10
76 El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006 84.0 78.0 72.0 66.0 60.0 54.0 48.0 36.0 30.0 24.0 18.0 6.00 -6.00 -12.0 -18.0 -24.0 -30.0 -36.0 -42.0 -48.0 -54.0 -60.0 [sec.Ohm Line - Line impedance 66.0 60.0 54.0 48.0 42.0 36.0 30.0 24.0 18.0 12.0 6.00 -6.00 -12.0 -18.0 -24.0 -30.0 -36.0 [sec.Ohm] 84 4 4 78 8 8 72 2 2 66 6 6 60 .0 0 0 54 4 4 48 8 8 42 2 2 36 6 6 30 0 0 24 4 4 18 8 8 12 2 2 6. 00 -6 .0 0 0 -1 2. 0 -1 8. 0 -2 4. 0 -3 0. 0 -3 6. 0 -4 2. 0 -4 8. 0 -5 4. 0 -6 0. 0 [s ec s s .O hm Line - Line impedance m m 66 6 6 60 .0 0 0 54 4 4 48 8 8 42 2 2 36 6 6 30 .0 0 0 24 .0 4 4 18 8 8 12 2 2 6. 00 . . -6 .0 0 0 -1 2. 0 -1 8. 0 -2 4. 0 -3 0. 0 -3 6. 0 [s ec s s .O hm m m Stability Study 3 Phase fail 220KV Alto Anchicayá Clearing Time 310ms Relay Alto Anchicayá A Methodology for Setting up Generator Out-of-Step Protective Relays MILLER ZULETA * GLADYS CAICEDO** FRANCISCO JAVIER MURCIA*** JOHN EDWIN CANDELO**** Resumen En este artículo se presenta una metodología para el ajuste de la protección de pérdida de paso en generadores, que puede ser aplicada en cualquier gene- rador del Sistema de Potencia Colombiano. Se presenta una comparación entre los criterios de ajuste propuestos en artícu- los de investigación y el de un fabricante. La aplicación meto- dológica requirió información como la reactancia transitoria de eje directo del generador, la reactancia del transformador y la impedancia del sistema, así como encontrar los tiempos críticos re- queridos para un correcto ajuste de la protección. La metodología propuesta fue implementada en las protecciones de las centrales eléctricas de Salvajina y el Alto Anchicayá, mejorando la selec- tividad con nuevos criterios de ajuste. Palabras clave: Centro eléc- trico, generador eléctrico, pérdi- da de paso, relé de protección, oscilación de potencia. * Electrical Engineer, Universidad del Valle ** Electrical Engineer, Ph.D, Universidad del Valle - GRALTA. *** Electrical Engineer, Empresa de Energía del Pacífico EPSA. **** Electrical Engineer, Ph.D Student, Colciencias, GRALTA - Universidad del Valle. Fecha de recibo: junio de 2006 Fecha de aceptación: agosto de 2006

A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

76 El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

84.078.072.066.060.054.048.042.036.030.024.018.012.06.00-6.00-12.0-18.0-24.0-30.0-36.0-42.0-48.0-54.0-60.0 [sec.Ohm

Line - Line impedance

]

66.0

60.0

54.0

48.0

42.0

36.0

30.0

24.0

18.0

12.0

6.00

-6.00

-12.0

-18.0

-24.0

-30.0

-36.0

[sec.Ohm]

Stability Study

3 Phase fail 220KV Alto Anchicayá Clearing Time 310ms

Relay Alto Anchicayá

84.084.08478.078.07872.072.07266.066.06660.060.06054.054.05448.048.04842.042.04236.036.03630.030.03024.024.02418.018.01812.012.0126.00-6.00.00.0-12.0-18.0-24.0-30.0-36.0-42.0-48.0-54.0-60.0 [sec[sec[s .Ohm

Line - Line impedance

]hm]hm

66.066.066

60.060.060

54.054.054

48.048.048

42.042.042

36.036.036

30.030.030

24.024.024

18.018.018

12.012.012

6.006.006.

-6.00.00.0

-12.0

-18.0

-24.0

-30.0

-36.0

[sec[sec[s .Ohm]hm]hm

Stability Study

3 Phase fail 220KV Alto Anchicayá Clearing Time 310ms

Relay Alto Anchicayá

A Methodology for Setting up Generator Out-of-Step Protective Relays

MILLER ZULETA *GLADYS CAICEDO**FRANCISCO JAVIER MURCIA***JOHN EDWIN CANDELO****

Resumen

En este artículo se presenta una metodología para el ajuste de la protección de pérdida de paso en generadores, que puede ser aplicada en cualquier gene-rador del Sistema de Potencia Colombiano. Se presenta una comparación entre los criterios de ajuste propuestos en artícu-los de investigación y el de un fabricante. La aplicación meto-dológica requirió información como la reactancia transitoria de eje directo del generador, la reactancia del transformador y la impedancia del sistema, así como encontrar los tiempos críticos re-queridos para un correcto ajuste de la protección. La metodología propuesta fue implementada en las protecciones de las centrales eléctricas de Salvajina y el Alto Anchicayá, mejorando la selec-tividad con nuevos criterios de ajuste.

