29
A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Embed Size (px)

DESCRIPTION

A theory of elastic waves In isotropic media Usually solution of this equation is represented as a sum is a scalar potential is a vector potential however why not to do differently?

Citation preview

Page 1: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

 A model of the Earthquake surface waves

V.K.Ignatovich. FLNP JINR

STI2011 June 8

Page 2: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

This report is along the papersV.K. Ignatovich and L.T.N. Phan.

Those wonderful elastic waves. Am.J.Phys.

v. 77, n. 12, pp. 1093-I17, (2009)

A.N. Nikitin, T.I. Ivankina, and V.K. Ignatovich The Wave Field Patterns of the Propagation

of Longitudinal and Transverse Elastic Waves in Grain-Oriented Rocks

Physics of the Solid Earth, 2009, v. 45, n. 5, pp. 424-436

And a little bit more

Page 3: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

A theory of elastic waves In isotropic media

ljlj tu 22 )()( uu jjj u

Usually solution of this equation is represented as a sum

][ φu is a scalar potential

φ is a vector potential

however why not to do differently?)exp(),( tiit rkAru

22)(2 ijuF

u

i

j

j

iij x

uxuu

21

ijijijij uuF 2)( u

)()(22 uuuu t

Page 4: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

)exp(),( 0 tiiut rkAru 10 Au

)()( 22 AkkAAkkA k

)()(22 AκκAAκκA k

2: k

kkκ κttA 32211

κtt ,, 21

02,122 k

02 322 k

22222,1 tck 2tc

2

2223 2 lck

22 2tl cc

)()(22 uuuu t

2/ lt ccAll this is trivial. Reflection from interfaces is less trivial

Page 5: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Reflection from a free surface

2A 2A3A

)exp()exp()exp()( 3332222222 zikrzikrzikz rri AAAu

ln

)()exp(),( |||| ztiit urkru

2||

22 kck nn tl cccc 23

03 kcAt such a critical angle A Longitudinal Surface wave appears

Page 6: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Calculations of reflection amplitudes0 jiji n ijijij u 2)( u

0)()( unununΣ tiizik

rzik

rzik

i eereret ||||3223322222),( rkAAAru

03322222 rri rr ΣΣΣΣ

22222 )( iiii k AAnkΣ 22222 )( rrrr k AAnkΣ

333333 )( rrrr kk AAnknΣ

2||2 kki nlk 2||22 kkki nlA

:

2

||22||

22

2

2k

kkkki

nlΣ

Page 7: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

2

||22||

22

2

2k

kkkkr

nlΣ

3

2||

22||3

3

2k

kkkkr

nlΣ

03322222 rri rr ΣΣΣΣ

2

||22||

22

2

2k

kkkki

nlΣ

2||22

||3

3

23222

21

kkkk

kkrr

||2

2||

22

3

23222 2

1kkkk

kkrr

2

||3222

||22

2||

22||2

2

332

4

22

kkkkk

kkkkkkr

2

||3222

||22

22||

22

2||32

224

4

kkkkk

kkkkkr

nl,lc

k 3 2

||233 kkk

Page 8: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

2

||3222

||22

2||

22||2

2

332

4

4

kkkkk

kkkkkkr

22

||22

2||32

22||

22

2||32

224

4

kkkkk

kkkkkr

22

2

3 sinsin ck

k

22232

sinsin)sin()2sin(2)2(cos

)2cos()2sin(sin2

c

cr

-- angle of incidence

sin2|| kk

cos22 kk

222sin ltc cc

)2tan(sin2)(32 cccr

1)( 222 cr

2||

2222

2||

233 kcckkkk lt

1)(22 cr

Page 9: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

sincos2 nlA r lA 3r

cccr 2tansin2)(32

sincos2 nlA i

llA 8.612tantancos2 ccc

65.0sin ltc cc

462 A

1)(22 cr

lAAAA cccrri rr cos22tansin23322222

71)(| 22 Atliss ccEEQ

c

l12tantancos2 ccc

Page 10: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

ctl rrccQ sin)()( 232

232

2

222

232

sinsin)sin()2sin(2)2(cos

)2cos()2sin(sin2

c

cr

Page 11: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Tomas Lokajicek, Vladimir Rudajev

V.K. Ignatovich. A proposal of a UCN experiment to check an earthquake waves model.Europhys. Lett. 92 (69002-p1-4) 2010.

