminosae

    10   Astragalus squalidus  Boiss. & Noe ¨   *   Leguminosae

    11   Astragalus trichostigma  Bunge *   Leguminosae

    12   Chamaecytisus pygmaeus  (Willd.) Rothm. Leguminosae

    13   Cicer pinnatifidum Jaub. & Spach Leguminosae

    14   Conorilla varia L. subsp.   Varia   Leguminosae

    15   Dorycnium pentaphyllum   Scop. subsp.   anatolicum

    (Boiss.) Gams

    Leguminosae

    16   Hedysarum varium  Willd. Leguminosae

    17   Lathyrus aureus  (Stev.) Brandza Leguminosae

    18   Lotus aegaeus (Gris.) Boiss. Leguminosae

    19   Lotus corniculatus L. var.   corniculatus   Leguminosae

    20   Lotus corniculatus L. var.   tenuifolius  L. Leguminosae

    21   Medicago polymorpha  L. var.   vulgaris  (Benth.) Shinners Leguminosae

    22   Medicago sativa  L. subsp.  Sativa   Leguminosae23   Medicago varia Martyn Leguminosae

    24   Melilotus alba  Desr. Leguminosae

    25   Melilotus officinalis  (L.) Desr. Leguminosae

    26   Onobrychis argyrea  Boiss. Subsp.  argyrea   Leguminosae

    27   Onobrychis armena  Boiss. & Huet. Leguminosae

    28   Onobrychis hypargyrea  Boiss. Leguminosae

    29   Ononis adenotricha  Boiss. var.   adenotricha   Leguminosae

    30   Ononis spinosa  L. subsp.   Leiosperma  (Boiss.) S ˇ irj. Leguminosae

    31   Pisum sativum  L. subsp.   Elatius  var.   elatius   Leguminosae

    32   Trifolium arvense  L. var.   arvense   Leguminosae

    33   Trifolium barbulatum  (Freyn & Sint.) Zoh.*   Leguminosae

    34   Trifolium repens  L. var.   repens   Leguminosae

    35   Vicia cracca L. subsp.   Stenophylla  Vel. Leguminosae

    36   Vicia grandiflora Scop. var.   grandiflora   Leguminosae

    37   Vicia narborensis L. var.   narborensis   Leguminosae38   Achillea biebersteinii  Afan. Compositae

    39   Achillea setacea Waldst. & Kit. Compositae

    40   Acroptilon repens  (L.) DC. Compositae

    41   Anthemis tinctoria  L. var.   discoidea  (All.) DC. Compositae

    42   Cardopodium corymbosum  (L.) Pers. Compositae

    43   Carlina corymbosa  L. Compositae

    44   Centaurea deprassa Bieb. Compositae

    45   Centaurea solstitialis  L. subsp.   solstitialis   Compositae

    46   Centaurea triumfettii  All. Compositae

    871

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    18/24

    Appendix 1.  (Continued )