Palabras clave: Centro eléc-trico, generador eléctrico, pérdi-da de paso, relé de protección, oscilación de potencia.

* Electrical Engineer, Universidad del Valle** Electrical Engineer, Ph.D, Universidad del Valle - GRALTA.*** Electrical Engineer, Empresa de Energía del Pacífi co EPSA. **** Electrical Engineer, Ph.D Student, Colciencias, GRALTA - Universidad del Valle.Fecha de recibo: junio de 2006 Fecha de aceptación: agosto de 2006

Page 2: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

77El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

Abstract

In this article a methodo-logy for setting up generator out-of-step protective relay, to be applied in any generator of Colombian Power System is pre-sented. A comparison between settings proposed in research articles and a manufacturer was carried out. The application of the methodology required infor-mation as generator direct-axis transient reactance, transformer reactance, power system impe-dance and critical time for setting up protective relay. The proposed methodology for setting up gene-rator out-of-step protective relay was applied in the Salvajina and Alto Anchicayá power plants, improving the selectivity with new settings approaches.

Key words: Electrical center, generator, out-of-step, protective relay, power swims.

protective relay and its application in the Salvajina and Alto Anchicayá hydroelectric power plants are pre-sented. The study was carried out with information from international article, protection relay manuals, books and other information ex-tracted from internet.

2. General Concepts

Equation 1 corresponds to the active power transfer from the send-ing node to the receiving node as function of the power system angle (δ). This equation is called Active Power Transfer [1].

1. Introduction

An intolerable operation condi-tion of power system, conducting to the instability is produced by: large-load variations, large-gene-ration variation, line outage and other events that affect the normal operation of power system. Power swims are produced when instabi-lity is presented, causing an out-of-step condition and large currents in generator windings and power transformers; this condition gene-rates electro-dynamical efforts that reduce the useful life of elements.

Standards in Colombia regulate that power plants must include out-of-step protection (ANSI 78), but the settings have been made with relay manuals and operator experience, being no optimal for the power system protection.

In this article a methodology for setting up generator out-of-step

(1)δ sin*

X

VVP RS

S =

where:

VS = Sending voltage

VR = Receiving voltage

X = Equivalent reactance between sending and re-ceiving nodes.

When the mechanical power is equal to the electrical power, the generator operates in normal condition and operating angle (δ) is about 30º or 40º. After a disturban-ce, the power system equilibrium changes and angle increases. If an-gle exceeds 90º, the generator gets into the critical operating zone and losses synchronism with the system reference. The synchronism limit is about 120º and if this limit is not reached, the oscillation can be avoi-ded with machine-speed regulator, but when the limit is exceed, the generator accelerates impeding the recuperation of the initial condition and an out-of-step is presented.

2.1 Stability and Instability types

Figure 1 shows the different stability and instability types that produce different effects over power system and the associated parame-ters [2]. The cases are:

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo

Page 3: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

78 El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

1 2 3 4ANGL

E SP

READ

I N IT IA L S T A T E A F T E R D IST U R B A N C E

T I M E ( M in u t e s )S T E A D Y S T A T E S TA B IL IT Y

(a )

1 2 3 4ANGL

E SP

READ

T I M E ( M in u t e s )S T E A D Y S T A T E I N S T A B IL IT Y

(a )

1 2 3 4ANGL

E S P

REA

D

T I M E ( S e c o n d s )T R A N S I E N T S T A B IL IT Y

(b )

1 2 3 4ANGL

E S

PREA

D

T I M E ( S e c o n d s )T R A N S I E N T IN S T A B IL IT Y

(b )

1 2 3 4ANGL

E SP

READ

T I M E ( S e c o n d s )O S C I L L A T O R Y S T A B IL IT Y

(c )

1 2 3 4ANGL

ES P

REA

D

T I M E ( S e c on d s )O S C I L L A T O R Y IN S T A B ILIT Y

(c )

