A Model of an Air-Conditioning Condenser and Evaporator With Emph

Embed Size (px)

Citation preview

  • 8/11/2019 A Model of an Air-Conditioning Condenser and Evaporator With Emph

    1/12

  • 8/11/2019 A Model of an Air-Conditioning Condenser and Evaporator With Emph

    2/12

  • 8/11/2019 A Model of an Air-Conditioning Condenser and Evaporator With Emph

    3/12

  • 8/11/2019 A Model of an Air-Conditioning Condenser and Evaporator With Emph

    4/12

  • 8/11/2019 A Model of an Air-Conditioning Condenser and Evaporator With Emph

    5/12

    )

    =

    m(

    ;

    )

    J tTLi

    Lmi: ll

    j J j

    ll1

    a

    nd

    f

    .

    +[

    u

    '

    1

    -

    1

    -

    I )

    d ~ : r

    u

    (

    21

    ,

    . ('

    /'

    - '/'

    I

    JX l

    .l,I

    JL l

    l ll

    .l

    l

    whe

    re

    s

    ubs

    cript

    s

    "r" st

    and

    s

    f

    or

    refri

    gera

    nt, "a

    "

    stan

    dsfor

    sta':

    dsfor o

    u ts i

    de,

    n ~ .i

    r

    epre

    sent

    s

    t

    hej-

    th

    inc

    rem

    ent alo

    ng t

    he tu

    be .

    Th

    e p

    aram

    ete

    rs

    l i

    s ted

    1n

    t

    he ab

    ove

    equa

    tion

    s

    follo

    w

    con

    vent

    ions

    use

    d in m

    ost

    o

    f the

    liter

    atur

    e,

    nam

    ely,

    m

    is

    the

    ma

    ssflow,

    i is

    en

    thal

    py, lJ

    is

    over

    all

    heat

    t

    rans

    fer co

    eff i

    cient

    , A

    is ar

    ea,

    and

    I

    is

    tem

    per

    atur

    e.

    T

    he

    "per

    elem

    en t

    "

    subs

    crip

    t re

    fers

    t

    o th

    e fac

    t t

    hat eac

    h t

    ube

    is div

    ided

    int

    o

    n c r e

    m ~ n l

    s that

    are

    ref

    erre

    dl o

    u ~

    ele

    men

    ts. Si

    nce

    th

    eheat

    exc

    hang

    er is

    d ivi

    ded

    into

    inc

    rem

    ents

    ,the

    area

    , A,

    c o r r

    e s p o

    n d ~ t

    u an

    in

    crem

    ent

    al are

    a. A s

    d isc

    usse

    d la

    ter,

    th

    e

    a

    bove

    eq

    uatio

    n alo

    ng

    wit

    hthe

    ref

    riger

    ant-

    side

    mo

    men

    tum

    equ

    atio

    n

    and

    the

    equ

    ation

    of

    stat

    e m

    ust b e s

    olve

    d si

    mul

    tane

    ousl

    yov

    er eac

    h t

    ube

    incre

    men

    t.

    Th

    e d

    iffer

    ent i

    al eq

    uatio

    n fo r

    mo

    men

    tum

    c

    an

    be

    app

    roxim

    ate

    dby a

    f ini

    te-d i

    f fere

    n ce

    n

    um

    erica

    l

    f

    o rm

    as fo

    llow

    s:

    [

    ( 1

    I

    )

    (

    z J -z

    l_ , l -1

    _1

    )I

    - P

    G

    -

    -

    ~ +

    J

    - l

    J

    P

    ,

    PJ-

    l

    4D

    PJ

    P

    ,_J

    wh

    ere

    P

    is

    pre

    ssur

    e, G

    i

    s ma

    ss fl

    ux,

    p

    is

    d

    en si

    ty , f

    is fri

    ction

    fac

    tor,

    z is

    posi

    tin

    an

    d Dis

    i

    nsid

    e

    tub

    e

    d

    iame

    ter,

    2

    .3.

    Ov

    erall

    heat

    tr

    ans f

    er coe

    fficie

    nt

    'r

    he e

    qua

    tion

    fo r

    the

    over

    all

    he

    attran

    sfer

    coef

    ficien

    L, 0

    0

    ,

    ca

    n be

    d er

    ived

    by

    usin

    g

    Lhe

    rm al

    re

    sist

    ance

    s. The

    th

    erm

    al

    r

    es is

    tanc

    esa

    re d

    ef in

    ed

    as foll

    ow s:

    R

    1

    =

    1

    /h;

    Ap;

    R2 = l lh

    d i

    Ap

    ;

    R3

    =

    tp/A

    pm k

    p

    R4 =

    1 h

    eAp

    o

    R

    5

    = 1/h

    duA

    o

    R

    6 =

    see d

    iscu

    ssio

    n)

    R

    7

    =

    l lh o

    A p o

    c

    onve

    ctio

    n in s

    id e

    the

    tub

    e

    i

    nsid

    ed ep

    osi t

    tu

    be w a

    ll

    con

    tact

    be

    Lw ee

    n fi

    n

    and

    tub

    e w

    all

    ou Ls

    ide d

    epo

    sit

    in

    con

    vec

    tion

    ou ts

    ide

    the

    tube

    The

    v

    alue

    s

    of

    hdi

    a

    ndhdo

    for t

    he in

    s id e

    a

    nd ou t

    s ide

    depo

    sits

    resp

    ect iv

    e ly

    ap

    proa

    ch

    in

    finit

    yfor a

    cle

    an t

    ube su

    rfac

    e . T

    he

    pa

    ram

    eter

    he is

    the

    equ

    ival

    en tconv

    ecti

    on

    coe f

    flcie

    nl

    for

    fin

    -tub

    econt

    act

    t

    herm

    al resi

    stan

    ce b as

    ed o

    n L

    he out

    s ide

    tub

    e ar

    ea. A

    rece

    nt

    s

    Lu dy

    of

    31

    co i

    ls fro

    m 6

    m

    anuf

    actu

    rers

    s

    how

    ed

    tha

    t

    h

    0

    va

    ries

    co ns

    ider

    ab ly

    , ra

    ngin

    g

    fro

    ml.0

    45

    k

    W /m

    2K

    to

    in f

    in ity

    [

    12].

    An

    ave

    rage

    valu

    e of1

    4 kW

    /m

    2K wa

    s u

    sed

    in

    thi

    s stud

    y.

    t is co

    nven

    ien

    t to

    c

    o ns i

    der

    the

    e

    ffect

    ofR

    6 by

    com

    bini

    ng

    it wi

    th

    R7

    As d es

    cr ib

    ed i

    n de

    tail

    in ref

    eren

    ce 1

    3, th

    e i

    na U

    0

    equa

    tion

    iso

    btain

    ed by

    com

    bin

    ing

    the

    abo

    ve

    res

    istan

    ces .

    (51

    wh

    ere

    ......

    27

    6 -

    r

    ~ ~

    ~ ~

    ~ ~

    ~ =

    = ~

    ~ ~ _

    j

    .-

    .

    f

    __

    27

    2

    r

    0

    F

    ig .6

    .

    0

    Fig

    B

    I

    I

    I

    I

    I

    4

    5

    POS

    ITION

    m

    E

    vapo

    rato

    r.re

    frig

    eran

    t

    te

    mpe

    ra tu

    res f

    orsm

    oot

    h a

    nd

    en

    han

    ced tub

    es

    3

    P

    OSIT

    ION

    m

    E

    vap

    ora t

    ora

    ir t

    emp

    erat

    ures

    fo r

    smo

    oth a

    nd

    enha

    nce

    d tub

    es