    No. Species name Family

    47   Centaurea urvillei  DC. subsp.   Urvillei *   Compositae

    48   Centaurea virgata Lam. Compositae

    49   Chardinia orientalis  (L.) O. Kuntze Compositae

    50   Chondrilla juncea L. var.   juncea   Compositae

    51   Cichorium intybus  L. Compositae

    52   Cirsium arvense (L.) Scop. subsp.   vestitum   Compositae

    53   Cirsium hypoleucum  DC. Compositae

    54   Crepis sancta (L.) Babcock Compositae

    55   Doronicum orientale  Hoffm. Compositae

    56   Echinops ritro L. Compositae

    57   Inula oculus-christi  L. Compositae

    58   Lactuca serriola L. Compositae

    59   Leontodon asperrimus  (Willd.) J. Ball. Compositae

    60   Petasites hybridus (L.) Gaertner Compositae

    61   Pilosella echioides   (Lumn.) C.H. & F.W.Schultz subsp.

     procera   (Fries) Sell & West

    Compositae

    62   Pilosella hoppeana   (Schultes) C. H. & F.W. Schultz

    subsp.   testimonialis   (NP.) Sell &West

    Compositae

    63   Scorzonera cana (C.A.Meyer) Hoffm. Compositae

    64   Scorzonera laciniata  L. Compositae

    65   Senecio vernalis Waldst. & Kit. Compositae

    66   Sonchus asper L. Hill subsp.   glaucescens  (Jordan) Ball. Compositae

    67   Tanacetum poteriifolium  (Ledeb.) Compositae

    68   Tanacetum vulgare L. Compositae

    69   Taraxacum seronitum  (Waldst. & Kit.) Poiret in Lam. Compositae

    70   Tragopogon latifolius  Boiss. var.   angustifolius  Boiss. Compositae

    71   Xeranthemum annuum  L. Compositae

    72   Acinos rotundifolius  Pers. Labiatae

    73   Ajuga chamaepitys  (L.) Schreber, subsp.   chia   (Schreber)

    Arcangeli, var.  chia

    Labiatae

    74   Lamium macradon  Boiss. & Huet Labiatae

    75   Marrubium parviflorum   Fisch. & Mey. subsp.   oligodon

    (Boiss.) Seybold *

    Labiatae

    76   Mentha spicata L. subsp.   tomentosa  (Briq.) Harley Labiatae

    77   Nepeta nuda L. subsp.   albiflora  (Boiss.) Gams Labiatae

    78   Phlomis armeniaca  Willd. *   Labiatae

    79   Phlomis nissolii  L. Labiatae

    80   Prunella vulgaris L. Labiatae

    81   Salvia aethiopis  L. Labiatae

    82   Salvia hypargeia  Fisch. & Mey. Labiatae

    83   Salvia sclarea L. Labiatae

    84   Salvia tomentosa  Miller (Syn: S.   grandiflora  Etl.) Labiatae

    85   Salvia verticillata  L. subsp.  amasiaca  (Freyn & Bornm.)

    Bornm.

    Labiatae

    86   Salvia viridis L. Labiatae

    87   Scutellaria orientalis  L. subsp.  macrostegia  (Hausskn. ex

    Bornm.) Edmondson

    Labiatae

    88   Sideriris montana  L. subsp.  montana   Labiatae

    89   Sideritis galatica Bornm. Labiatae

    872

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    19/24

    Appendix 1.  (Continued )