0o

90 o

1 80o

0o

90 o

18 0o

E AE B

E A E B

Z g Z t Z S

+

-

+

-

0o

90 o

1 80o

0o

90 o

18 0o

E AE B

E A E B

Z g Z t Z S

+

-

+

-

1 2 3 4ANGL

E SP

READ

I N IT IA L S T A T E A F T E R D IST U R B A N C E

T I M E ( M in u t e s )S T E A D Y S T A T E S TA B IL IT Y

(a )

1 2 3 4ANGL

E SP

READ

T I M E ( M in u t e s )S T E A D Y S T A T E I N S T A B IL IT Y

(a )

1 2 3 4ANGL

E S P

REA

ANGL

E S P

REA

ANGL

ED

T I M E ( S e c o n d s )T R A N S I E N T S T A B IL IT Y

(b )

1 2 3 4ANGL

E S

PREA

D S

PREA

D S

PREA

T I M E ( S e c o n d s )T R A N S I E N T IN S T A B IL IT Y

(b )

1 2 3 4ANGL

E SP

READ

T I M E ( S e c o n d s )O S C I L L A T O R Y S T A B IL IT Y

(c )

1 21 2 3 4ANGL

ES P

REA

D

T I M E ( S e c on d s )O S C I L L A T O R Y IN S T A B ILIT Y

(c )

a. Steady state stability and instability: when the system is stable and has the ability of respond-ing to events, the electrical machine remains on synchronism with the system and the angle (δ) is smaller than 90º. Small disturbances can increase the angle gradually until it exceeds 90º, where instability is presented. This process can occur in long periods of time (from minutes to hours), as shown in Figure 1(a). For this condition, considerable changes in generators have not occurred and power swims are not presented.

Although, the possibility of pre-senting an angle instability is lower, a special case of load increment could occurs, causing a generator-terminal voltage reduction; if the load is larger than the maximal gen-eration, the angle increases gradu-ally, passing the stability limit, and the system becomes unstable.

b. Transient stability and instability: is presented with lar-ge-disturbances occurrence. Figure 1(b) shows the angle variation over time; if perturbation is cleared ra-pidly, power system could have the ability of responding to the events and oscillation would be dampen, other way it would become a tran-sient instability.

c. Oscillatory stability and instability: is presented with large-disturbance occurrence in power system and is recognized because the angle oscillates constantly over time, as shown in Figure 1c. These changes could be abrupt and rapids.

2.2. Electrical Center

Each voltage of the power sys-tem has a magnitude and a phase angle. As system operating point changes, the voltage phasors can be outside or inside the permissible operating zone, depending on the presented perturbation type.

Figure 2 shows a power system with its voltage magnitudes and angles, which can be different, de-pending on the impedance from the sending to the receiving zone and the operation condition of the power system. If the separation angle from sending node EA to the receiving node EB is 180º, it means that in some place along the network, the voltage has a value of zero [3] and for the elements it could be seen as a three-phased short circuit. The point where the voltage is zero is known as the electrical center of the system and it indicates that a power Figure 2. Power system electrical center

Figure 1. Stability and instability types

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo

Page 4: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

79El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

instability is presented, causing an out-of-step condition.

If loss-of-synchronism is pre-sented, the equivalent impedance value changes with the relation EA/EB [4], as shown in Figure 3. If EA/EB=1, the impedance locus is along the line LM and perpendicular to the line A-B, bisecting the middle point. Impedance moves from point L to point M and angle δ increases; when the angle passes 120º, the system is considered unstable. The value δ=180º is the point where lines A-B and L-M are intercepted and is the electrical center, where voltage becomes zero.

If EA/EB>1, the impedance locus is a circle with center at total impedance line A-B, in the region (+X), in this case the electrical cen-ter is located in the intersection of the curve 1 and the line A-B. Simi-larly, when the relation is EA/EB<1, the impedance locus is a circle with center in the region (-X), in this case the electrical center is located in the intersection of the curve 2 and the line A-B.

Determination of the electrical center allows fi nding the operating zones of the out-of-step protective relay.

3. Protective Relay Operation

Out-of-step condition can be originated depending on the dif-ferent behavior of power swims. Figure 4, shows the different power swims (curves 1, 2 and 3); the oper-ating zone of out-of-step protective relay is between the two blinders (A and B) and the circle (Mho charac-teristic). The relay measures the sys-tem impedance, but it only operates when the impedance passes through the operating zone, from Blinder B to Blinder A.

Some times a power swim can get into the mho characteristic and reaches one of the blinders, but the

Figure 3. Electrical center as function of the voltage relation

Figure 4. Operating zone of protection ANSI 78

protection settings will not allow operation until it reaches the other blinder. That settings are made be-cause some oscillations can return

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo

Page 5: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

80 El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

B lin d e r A B lin d e r B

X'd

X T

Z s

O s c i l l a t i o n

B lin d e r A BA B lin d e r B

X'd

X T

Z s

O s c i l l a t i o n

to stabilization as shown in Figure 4 (curves 2 and 3).

