77
8/12/2019 A Lecture Holmberg&Persson Math Model http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 1/77 Mathematical Model for Near Field Rock Damage Control (Holmberg&Persson) 1 R. Holmberg Lima 2011-Nov

A Lecture Holmberg&Persson Math Model

Embed Size (px)

Citation preview

Page 1: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 1/77

Mathematical Model for Near

Field Rock Damage Control(Holmberg&Persson)

1R. Holmberg Lima 2011-Nov

Page 2: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 2/77

BackgroundProject ”Cautious Blastingtowards Open Pit Slopes”

Virgin rock, first bench

Aitik Copper Mine – a lowgrad, 0.4%Cu, mine inNorthern SwedenPegmatites and manytypes of gneiss withzones of feldspar andepidote parallel to thefoot wallBoliden Mineral, NitroNobel, SveDeFo

R. Holmberg Lima 2011-Nov 2

Page 3: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 3/77

Aitik, Sweden

3R. Holmberg Lima 2011-Nov

P,A&H rock mechanicslope stability analysis

indicatedγ ~57 ° β i ~ 62 ° a ~10 m

a berm widthb catch benchα bench angleβ i intermediate slope anglesγ total slope angle

Page 4: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 4/77

AITIK

It was common that back breakreached 8 m which implied that the totalslope angle just could be 40 ° instead ofestimated 57 ° if extreme cautiousblasting was performed.Millions could be saved for each degreethe pit slope angle was increased.

A change of the blasting procedure wasneeded.

An understanding of how blastingdamage is defined and how it is causedis needed!

R. Holmberg Lima 2011-Nov 4

Page 5: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 5/77

Alternative designs

If the last bench has a benchheight of 15 m the berm/catchbench will be 9 m if the totaloverall slope angle is 57 °.Local bench failures, back breaketc will make it impossible toachieve.

A proposal was to finalise with a30 m bench in order to achieve

broader berms.Heigh benches are not easy totrim!

R. Holmberg Lima 2011-Nov 5

Stock blast

Cautiousblasting

Page 6: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 6/77

Tests at footwall

6R. Holmberg Lima 2011-Nov

Page 7: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 7/777R. Holmberg Lima 2011-Nov

Tests at footwall

Page 8: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 8/77

Local planar failures

8R. Holmberg Lima 2011-Nov

Page 9: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 9/77

First approach

R. Holmberg Lima 2011-Nov 9

Page 10: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 10/77

2nd approach

v; particle velocity mm/sQ; Charge weight kgR; Distance mk, α and β

R. Holmberg Lima 2011-Nov 10

v=k Qα /R β

Page 11: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 11/77

Mathematical model

R i 2= R 02 + (R 0 tanΦ) 2

Q i = dx L (L= linear charge conc. kg/m)q = (v/k) 1/α = Q/R β/α

Each part Q i of the charge Q contributes to thevibration intensity defined as w= v 1/α with

w i = (k Q iα/R iβ)1/α

Integration along the charge height H gives

R. Holmberg Lima 2011-Nov 11

v=k Q α/R β

Page 12: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 12/77

Curves of particle velocity,v versus distance, R

R. Holmberg Lima 2011-Nov 12

Page 13: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 13/77

Aitik Copper Mine – Round

#213Bench Height 13-14 mNumber of holes 96Hole diameter 250 mm

Hole Depth 16 mSpacing 10 mBurden 8 mUnloaded hole length 3-3.5 mExplosives TNT SlurryLinear Charge concentration 75 kg/mInitiation 2 primers; one at the bottom part and one 2 m abovebottom. Nonel.

R. Holmberg Lima 2011-Nov 13

Page 14: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 14/77

Accelerometer positions

R. Holmberg Lima 2011-Nov 14

Initiation

Page 15: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 15/77

15R. Holmberg Lima 2011-Nov

First measured values

Page 16: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 16/77

Accelerometers

R. Holmberg Lima 2011-Nov 16

Page 17: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 17/77

Back break

R. Holmberg Lima 2011-Nov 17

Page 18: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 18/77

18R. Holmberg Lima 2011-Nov

Damage zone?