    No. Species name Family

    90   Stachys annua   (L.) L. subsp.   ammophila   (Boiss. & Bl.)

    Samuelss

    Labiatae

    91   Stachys annua  (L.) L. subsp. a  nnua  var.  annua *   Labiatae

    92   Stachys cretica L. subsp.   anatolica  Rech. fil. *   Labiatae

    93   Teucrium chamaedrys  L. subsp.  chamaedrys   Labiatae

    94   Teucrium parviflorum  Schreber Labiatae

    95   Teucrium polium L. Labiatae

    96   Thymus leucostomus  Hausskn. &Velen. var.   leucostomus   Labiatae

    97   Thymus longicaulis  C. Presl subsp.   longicaulis   Labiatae

    98   Thymus sipyleus Boiss. subsp.   sipyleus   Labiatae

    99   Ziziphora capitata  L. Labiatae

    100   Cotoneaster nummularia  Fisch. & Mey. Rosaceae

    101   Crataegus monogyna  Jacq. subsp.  monogyna   Rosaceae

    102   Crataegus orientalis  Pallas ex Bieb. var.   orientalis   Rosaceae

    103   Crataegus tanacetifolia  (Lam.) Pers. *   Rosaceae

    104   Potentilla recta L. Rosaceae

    105   Prunus avium (L.) L. Rosaceae

    106   Prunus divaricata Ledeb. subsp.   divaricata   Rosaceae

    107   Prunus spinosa L. subsp.   dasyphylla  (Schur) Domin Rosaceae

    108   Pyracantha coccinea  Roemer Rosaceae

    109   Pyrus elaeagnifolia  Pallas subsp.   elaeagnifolia   Rosaceae

    110   Rosa canina L. Rosaceae

    111   Rubus ideaus L. Rosaceae

    112   Rubus sanctus Schreber Rosaceae

    113   Sanguisorba minor  Scop. subsp.  muricata  (Spach) Briq. Rosaceae

    114   Sorbus umbellata  (Desf.) Fritsch var.   umbellata   Rosaceae

    115   Alyssum desertorum  Stapf. var.   desertorum   Cruciferae

    116   Alyssum murale  Waldst. & Kit. var.  murale   Cruciferae

    117   Alyssum sibiricum  Willd. Cruciferae

    118   Arabis nova Vill. Cruciferae

    119   Barbera plantaginea DC. Cruciferae

    120   Cardaria draba (L.) Desv. subsp.  draba   Cruciferae

    121   Erysimum crassipes  Fisch. & Mey. Cruciferae

    122   Iberis taurica DC. Cruciferae

    123   Thlaspi perfoliatum  L. Cruciferae

    124   Turritis glabra L. Cruciferae

    125   Agropyron cristatum   (L.) Geartner, subsp:   pectinatum

    (Bieb.) Tzvelev, var:   pectinatum

    Gramineae

    126   Aegilops umbellulata  Zhuk. Gramineae

    127   Brachypodium sylvaticum  (Hudson) P. Beauv Gramineae

    128   Dactylis glomerata  L. subsp.  glomerata   Gramineae

    129   Festuca airoides  Lam. Gramineae

    130   Festuca anatolica  Markgr.-Dannenb. subsp.   anatolica   Gramineae

    131   Festuca ilgazensis  Markgr.-Dannenb. Gramineae

    132   Poa bulbosa L. Gramineae

    133   Stipa bromoides  (L.) Do ¨ rfler Gramineae

    134   Stipa lessingiana  Trin. & Rupr. Gramineae

    135   Allium scorodoprasum  L. subsp.   rotundum (L.) Stearn Liliaceae

    136   Gagea granatellii  (Parl.) Parl. Liliaceae

    137   Muscari armeniacum Leichtlin ex Baker Liliaceae

    873

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    20/24

    Appendix 1.  (Continued )

    No. Species name Family

    138   Muscari longipes Boiss. Liliaceae

    139   Muscari neglectum  Guss. Liliaceae

    140   Muscari tenuiflorum  Tausch Liliaceae

    141   Ornithogalum oligophyllum  E.D.Clarke. Liliaceae

    142   Ornithogalum fimbriatum  Willd. Liliaceae

    143   Ornithogalum umbellatum  L. Liliaceae

    144   Adonis flammea Jacq. Ranunculaceae

    145   Ranunculus argyreus Boiss. Ranunculaceae

    146   Ranunculus ficaria L. subs.   ficariiformis  Rouy & Fouc. Ranunculaceae

    147   Dianthus anatolicus  Boiss. Caryophyllaceae

    148   Dianthus ancyrensis  Hausskn. & Bornm. *   Caryophyllaceae

    149   Dianthus zonatus Fenzl var.   zonatus   Caryophyllaceae

    150   Herniaria glabra L. Caryophyllaceae

    151   Minuartia hirsuta  (Bieb.) Hand. & Mazz. Caryophyllaceae

    152   Saponaria glutinosa  Bieb. Caryophyllaceae

    153   Silene supina Bieb. subsp.   pruinosa  (Boiss) Chowdh Caryophyllaceae

    154   Astrodaucus orientalis  (L.) Drude Umbelliferae

    155   Coriandrum sativum  L. Umbelliferae

    156   Falcaria vulgaris  Bernh. Umbelliferae

    157   Laser trilobum (L.) Borkh. Umbelliferae

    158   Malabaila secacul  Banks & Sol. Umbelliferae

    159   Turgenia latifolia  L. Hoffm. Umbelliferae

    160   Zosima absinthifolia  (Vent.) Link Umbelliferae

    161   Alkanna orientalis  (L.) Boiss. var.   orientalis   Boraginaceae

    162   Anchusa leptophylla   Roemer & Schultes subsp.   lepto-

     phylla

    Boraginaceae

    163   Cerinthe minor L. subsp.  minor   Boraginaceae

    164   Lithospermum officinale  L. Boraginaceae

    165   Onosma aucheranum  DC. Boraginaceae

    166   Onosma bornmuelleri  Hausskn. Boraginaceae

    167   Onosma isauricum  Boiss. & Heldr. *   Boraginaceae

    168   Onosma tauricum  Pallas ex Willd. var.   tauricum   Boraginaceae

    169   Digitalis ferruginea  L. subsp.   ferruginea   Scrophulariaceae

    170   Digitalis orientalis  Lam. Scrophulariaceae

    171   Scrophularia scopolii   [Hoppe ex] Pers. var.   scopolii    Scrophulariaceae

    172   Verbascum cherianthifolium  Boiss var.   cheiranthifolium.* Scrophulariaceae

    173   Verbascum glomeratum  Boiss Scrophulariaceae

    174   Veronica chamaedrys  L. Scrophulariaceae

    175   Veronica multifida  L. Scrophulariaceae

    176   Veronica pectinata  L. var.   pectinata   Scrophulariaceae

    177   Asyneuma limonifolium   (L.) Janchen subsp.   pestalozzae

    (Boiss.) Damboldt.

    Campanulaceae

    178   Asyneuma rigidum  (Willd.) Grossh. subsp.   rigidum   Campanulaceae

    179   Campanula glomerata  L. Campanulaceae

    180   Campanula persicifolia  L. Campanulaceae

    181   Legousia speculum-veneris  (L.) Chaix Campanulaceae

    182   Asperula stricta  Boiss. subsp.   latibracteata   (Boiss.) Eh-

    rend.