4. Setting Criteria for Out-of-Step Protection

For setting up the protection, some parameters are required from power system and other must be calculated by computational tools. The invariant physical parameters are taken from generators (direct axis transient reactance Xʼd) and transformers (reactance XT). Two studies are carried out: one-phase short circuit study in order to fi nd

Figure 5. Operation Characteristic of relay SIEMENS 7UM62

Table 1. Difference between IEEE and Siemens relays settings

Relay IEEE articles Relay Siemens 7UM62

GeneratorX’d must be multiplied by factor m, from 200% to 300 %.

Must be used 100% of generator impedance

TransformerXt must be multiplied by factor n from 150% to 200 %.

Must be used from 70% to 90% of transformer impedance

MHO CharacteristicDMho= n*XT + m*X’dwhere:DMho= Mho circle diameter

Not Presented

Characteristic 1 Not Presented

Cart 1 = Zb + Zcwhere: Zb: X’d Zc: entre 70 al 90 % XT.

Characteristic 2 Not PresentedCart 2 = Zd - Zcwhere: Zd: XSIS + XT.

Blinders

N= 0.289 *Z tot

where Ztot = X’d + Xt + ZsysN: Distance between total line impedance and a blinder

N= 0.289 *Z tot

where:Ztot = Xb + Xc o Ztot = Xb + Xd

the system impedance and a stability study to fi nd the critical time (120º) and generator poles slip (180º).

Table 1 reviews two setting methods for the protection ANSI 78. Figure 5 shows the settings pro-posed in IEEE articles [5], using the Mho characteristic and the blinders. Figure 6 shows the settings criteria made by SIEMENS for the relay 7UM62 [6].

The settings for relay Siemens 7UM62 are similar to the proposed in articles IEEE, but relay 7UM62 uses operation zones denoted as characteristic 1 and 2 and not the Mho characteristic, as shown in Figure 6.

Figure 6. Operating characteristic of relay SIEMENS 7UM62

Im(Z)

Re(Z)

Zb

Za

Zc

Zd

Characteristic 1

Characteristic 2Zd - Zc

X'd

(70 a 90 %)Xt

The characteristic 1 can be set to operate between 1 and 4 swims and the characteristic 2 allow between 2 y 8 swims.

5. Methodology for setting generator out-of-step protective relay.

The methodology was applied to relay Siemens 7UM62 located in the Salvajina and Alto Anchicayá hydroelectric power plants, using the computational tool DigSilent and data from the network of Valle del Cauca, Colombia (Table 2).

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo

Relay IEEE articlesRelay IEEE articles Relay Siemens 7UM62Relay Siemens 7UM62

GeneratorX’d must be multiplied by factor m, from 200% to 300 %.

Must be used 100% of generator impedance

TransformerXt must be multiplied by factor n from 150% to 200 %.

Must be used from 70% to 90% of transformer impedance

MHO CharacteristicDMho= n*XT + m*X’dwhere:DMhMhMhooo= Mho circle diameter

Not Presented

Characteristic 1 Not Presented

Cart 1 = Zb + Zcwhere: Zb: X’d Zc: entre 70 al 90 % XT.

Characteristic 2 Not PresentedCart 2 = Zd - Zcwhere: Zd: XSIS + XT.

Blinders

N= 0.289 *Z tot

where Ztot = X’d + Xt + ZsysN: Distance between total line impedance and a blindeimpedance and a blinder

N= 0.289 *Z tot

where:Ztot = Xb + Xc o Ztot = Xb + Xd

Page 6: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

81El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

The methodology was devel-oped in four stages:

1. Obtaining information from the generator reactance Xʼd and transformer reactance XT.

2. Carrying out one-phase simula-tions of generation bus, opening previously the associated power switch to obtain the system im-pedance.

3. Referring the system impedance values to the low-voltage side, where the relay is located.

4. Constructing the operating cha-racteristic as shown in Figure 7. According to the simulation results the correct percents of covering zones of relay 7UM62 must be assigned.