Page 12: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Experiments byLokajicek Tomas, Rudajev Vladimir

4E-005 6E-005 8E-005 0.0001time of flight [s]

-0.0 8

-0.0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

90 deg., 30 dB

80 deg., 30 dB

70 deg., 30 dB

65 deg., 30 dB

60 deg., 30 dB

55 deg., 30 dB

50 deg., 30 dB

40 deg., 36 dB

30 deg., 36 dB

20 deg., 36 dB

10 deg., 36 dB

5 deg., 36 dB

S5_S5_signal

Page 13: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

4E-005 6E-005 8E-005 0.0001tim e of flight [s]

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

90 deg., 30 dB

80 deg., 30 dB

70 deg., 30 dB

65 deg., 30 dB

60 deg., 30 dB

55 deg., 30 dB

50 deg., 30 dB

40 deg., 36 dB

30 deg., 36 dB

20 deg., 36 dB

10 deg., 36 dB

5 deg., 36 dB

S5_S5_reference

Page 14: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

90 deg.

0 deg.

113,5 mm

90 deg.

recieverS-wave transducer5 MHz resonant frequencydiameter 5 mm

transmitterS-wave transducer5 MHz resonant frequencydiameter 5 mm

material:

in 90 deg. P-wave time propagation: 41,8 s

perpsexthickness: 20 mmP-wave velocity: 2,72 km/sS-wave velocity: 1,37 km/s

[ ]S-wave time propagation: s82.9 [ ]

reference transducerP-wave transducer1 MHz resonant frequencydiameter 10 mm

Page 15: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8
Page 16: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

012tantancos2 lA ccc

5.0sin l

tc cc

0)30cos()60cos()60sin()30sin(12tantancos

ccc

62tansin4 2 cc

232rQ

02 A

Page 17: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

57.0sin l

tc cc

llA 4.112tantancos2 ccc

steel

So, to observe an effect we need a material with

ct/cl>0.6

Page 18: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Anisotropic media

jlljut

2

2

ijklc -- a set of phenomenologocal constants

klijklij uc

j

l

l

jjl x

uxu

u21

In general 21 constants

222 )(2 jljljll uauuF

lmjmmlmjjllljljl

jl auaauauuuF

22

)()(22 AkkAA k

)]())[(()])(()([ 2 AakAakakAkakAaa k

But anisotropy means a vector and an additional constant. So we can define

)exp(),( tiit rkAru

Page 19: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

kkκ cbκA |][|][ κaκac

κa

aκaκκcb

][

))(())(()( 222 AaakAkkAak k

))(()(2 AkakAaa k

0)( 222 akk

κaab

0)(2 22 kakka

0)(2)(42 222 akkaakk

All we need is a linear vector algebra

κbc ,,

Page 20: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

0)(2 22 kakka

0)(2)(42 222 akkaakk

)cos4)(1(2sin 2222 czz

22sin4))cos41(1()cos41(1

12222222

cc

z

22 kz 222 2 tl ccc

Page 21: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

2cos1)( vt

)(cos κa

22sin4))cos41(1()cos41(1

1)(2222222

cc

vql

22sin4))cos41(1()cos41(1

1)(2222222

cc

vqt

1tc

58.1 tl ccc

5.0

)()( vqlcc tql

)()( vqtcc tqt

Page 22: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

It is important to saythat we cannot exclude

by averaging of values over alldirections of propagation,

because all the values depend on

22 )()(cos aκ

Page 23: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Polarization of waves

babaκκabaκ

babaκκA ))((2

)()(41

))((2122222

2

EV

V

ql

qlql

κabaκbabaκ

babaκκA ))((2

)()(41

))((2122222

2

EV

V

qt

qtqt

122 qtql AA 0qtqlAA

))((212 abaκ VbκA

2

)()(16)(411)(411 22222222 abaκaκaκ

cc

κ a

b

22

c

12,qtqlV

Page 24: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

In an anisotropic medium propagate plane waves of only 3 modes

• transverse with Аt~[kxa] and ct2=ct0(1+)

• quasi transverse with Аqt in the plane [k,a]

• quasi longitudinal with Аql in the plane [k,a]

quasi longitudinalquasi transverse

)exp(),( tiit krAru

a akk

2Atransverse

a k1A 3A

Page 25: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Reflection of a quasi transverse wave from a free surface

0,,, rqlltrqtttiqt rr ΣΣΣΣ

)()()( AknAnkAknΣ

)()()())(())(( AakAkaanAnkaAakna

One can find an analytical solution

Page 26: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

of two reflected waves

2.0)cos( a)(

sin)(

sin)(

sin

qtrqlrql

rql

rqtrqt

rqt

VVV

5.222

c

5.0

nl a

a rqt

rql

quasi longitudinal wave becomes surface one at 6.0

Page 27: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

It seems possible to find such a direction of vector a

that for given elastic parameters the amplitude of the

surface longitudinal wave becomes maximal.

2)2()2(

2

2

ql

qt

VV

For instance

Page 28: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Summary• Reflection of elastic waves from free surfaces is

accompanied by beam splitting.• At some critical angle of the incident shear

wave polarized in the incidence plane a longitudinal surface wave is created.

• Its amplitude and energy can be large, and its polarization along the surface is alike to devastating earthquake waves.

• For observation of such waves the materials with ratio ct/cl>0.6 are needed.

Page 29: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

Thanks