    Rubiaceae

    183   Cruciata taurica (Pallas ex Willd.) Ehrend. Rubiaceae

    184   Galium incanum Sm. subsp.   elatius  (Boiss.) Ehrend. Rubiaceae

    874

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    21/24

    Appendix 1.  (Continued )

    No. Species name Family

    185   Galium palustre  L. Rubiaceae

    186   Galium verum  subsp.   verum   Rubiaceae

    187   Cistus laurifolius L. Cistaceae

    188   Fumana aciphylla  Boiss. Cistaceae

    189   Helianthemum nummularium   (L.) Miller. subsp.   ovatum

    (Viv.) Schinz & Thell

    Cistaceae

    190   Juniperus communis  L. subsp.  nana   Cupressaceae

    191   Juniperus excelsa Bieb. Cupressaceae

    192   Juniperus foetidissima  Willd. Cupressaceae

    193   Juniperus oxycedrus  L. subsp.   oxycedrus   Cupressaceae

    194   Scabiosa argentea  L. Dipsacaceae

    195   Quercus cerris L. var.   cerris   Fagaceae

    196   Quercus pubescens  Willd. Fagaceae

    197   Quercus robur L. subsp.  robur   Fagaceae

    198   Osyris alba L. Santalaceae

    199   Thesium billardieri  Boiss Santalaceae

    200   Paronychia dudleyi  Chaudhri Illecebraceae

    201   Paronychia kurdica Boiss. subsp.   kurdica  var.   kurdica   Illecebraceae

    202   Iris orientalis  Miller. Iridaceae

    203   Acanthus hirsutus Boiss. Acanthaceae

    204   Paliurus spina-christi  Miller Rhamnaceae

    205   Rhamnus thymifolius  Bornm. *   Rhamnaceae

    206   Geranium robertianum  L. Geraniaceae

    207   Geranium tuberosum  L. subsp.   tuberosum   Geraniaceae

    208   Linum hirsitum L. subsp.   anatolicum  (Boiss) Hayek *   Linaceae

    209   Linum tenuifolium L. Linaceae

    210   Fumaria cilicica  Hausskn. Papaveraceae

    211   Hypecoum procumbens  L. Papaveraceae

    212   Papaver commutatum Fisch & Mey Papaveraceae

    213   Rhus coriaria L. Anacardiaceae

    214   Berberis crataegina  DC. Berberidaceae

    215   Berberis vulgaris L. Berberidaceae

    216   Salsola ruthenica  Iljin Chenopodiaceae

    217   Convolvulus arvensis  L. Convolvulaceae

    218   Corylus avellana L. var.   avellana   Coryllaceae

    219   Sempervivum armenum  Boiss. & Huet. var.  armenum   Crassulaceae

    220   Carex flacca Schreber subsp.   serrulata  (Biv.) Greuter Cyperaceae

    221   Carex ovalis Good. Cyperaceae

    222   Equisetum palustre  L. Equisetaceae

    223   Euphorbia macroclada  Boiss. Euphorbiaceae

    224   Globularia trichosanta  Fisch. & Mey. Globulariaceae

    225   Hypericum perforatum  L. Guttiferae

    226   Malva neglecta Wallr. Malvaceae

    227   Cephalanthera rubra  (L.) L.C.M. Richard Orchidaceae

    228   Paeonia mascula subsp. mascula Paeoniaceae

    229   Paeonia peregrina   Paeoniaceae

    230   Pinus brutia   Pinaceae

    231   Pinus nigra  subsp.   pallasiana   Pinaceae

    232   Acantholimon acerosum  (Willd.) Boiss Plumbaginaceae

    233   Acantholimon glumaceum  (Jaub. & Spach) Boiss. Plumbaginaceae

    875

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    22/24

    References

    Akman Y. and Daget Ph. 1971. Quelques aspects synoptiques des climats de la Turquie. Extrait du

    Bulletin de la Socie ´ te ´  Languedocienne de Ge ´ ographie 5/3: 269–300.

    Akman Y. 1999. Climate and Bioclimate (Bioclimate Methods and Turkey’s Climate). Kariyer

    Press, Ankara, Turkey.

    Atesalp M. 1976. Soil and water sampling for analysis. Soil and Fertilizer Research Institute,

    General No: 68, Farmer Pub. No: 3.

    Barbour M.G., Burk J.H. and Pitts W.D. 1987. Terrestrial Plant Ecology. Benjamin Cumming

    Publishing Company, Inc., California.