Table 2. Parameters and variables calculated with DigSilent

Salvajina Alto Anchivayá

GeneratorX’d 0.2862 pu 0.25 puVN 13.8 kV 13.8 kVS 100 MVA 126 MVA

TransformerXT 9.99 % 13.14 %S 115 MVA 129 MVA

Measuring TransformersTP 14400/120 14400/120TC 6000/5 8000/5

RelationRTP 120 120RTC 1200 1600

System impedanceR 3.047Ω 3.155ΩX 26.690Ω 26.494ΩZ 26.864Ω 26.681Ω

Figure 7. Blinder construction for relay 7UM62

6. Application of the methodology for setting protective relay 78 in Salvajina and Alto Anchicayá.

a. Required Information: The information Xʼd y XT was obtained from network data base of EPSA and is shown in Table 2.

b. One-phase short circuit: Ta-ble 3 shows the data obtained from one-phase short circuit at buses of Salvajina and Alto Anchicayá.

Table 3. One-phase short circuit data

Salvajina Alto Anchicayá

System impedance

R 3.047Ω 3.155Ω

X 26.690Ω 26.494Ω

Z 26.864Ω 26.681Ω

c. Values referred to the low-vol-tage side: The value obtained from Table 2, must be referred to Ω-sec (ohm-secondary), be-cause of the measuring transfor-mers, according Equations (3), (6) and (8).

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo

Salvajina Alto Anchivayá

GeneratorX’d 0.2862 pu 0.25 puVN 13.8 kV 13.8 kVS 100 MVA 126 MVA

TransformerXT 9.99 % 13.14 %S 115 MVA 129 MVA

Measuring TransformersTP 14400/120 14400/120TC 6000/5 8000/5

RelationRTP 120 120RTC 1200 1600

System impedanceR 3.047Ω 3.155ΩX 26.690Ω 26.494ΩZ 26.864Ω 26.681Ω

Salvajina Alto Anchicayá

System impedance

R 3.047Ω 3.155Ω

X 26.690Ω 26.494Ω

Z 26.864Ω 26.681Ω

Page 7: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

82 El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

(10)

(5)

(6)

(7)

(8)

(2)

(3)

(4)

d. Construction of the op-erating characteristic: to set up blinders as shown in Figure 7, the operating characteristic is calcu-lated as:

Figure 8. Generator rotor angle Tdes = 260 ms

base

pubasepri MVA

dXkVdX

'*'

2

_ =Ω

RTP

RTCdXdX pri *'' _sec_ ΩΩ

=

sec_'Ω

= dXZb

For transformer:

base

TbasepriT MVA

XkVX

*2

_ =Ω

RTP

RTCXX priTT *_sec_ ΩΩ

=

For system:

2_

*

base

SYSbasepriSYS

kV

XMVAX =

Ω

RTP

RTCXX priSYSSYS *_sec_ ΩΩ

=

4.003.002.001.000.00 [s ]

200. 00

100. 00

-0.00

-100 .00

-200 .00

Al to A nc hy a 1-3: Án gul o de l R otor c on respecto a l Á ngu lo d e la M · qu ina d e R eferenc ia in d egSa lva jina 1-3: Á ngu lo de l R otor con r espe cto a l Áng ulo de la M · qu ina de Re ferenc ia in de g

0.59 3 s175 .917 de g

0. 603 s-179. 39 8 d eg

ESTUD IO DE E ST AB ILI DAD AN G U LO S

FAL LA 3F BAR R A 2 20 KV SAL VAJ IN A TI EMPO D E D ESPEJ E 2 60 m s

DIg

SIL

EN

T

(9))2/tan(

2/

δtot

a

ZZ = (9)

where δ = 120º

)2/o120tan(

2/tota

ZZ =

tota ZZ *289.0= (11)

The total system impedance is expressed as:

cbtot ZZZ += (12)

for power swim angle between generator and transformer, and

dbtot ZZZ += (13)

for power swim angle between generator and system network.

The critical fault-clearing time as the maximum time to avoid in-stability, the time where generator rotor angle reaches 120º and the time for poles slipping (180º) are calculated by three-phase faults simulations at generation high-volt-age buses, using an approximation method before and after the critical fault-clearing. Also the number of power swims and the swim behavior through the impedance locus are obtained.

Figure 8 and Figure 9 show the three-phase short circuit study at bus 230 kV of Salvajina. The rotor angles behavior and apparent impedance seen for the relays, after a fault-clearing time of 260 ms is shown. Figure 9 shows the impe-dance swings for an out-of-step condition.

Figure 10 and Figure 11 show the rotor angle behavior generators and the apparent impedance seen for Alto Anchicayá and Salvajina in a three-phase short circuit at bus 230 kV with a fault-clearing time of 310 ms. Figure 11 shows a strong power swim and an out-of-step condition originated when a long fault-clear-ing time is presented.