Damage zone

Distance frombench face

Degree ofdamage

Page 19: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 19/77

Diamond drilling

R. Holmberg Lima 2011-Nov 19

1 and 2 – Right angle todominating fractures3 was drilled dipping 50 ° to crossthe foliation

Page 20: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 20/77

Cracks

R. Holmberg Lima 2011-Nov 20

Page 21: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 21/77

RQDRQD=Sum of allcore pieces

larger than 10cm divided bythe bore holelength

5 m length wasused

R. Holmberg Lima 2011-Nov 21

Page 22: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 22/77

Results At 90% probability, damage(increase of crack frequency)ceases 18.6-44.9 m along thecore length.The diamond drill holes aredrilled at an angle of 45degrees to the face.I.e. at 90% probability,damage (increase of crackfrequency) ceases 13.2-31.9m behind the last row.

At a distance of 22.6 mbehind the round theprobability is 50% fordamage.

Damage Zone ~23 m. Implies apeak particle velocity of 800mm/s.

R. Holmberg Lima 2011-Nov 22

% increase of crack frequency

Page 23: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 23/77

Damage zoneThe typical damage in fissured rock isan irreversible separation of the two

fissure surfaces from each other,resulting in a decrease in shear strengthof the fissure. This is accompanied by aslight swelling of the rock mass

effected.

R. Holmberg Lima 2011-Nov 23

Page 24: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 24/77

Swelling of rock mass behind

blasts

R. Holmberg Lima 2011-Nov 24

Page 25: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 25/77

Critical vibration velocity range for

damage in different rock mass typesRock /jointclass

Criticalvibrationvelocity mm/s

Hard rock –

Strong joints>1000

Medium hardrock - no weak

joints

800-700

Soft rock – weak joints

<400

Granite may be expected to fail indynamic tension at ~30MPacorresponding to a strain of ~1% or aparticle velocity of more than 1000

mm/s.Normal fissured rock will show tensiledamage in the joints at low stress levels~700mm/sIn soft, sedimentary rock with relativelyweak joints damage may occur atvelocities lower than 400 mm/s.

R. Holmberg Lima 2011-Nov 25

Page 26: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 26/77

Page 27: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 27/77

Damage zone 0,6 mNot affordable for

low grade ores!

R. Holmberg Lima 2011-Nov 27

Low damage zone but expensive

Stock blastCautiousblasting

Page 28: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 28/77

Realistic design!?Discussions led to a potentialdesign.Max damage zone = 10 m.

2 rows cautious blasting.Last row reduced to 35% of afully loaded 250 mm hole.This is the same as a fullyloaded 171 mm hole.

Attractive for the mine asdecoupled charges in 250 mmholes not needed.Further investigations to confirm171 mm holes damage zone.

R. Holmberg Lima 2011-Nov 28

Stock blast10 m damagezone

Reduced charge conc in the last2 rows

Cautiousblasting

Page 29: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 29/77

Kidd Creek

R. Holmberg Lima 2011-Nov 29

Page 30: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 30/77

Kidd Creek

R. Holmberg Lima 2011-Nov 30

Page 31: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 31/77

Brenda MineOverall slope angle 45 ° exclrampsBackbreak Prod row; 10 m

Pretrim; Reduced subdrillingand chargeTrim; 70 kg ANFO + 2waxed cardboard tubes with70 kg ANFO each

Deck charging; Testedpreviously but gave not thesame results as decoupledcharges. And moreexpensive.

R. Holmberg Lima 2011-Nov 31

Page 32: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 32/77

Continuation to verify the

Curves

32R. Holmberg Lima 2011-Nov

Cautious blastingwith 171 mm hole

diameter was testedat the Aitik mine.Hole inclination 70° Observations

DisplacementPeak particlevelocities

Page 33: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 33/77

Accelerometer positions

Smoothblasting Φ=171mmLinear chargeconcentration32 kg/mTNT slurry

R. Holmberg Lima 2011-Nov 33

Page 34: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 34/77

Results - PPV

R. Holmberg Lima 2011-Nov 34

Hole # Distance (m) a (g) v (mm/s)B 8,5 1031,0 1442,0C 13,9 303 562

D 26,9 29 283

Page 35: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 35/77

Results - Displacement. Most

severe at surface.