    Berry B.J.L. and Marble D.F. 1968. Maps of Residuals from Regression. Spatial Analysis. A

    Reader in Statistical Geography. Prentice Hall, Englewood Cliffs, NJ, USA, p. 7.

    Brown J.H. and Lomolino M.V. 1998. Biogeography, 2nd ed. Sinauer, Sunderland, Mass.

    Dale V.H., Brown S., Haeuber R.A., Hobbs N.T., Huntly N., Naiman R.J., Riebsame W.E.,

    Turner M.G. and Valone J.J. 2000. Ecological principles and guidelines for managing the use of 

    land. Ecol. Appl. 10: 639–670.

    Davis P.H. 1965–1988. Flora of Turkey and the East Aegean Islands. Edinburgh University Press,

    Edinburgh.

    Davis P.H. 1971. Distribution patterns in Anatolia with particular reference to endemism. In:

    Davis Harper and Hedge (eds), Plant Life of South-West Asia. Botanical Society of Edinburgh,

    Great Britain.

    Davis P.H. and Heywood V.H. 1965. Principles of Angiosperm Taxonomy. Von Nostrand, New

    York.

    Dogan H.M. 1998. Visualizing spatio-temporal mesquite variation on desert grassland under dif-

    ferent grazing management applications. Master thesis, Graduate School of New Mexico State

    University, Master of Applied Geography, New Mexico, Las Cruces, USA.

    Dogan H.M. 2001. The applications of geographic information systems and remote sensing in

    agriculture. Global Space Activities and Potential in Turkey, 1st International Space

    Symposium, The General Commandership of Air Force Proceedings, Ankara, Turkey. pp.

    III-265–271.

    Dogan M. and Akaydin G. 2002. A new species of   Acantholimon  Boiss. (Plumbaginaceae) from

    Ankara, Turkey. Bot. J. Linn. Soc. 140: 433–448.

    ERDAS 1997. ERDAS Field Guide, 4th ed. ERDAS Inc., Atlanta, Georgia.

    ESRI 1994. PC Arc/Info, Command References. Redlands, CA.

    ESRI 1996. Arc/View spatial analysis, Advanced Spatial Analysis Using Raster and Vector Data.

    San Diego, CA.

    ESRI 1997. Understanding GIS, The Arc/Info method, version 7.1 for Unix and Windows NT.

    John Viley & Sons Inc., New York.

    FAO 1990. Guidelines for soil description. Food and Agriculture Organization (FAO), Rome,

    Italy.

    Appendix 1   Continued

    No. Species name Family

    234   Acantholimon reflexifolium  Bokhari Plumbaginaceae

    235   Plumbago europaea L. Plumbaginaceae

    236   Polygala anatolica  Boiss. & Heldr. Polygalaceae

    237   Urtica dioica L. Urticaceae

    238   Valeriana alliariifolia  Adams Valerianaceae

    239   Valerianella vesicaria  (L.) Moench Valerianaceae

    876

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    23/24

  • 8/9/2019 A New Approach to Diversity Indices u2013 Modeling and Mapping Plant Biodiversity of Nallihan.pdf

    24/24

    Riitters K.H., O’Neill R.V., Hunsaker C.T., Wickham J.D., Yankee D.H., Timmins S.P., Jones

    K.B. and Jackson B.L. 1995. A factor analysis of landscape pattern and structure metrics.

    Landscape Ecol. 10: 23–39.

    Riitters K.H., Wickham J.D., Vogelmann J.E. and Jones K.B. 2000. National land-cover pattern

    data. Ecology 81: 604.

    Sokal R.R. and Rohlf F.J. 1995. Biometry the Principles and Practice of Statistics in Biological

    Research, 3rd ed. W.H. Freeman and Company, New York, pp. 609.

    SPSS. 2001. SPSS 11.0 for Windows. SPSS Inc., Chicago.

    Stevens G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport’s lati-

    tudinal rule to altitude. Am. Nat. 140: 893–911.

    TUBIVES 2003. Turkish plants data service. The Scientific and Technical Research Council of 

    Turkey (TUBı ´TAK, http://www.tubitak.gov.tr/tubives).

    Ulgen N. and Yurtsever N. 1995. Fertilizers and fertilizing guide of Turkey. Soil and Fertilizer

    Research Institute No: 209, Technical Pub.No: 66.UNESCO 1973. International Classification and Mapping of Vegetation. Ecology and Conserva-

    tion, Unesco, Paris.

    878