7. Application of out-of-step protective settings for Salvajina and Alto Anchicayá.

Table 4 shows simulation re-sults for setting up both generator out-of-step protective relays. Data

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo

4.003.002.001.000.00 [s ]

200. 00

100. 00

-0.00

-100 .00

-200 .00

Al to A nc hy a 1-3: Án gul o de l R otor c on respecto a l Á ngu lo d e la M · qu ina d e R eferenc ia in d egSa lva jina 1-3: Á ngu lo de l R otor con r espe cto a l Áng ulo de la M · qu ina de Re ferenc ia in de g

0.59 0.59 3 s175 .917 de ggg

0. 603 s-179. 39 8 d eggg

DIg

SIL

EN

T

For generator:

Page 8: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

83El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

14 .013 .012 .011 .010 .09. 0 08. 0 07 . 0 06. 0 05. 0 04. 0 03. 0 02. 0 01. 0-1 .0 0-2 .0 0-3 .0 0-4 .0 0-5 .0 0-6 .0 0-7 .0 0-8 .0 0-9 .0 0-1 0 . 0 [s e c .O h m ]

10 .0

9. 0 0

8. 0 0

7. 0 0

6. 0 0

5. 0 0

4. 0 0

3. 0 0

2. 0 0

1. 0 0

-1 .0 0

-2 .0 0

-3 .0 0

-4 .0 0

-5 .0 0

-6 .0 0

-7 .0 0

[s e c . O hm ]

REL E A L T O \R E A LIm pe da nc ia L Ì ne a -L Ì ne a

E S T UDI O D E E S T A B IL IDA D R E L E A L T O

F A L L A 3F BAR R AJ E 2 2 0kV AL T O A N C H IC A Y ¡ T IE M PO D E D E SPEJ E: 310 m s

DIg

SIL

EN

T

3-PH A SE F A I L B U S 2 2 0 k V A L T O AN C H I C AY A ST A B I L I T Y ST U D Y

C L E A R I N G T I M E : 3 1 0 m s

Li ne -Li ne I m ped anc e

R e l a y A l t o

14 .013 .012 .011 .010 .09. 0 08. 0 07 . 0 06. 0 05. 0 04. 0 03. 0 02. 0 01. 0-1 .0 0-2 .0 0-3 .0 0-4 .0 0-5 .0 0-6 .0 0-7 .0 0-8 .0 0-9 .0 0-1 0 . 0 [s e c .O h m ]

10 .0

9. 0 0

8. 0 0

7. 0 0

6. 0 0

5. 0 0

4. 0 0

3. 0 0

2. 0 0

1. 0 0

-1 .0 0

-2 .0 0

-3 .0 0

-4 .0 0

-5 .0 0

-6 .0 0

-7 .0 0

[s e c . O hm ]

REL E A L T O \R E A L

¡

DIg

SIL

EN

T

3-PH A SE F A I L B U S 2 2 0 k V A L T O AN C H I C AY A ST A B I L I T Y ST U D Y

C L E A R I N G T I M E : 3 1 0 m s

Li ne -Li ne I m ped anc eR e l a y A l t o

14. 013 .012 .011 .010 .09.008. 007. 006.005. 004. 003.002. 001. 0-1 .0 0-2 .0 0-3 .0 0-4 .0 0-5 .0 0-6 .0 0-7 .0 0-8 .0 0-9 .0 0-10. 0 [s e c .O hm ]

10 .0

9. 0 0

8. 0 0

7. 0 0

6. 0 0

5. 0 0

4. 0 0

3. 0 0

2. 0 0

1. 0 0

-1 .0 0

-2 .0 0

-3 .0 0

-4 .0 0

-5 .0 0

-6 .0 0

-7 .0 0

[s e c .O h m ]

S A LV A J IN A _ R X \P o lar iz in gIm ped an c ia LÌ nea- LÌnea

E S T U D IO D E E S T A B IL ID A D R E L E S A L V A J IN A

F A LL A 3F E N BA R R A JE SA LV A J IN A 2 2 0 kV T IEM P O D E D E SPE J E 2 6 0 M S

DIgS

ILE

NT

ST A B IL IT Y ST U D Y3 -P H A S E F A IL BU S 220 kV S A LVAJ IN A C LE A R IN G T IM E : 260 m s

Line -L ine Im peda nc e

14. 013 .012 .011 .010 .09.008. 007. 006.005. 004. 003.002. 001. 0-1 .0 0-2 .0 0-3 .0 0-4 .0 0-5 .0 0-6 .0 0-7 .0 0-8 .0 0-9 .0 0-10. 0 [s e c .O hm ]