R. Holmberg Lima 2011-Nov 35

Extenso-meter

Distance toblast hole (m)

Displace-ment (mm)

E1 8,5 37,8E2 14,1 14,4E3 27,3 2,6

Page 36: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 36/77

Leveäniemi Iron Ore MineTest site Sector 1Aand 4B

Foliation dips 55° Strikes parallell tothe pit limit

Typical failures:Plane shear failuresalong the foliation

R. Holmberg Lima 2011-Nov 36

Page 37: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 37/77

Sector 1A

R. Holmberg Lima 2011-Nov 37

Page 38: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 38/77

Data Biotite schist

Tensile strength 17.8 MPaUniaxial compressive strength 102.7 MpaDensity 2.74 g/cm 3

Shear strength 42.2 kPa

Elastic Modulus of 39.9 GPaPoisson´s ratio 0.18

R. Holmberg Lima 2011-Nov 38

Page 39: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 39/77

Typical production round #81

TNT-slurry 1.5 g/ccCord ,100 ms between rows

V1-V3 denotes PPV sensors

R. Holmberg Lima 2011-Nov 39

Page 40: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 40/77

Page 41: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 41/77

Back break

R. Holmberg Lima 2011-Nov 41

Page 42: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 42/77

Measurements V1-V3 PPV sensorsE1-E3 Extensometers

S1-S10 Holes forseismic measurementsP3 & P4 Core drilling –pre and post blast

R. Holmberg Lima 2011-Nov 42

Last row ofround #81

Page 43: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 43/77

Extensometers8, 12 and 16 m fromblast

D=22 mm iron barsgrouted at thebottom of the holes

R. Holmberg Lima 2011-Nov 43

Page 44: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 44/77

Displacements

R. Holmberg Lima 2011-Nov 44

Relativedisplacement Vertical

displacement

Distance fromlast row (m)

Distance fromlast row (m)

Page 45: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 45/77

Horisontal displacement

Round #88 At surface the followinghorisontal displacements

were measured:

Distance fromlast row (m)

Horizsontaldisplacements(cm)

7.0 16.5-23.911.5 10.3-15.319.5 1.5-6.7

R. Holmberg Lima 2011-Nov 45

Page 46: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 46/77

Estimated separation of

weakness planes

R. Holmberg Lima 2011-Nov 46

Distance from

last row (m)

Depth

(m)

Measuredverticaldisplacement

(mm)

Separationat 8 cracksper m

(mm) *8 0-6 151 3.26-16 74 0.9

12 0-6 131 2.76-16 49 0.6

16 0-6 57 1.26-16 18 0.2

*Crack frequency measured on the core after blasting

Page 47: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 47/77

Core drillingCore drilling 20 m,inclined 45° fromsurface towards thebottom of the round.

R. Holmberg Lima 2011-Nov 47

Page 48: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 48/77

RQDCore drilling 45° fromsurface towards thebottom of the round.RQD is decreased alongwhole core lengthSurface – heavilyfractured from earlierblasting

R. Holmberg Lima 2011-Nov 48

Pre-blastPost-blast

Distance from surface

Page 49: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 49/77

Point Load Index Test

Strength higher after blast!Possible explanation -The boiotit schist has a number of

potential weakness planes. Each ofthem with an unique strength.Blasting introduces dynamic loadsand several low strength weaknessplanes will be fractured. The coreexamined after the blast willtherefore contain more fractures.Core pieces selected for the PointLoad Index Test will obviously notcontain the low strength weaknessplanes and consequently a higheraverage of the strength will beachieved.