10 .0

9. 0 0

8. 0 0

7. 0 0

6. 0 0

5. 0 0

4. 0 0

3. 0 0

2. 0 0

1. 0 0

-1 .0 0

-2 .0 0

-3 .0 0

-4 .0 0

-5 .0 0

-6 .0 0

-7 .0 0

[s e c .O h m ]

S A LV A J IN A _ R X \P o larar iziz in g

DIgS

ILE

NT

ST A B IL IT Y ST U D Y3 -P H A S E F A IL BU S 220 kV S A LVAJ IN A C LE A R IN G T IM E : 260 m s

Line -L ine Im peda nc e

112.104.96.088.080.072.064.056.048.040.032.024.016.08.00-8.00-16.0-24.0-32.0-40.0-48.0-56.0-64.0-72.0-80.0 [sec.Ohm]

80.0

72.0

64.0

56.0

48.0

40.0

32.0

24.0

16.0

8.00

-8.00

-16.0

-24.0

-32.0

-40.0

-48.0

-56.0

[sec.Ohm]

DIgSILENT

3-P HA S E FA IL- B US 220 kV S A LV A J INA

Line -Line ImpedanceSALVAJINA RX\Polarizing

S TA B ILITY S TUDY

CLE A RING TIME : 260 ms

R e l a y S a l v a j i n a

for constructing the out-of-step relay operating characteristic is obtained from Tables 2, 3 and 4. Table 5 shows the relay settings for Alto Anchicayá and Salvajina obtained with equa-tions mentioned above.

Figure 12 shows the operating zone settings of generator out-of-step protective relay of Alto Anchicayá.

Figure 9. Apparent impedance seen from Salvajina Tdes=260msFigure 10. Generator rotor angle Tdes = 310

Figure 11. Apparent impedance seen from Alto Anchicayá Tdes = 310 ms

4.003.002.001.000.00 [s]

200. 00

100. 00

-0.00

-100. 00

-200. 00

Al to Anc hy a 1-3: Á ng ulo de l Rot or con respe cto a l Ángul o de la M áqui na de Re fe renc ia in de gSa lva jina 1-3: Ángul o de l R otor c on r espe cto a l Á ngul o de la Má qui na de Re ferenc ia in de g

0. 646 s176. 193 de g

0. 46 5 s50. 154 de g

0. 928 s-43. 74 5 de g

0. 655 s-179. 442 de g

DIg

SIL

ENT

R e l a y S a l v a j i n a

84.078.072.066.060.054.048.042.036.030.024.018.012.06.00-6.00-12.0-18.0-24.0-30.0-36.0-42.0-48.0-54.0-60.0 [sec.Ohm]

66.0

60.0

54.0

48.0

42.0

36.0

30.0

24.0

18.0

12.0

6.00

-6.00

-12.0

-18.0

-24.0

-30.0

-36.0

[sec.Ohm]

RELEALTO\REALImpedancia LÌnea-LÌnea

ESTUDIO DE ESTABILIDAD

FALLA 3F BARRAJE 220kV ALTO ANCHICAY¡ TIEMPO DE DESPEJE: 310 ms

DIgSILENT

STABILITY STUDY

3-PHASE FA IL 220 kV ALTO A NCHICA Y A CLEA RING TIME 310 m

s

Line -Line impedance

R e l a y A l t o a c h i c a y a

X´d (Ω sec) XT (Ω sec) XS(Ω sec)

Salvajina 5.45 1.9025 0.9196

Alto Anchicayá 5.037 2.6480 0.5514

Table 4. Obtained parameters (Ω-secondary)

Figure 12. Operating characteristic of Alto Anchicayá Figure 13. Operating characteristic of Salvajina

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo

4.003.002.001.000.00 [s]

200. 00

100. 00

-0.00

-100. 00

-200. 00

Al to Anc hy a 1-3: Á ng ulo de l Rot or con respe cto a l Ángul o de la M áqui na de Re fe renc ia in de gSa lva jina 1-3: Ángul o de l R otor c on r espe cto a l Á ngul o de la Má qui na de Re ferenc ia in de g

0. 646 s176. 193 de ggg

0. 46 5 s50. 154 de ggg

0. 928 s-43. 74 5 de ggg

0. 655 s-179. 442 de ggg

DIg

SIL

ENT

X´d (Ω sec) XT (Ω sec) XS(Ω sec)

Salvajina 5.45 1.9025 0.9196

Alto Anchicayá 5.037 2.6480 0.5514

Page 9: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

84 El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

Figure 13 shows the operating zone settings of generator out-of-step protective relay of Salvajina. In Table 6, the recommended values for setting up generator out-of-step protection of Salvajina and Alto Anchicayá are registered.

8. Conclusion

When comparing the relay 78 settings of Alto Anchicayá with the settings recommended in this article, some differences were founded in the covering areas of characteristics 1 and 2, because it was considered to be larger than the obtained one with computational studies.

A methodology for setting up generator out-of-step protective relay, in two different ways was presented. The fi rst one proposed in IEEE articles and the second one proposed for protection ANSI 78, relay Siemens 7UM62 of Salvajina and Alto Anchicayá.

Three-phase fault simulations over high-voltage buses allowed verifying the out-of-step condi-tion and the critical fault-clearing time and order to set up protection ANSI 78.

Although, the relay operating characteristics proposed by IEEE articles and Siemens are similar, the investigation results indicate that criteria implemented by Siemens are more selective, because this pro-tection allows zoning the operating characteristic in two parts, which have different setting approaches. The confi guration of these operation areas avoids tripping when impe-dance swings are presented, that can be detected outside of the involved area of the generator-transformer group. Also, the blinders for relay Siemens 7UM62 are set up with characteristic 1 or are set up to cover both characteristic 1 and 2, in order to determinate if power swim is sta-ble or unstable, avoiding generator tripping in stable conditions.

Table 5. Calculated parameters for relay Siemens 7UM62.

Alto Anchicayá Salvajina

Zb=X’d 5.037 Ω/sec 5.45 Ω/secZc=80% Covering XT 2.1184 Ω/sec 1.522 Ω/secZd= XS + XT 3.5676 Ω/sec 2.4539 Ω/secZd – Zc = Caract 2 1.4492 Ω/sec 0.9319 Ω/secZa (characteristic 1) 2.0679 Ω/sec 1.8443 Ω/secZa (characteristic 1 and 2) 2.4867 Ω/sec 2.2842 Ω/sec

Settings Salvajina Alto AnchicayáZa 1,8443 Ω-Sec 2,0679 Ω-SecZb 5,45 Ω-Sec 5,037 Ω-SecZd-Zc 0,9319 Ω-Sec 1,4492 Ω-SecPolygon 90º 90ºSwims characteristic 1 1 1Swims charactistic 2 4 4T-signal 0.04 0.04

Table 6. Recommended data for protection ANSI 78

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo

Alto Anchicayá Salvajina

Zb=X’d 5.037 Ω/sec 5.45 Ω/secZc=80% Covering XT 2.1184 Ω/sec 1.522 Ω/secZd= XS + XT 3.5676 Ω/sec 2.4539 Ω/secZd – Zc = Caract 2 1.4492 Ω/sec 0.9319 Ω/secZa (characteristic 1) 2.0679 Ω/sec 1.8443 Ω/secZa (characteristic 1 and 2) 2.4867 Ω/sec 2.2842 Ω/sec

Settings Salvajina Alto AnchicayáZa 1,8443 Ω-Sec 2,0679 Ω-SecZb 5,45 Ω-Sec 5,037 Ω-SecZd-Zc 0,9319 Ω-Sec 1,4492 Ω-SecPolygon 90º 90ºSwims characteristic 1 1 1Swims charactistic 2 4 4T-signal 0.04 0.04

Page 10: A Methodology for Setting up Generator Out-of-Step Protective …red.uao.edu.co/bitstream/10614/159/2/texto.pdf · 2020. 2. 28. · mation as generator direct-axis transient reactance,

85El Hombre y la Máquina No. 27 • Julio - Diciembre de 2006

This methodology can be ap-plied for other generator out-of-step protective relays and contribute to define approaches that are used in the standards CREG.

9. Bibliographic[1] J. J. Grainger, W. D. Stevenson.

Análisis de Sistemas de Potencia. Ed. McGraw-Hill. 1998.

[2] P. Kundur. Power System Stability and Control. Ed. EPRI, Ed. McGraw-Hill. 1994.

[3] P. M. Anderson. Power System Protection. IEEE Press Power En-

gineering Series, Ed. McGraw-Hill. 1999.

[4] J. Berdy, “Out-of-step Protection for Generators”, General Electric Company, [documento en inter-net], disponible en: http://www.beckwithelectric.com/infoctr/tech-papers/genprot01.pdf.

[5] IEEE Guide for AC Generator Protection”, ANSI/IEEE C37.102-2002

[6] SIPROTEC “Multifunction Gene-rator, Motor and Transformer Pro-tection Relay 7UM62”. SIEMENS Company. 2002

A Methodology for Setting up Generator Out-of-Step Protective RelaysMiller Zuleta • Gladys Caicedo • Francisco Javier Murcia • John Edwin Candelo