R. Holmberg Lima 2011-Nov 49

Page 50: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 50/77

Laboratory experimentsIntact rock 12 MPaInvestigate shear strength of joints after theyopened up.Equipment; Two steel plates parallell to eachother, separated 1 cm.Plates; Three throughgoing holes where threerock core samples with diameter 30 mm can bemounted.’ Structures in cores mounted parallell to theplates.Movements increase the aperture along the

fractured weakness planes. After a predetermined temporary aperture , thesurfaces are repositioned into contact and theapparatus is ready for shearing.The equipment could also provide a remainingaperture of the joints before shearing started-

R. Holmberg Lima 2011-Nov 50

• Weakness planes given a temporary apertureof 0.3 mm still had intact rock bridges

covering 7% of the area of the weaknessplane.• The remaining aperture of more than 0.4mm shows that the peak angle of friction isclose to the calculated basic angle of friction.

Page 51: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 51/77

Seismic measurements

At 5 m depth and 21 m from last row the rock masscontinuity was disturbed.Seismic signals showed lower frequencies and velocities.

R. Holmberg Lima 2011-Nov 51

Page 52: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 52/77

Test d=102 mm

R. Holmberg Lima 2011-Nov 52

Page 53: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 53/77

Round #99

R. Holmberg Lima 2011-Nov 53

Page 54: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 54/77

PPV for Round #81 and #99

R. Holmberg Lima 2011-Nov 54

Page 55: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 55/77

Avoid cord VOD cord =7000m/s

VOD TNT Slurry =4500 m/sI.e. Detonation isoccuring at sametime in 3-4 holesdepending on thewave velocity in therock.

R. Holmberg Lima 2011-Nov 55

Page 56: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 56/77

Leveäniemi -Summary

R. Holmberg Lima 2011-Nov 56

Meaasurements Damage zone

Extensometers - vertical displacement ~20 mEDM - Horisontal displacement ~22.5 mCrack frequency . Pre- and Post-blast cores >20 mSeismic >21 mPPV (v=750 mm/s) ~23 mShear strength tests on cores with simulated blast damages ~20 m

Page 57: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 57/77

Proposed design

R. Holmberg Lima 2011-Nov 57

Total slope angle 42 ° Foliation 55° Berm 6.2 m

Final wall; Sector 1A and 4B

Page 58: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 58/77

Inclined holes

R. Holmberg Lima 2011-Nov 58

Page 59: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 59/77

Vertical holes

R. Holmberg Lima 2011-Nov 59

Page 60: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 60/77

Final wall.

R. Holmberg Lima 2011-Nov 60

Page 61: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 61/77

Final wall

R. Holmberg Lima 2011-Nov 61

Page 62: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 62/77

Sublevel caving

R. Holmberg Lima 2011-Nov 62

Page 63: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 63/77

Tunnelling

R. Holmberg Lima 2011-Nov 63

Page 64: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 64/77

Tunnelling

R. Holmberg Lima 2011-Nov 64

Page 65: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 65/77

Page 66: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 66/77

(SveBeFo) Continued tests 1990-2000

R. Holmberg Lima 2011-Nov 66

Vånga Smooth Blasting Tests1. Started in 1991 and continue in direct co-operation withDyno Nobel & Swedish National Road Authority.2. Tests made in 2-4,5 m granite benches, blasting singleholes and groups of holes.3. Main test factors have been

- the blast hole diameter, d= 24-64 mm

- the decoupling ratio or charge size- the explosive type- burden and spacing- initiation delay between adjacent holes.

Page 67: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 67/77

(SveBeFo) Continued tests 1990-2000

R. Holmberg Lima 2011-Nov 67

4. Post-blast work includes- post-split excavation of intact blocks- cutting of blocks with diamond saw

- crack visualization with dye penetrant - crack lengthmeasurements.5. During the years more than 200 holes & 250 saw cuts havebeen blasted and inspected

Page 68: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 68/77

(SveBeFo) Continued tests 1990-2000

R. Holmberg Lima 2011-Nov 68

Page 69: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 69/77

(SveBeFo) Continued tests 1990-2000

R. Holmberg Lima 2011-Nov 69

Page 70: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 70/77

(SveBeFo) Continued tests 1990-2000

After the blast, large blocks aredrilled and taken out with quarrymen ´s blasting techniques to avoiddisturbing the crack pattern

The blocks are split to size withwedges and cut horizontally in alarge diamond circular cut-off saw.

R. Holmberg Lima 2011-Nov 70

Page 71: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 71/77

Page 72: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 72/77

(SveBeFo) Continued tests 1990-2000

R. Holmberg Lima 2011-Nov 72

Explosive Density VOD Energy Fumes harge dia.Lin. Conc. Hole dia. CouplingKg/liter m/s m/s l/kg mm kg/m mm ratio

Gurit 1,00 2000 3,50 930 17,0 0,23 51 0,33Gurit 1,00 2000 3,50 930 22,0 0,40 64 0,34

Kimulux 42 1,15 4800 3,20 903 22,0 0,44 64 0,34Emulet 20 0,22 1850 2,35 1125 bulk 0,45 51 1,00Detonex 80 1,05 6500 5,95 780 10,6 0,08 51 -

Secti o n n o Date Exp l o si ve Ch arg e Ho l e In i ti atio n B*S Sec tio n sh o w sd i a. m m d i a. m m m effect o f:

5:2 jun-92 Gurit 17 51 pyrotechnic 0,8 - 0,5 ordinary initiation, reference6:3:1-6:3:3 maj-93 Gurit 17 51 EPD, instantan. 0,8 - 0,5 instantaneous intiation

H2:4-H3:4 aug-94 Gurit 17 51 EPD, At = 1 ms 0,5 1 0,5 zipper blastingJ2-J3 aug-94 Gurit 22 24 EPD, instantan. 1,0 - 0,8 less decoupling

E7:1 -E8:1 jun-94 Gurit 22 64 EPD, instantan. 0,8 - 0,8 larger S/BM6:2 apr-95 Kimulux 42 22 64 EPD, instantan. 1,0 - 0,8 highVOD, 4800 m/s

G14:1-G15:1 jun-94 Kimulux 42 22 64 EPD, instantan. 1,0 - 0,8 highVOD, 4800 m/s39:3 sep-94 Gurit 17 51 EPD, scattered 0,8 - 0,5 side hole

Page 73: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 73/77

(SveBeFo) Continued tests 1990-2000

R. Holmberg Lima 2011-Nov 73

Page 74: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 74/77

(SveBeFo) Continued tests 1990-2000With other factors kept constant: The resulting crack lengths decrease with a decreasing coupling ratio.Fully charged holes show a more complex crack pattern withinteracting cracks.

A higher VOD generates many short cracks around the bore hole.Crack lengths may increase with increasing burden and arc-shapedsubsurface cracks may appear when spacing is increased.

R. Holmberg Lima 2011-Nov 74

Page 75: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 75/77

(SveBeFo) Continued tests 1990-2000The time delay of initiation is important;

zero delay gives the shortest crackscrack lengths increase with the delay

a delay as low as 1 ms give crack lengths more like singlehole blastseven a linear sequence of 1 ms delays is inferior toinstantaneous initiationtraditional smooth blasting thus gives unnecessarily longcracks.

R. Holmberg Lima 2011-Nov 75

Page 76: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 76/77

(SveBeFo) Continued tests 1990-2000

SveBeFo has tested the influence ofthe burden and the spacingthe hole or charge sizethe decoupling ratiothe VODthe initiation delay time between holes

2003 Swebrec (Swedish Blasting Research Centre)

was formed and the researchers lead by Prof. FinnOuchterlony has continued to measure and refinethe Rock Damage Models.

R. Holmberg Lima 2011-Nov 76

Page 77: A Lecture Holmberg&Persson Math Model

8/12/2019 A Lecture Holmberg&Persson Math Model

http://slidepdf.com/reader/full/a-lecture-holmbergpersson-math-model 77/77