A Laboratory-scale Model for Evaluating

Embed Size (px)

Citation preview

  • 8/18/2019 A Laboratory-scale Model for Evaluating

    1/7

    Wat. Res. Vol. 24, No. 6, pp. 717-723, 1990 0043-1354/90 $3,00 + 0.00

    Printed in Great Britain. All rights reserved Copyright © 1990 PergamonPress plc

    A L A B O R A T O R Y S C A L E M O D E L F O R E V A L U A T I N G

    E F F L U E N T T O X I C IT Y IN A C T IV A T E D S L U D G E

    W A S T E W A T E R T R E A T M E N T P L A N T S

    DONALD J. VERSTEEG* and DANIEL M. WOLTERING

    Environmental Safety Department, The Procter & Gamble Company, Ivorydale Technical Center,

    Cincinnati, OH 45217, U.S.A.

    First received M ay 1989; accepted in revised orm December 1 989)

    Abstract--Laboratory-scale wastewater treatment systems were used to assess the potential contribution

    of a specific waste source, a detergent manufacturing plant, to wastewater treatment plant (WWTP)

    effluent toxicity. Laboratory-scale, continuously-fed activated sludge treatment systems (CAS units) were

    established and seeded with sludge from one of two activated sludge WWTPs. The CAS units were fed

    influent from these WWTPs supplemented with detergent manufacturing plant waste (plant waste). CAS

    unit effluent toxicity was measured with the 7 day

    Ceriodaphnia dubia

    survival and reproduction test and

    the 4 day Selenastrum capricornutum population growth test. Control (ambient W~VTP nfluent) CAS unit

    and actual WWTP effluentshad similar toxicity, indicating the CAS units generated effluent oxicologically

    similar to actual effluent for the two species tested. Untreated WWTP influent was supplemented with

    atypically high concentrations of plant waste in an attempt to establish a dose--response relationship

    between influent plant waste levels and effluent toxicity. However, there was no trend toward increasing

    effluent toxicity to Ceriodaphnia or algae with increasing influent plant waste concentrations. Thus, the

    detergent manufacturing plant waste is not contributing to the toxicity of the municipal WWTP effluent.

    This case study demonstrated the utility of CAS units for assessing the impact of WWTP influent sources

    on final effluent toxicity.

    Key words--wastewater treatment, effluent toxicity, algae, invertebrates, Ceriodaphnia, surfactants,

    manufacturing plant

    INTRODUCTION

    The U.S. Envir onment al Protection Agency water

    quality based toxics control strategy promotes the

    utilization of toxicity data on single species to assess

    and control the discharge of toxic substances into

    receiving waters (U.S. EPA, 1985). Whole effluent

    toxicity tests with the daphnid, Ceriodaphnia dubia,

    a green algae, Se lenas t rum capr icornuturn and the

    fathead minnow, P i m e p h a l e s p r o m e l a s , are recom-

    mended to assess potential chronic effluent impacts

    on in-stream communities (Horning and Weber,

    1985).

    Municipal wastewater treatment plant (WWTP)

    effluents have been observed to be acutely an d chron-

    ically toxic to aquatic organisms, with up to 79% of

    effluents reported to be acutely toxic to aquatic life

    (Tebo, 1986; Neiheisel et al . , 1988). Effluents exceed-

    ing permitted toxicity limits may be required to

    reduce effluent toxicity. Effluent toxicity reduction

    can be accomplished through a toxicity identification

    and reduction evaluation (TI/RE) in which toxicants

    are identified and toxicity is ameliorated by aug-

    mented treatment processes and programs designed

    to restrict sources of toxic compounds (Mount and

    Anderson-Carnahan, 1988), At municipal WWTPs,

    *Author to whom all correspondence should be addressed.

    the TI/RE process may involve going up the pipe

    to identify industrial or commercial sources of toxic-

    ity (U.S. EPA Science Advisory Board, 1988). But,

    how should toxicity info rmati on on untreat ed waste

    be obtained and interpreted to accurately reflect

    toxicity in the final treated effluent? Toxicity tests on

    untr eated wastes may no t accurately assess the contr i-

    bution of a waste to final effluent toxicity, especially

    in waste streams containi ng compound s removed by

    treatment processes. Knowledge of total waste

    treatability (e.g. BOD removal) might not always be

    useful as effluent levels of residual toxic compounds

    will not be known. The key parameter to understa nd

    is the quan tity of final effluent toxicity a specific waste

    source contains. In this study, model waste treatment

    systems were used to assess the con tribut ion of a

    detergent manufac turin g plant waste to final effluent

    toxicity. This approach has been used successfully to

    evaluate the effect of treatment on the toxicity of a

    number of compounds (Horning

    et a l . ,

    1984; Botts

    e t

    al. , 1989).

    Predicting the potentia l contribu tion of the manu-

    facturing plant waste to WWTP effluent toxicity is

    complicated by: (1) the chemical complexity of the

    manu fac tur ing plan t waste; (2) the differential

    WWTP removal of manuf actur ing plant waste com-

    ponents; and (3) the potential for toxicological inter-

    actions among components of the final WWTP

    717

  • 8/18/2019 A Laboratory-scale Model for Evaluating

    2/7

    718

    INFLUENT/SLUDGE

    SOURCE

    D O N A LD J V ER S TEEG a n d D A N IEL M W O LTER IN G

    W W T L , - - - J I

    ; , N . L U E . .A O . L U O O E I [ ' . F L U ' A . O S ' U O 0 '

    MANUFACTURING

    PLANTASTE

    DOSING

    ~_~ Mnnufacturlng

    Plant aste

    4X

    C A S U N I T S ~ ~ ~ ~ ~ ~

    TOXICITY

    TESTS

    EFFLUENT EFFLUENT EFFLUENT EFFLUENT EFFLUENT EFFLUENT

    Fig . 1 . F low d iagram of the exper imenta l des ign demons tra t ing the source o f s ludge and in f luen t , the

    add i t ion o f m anufac tu r ing p lan t was tes and the use o f CAS un i t e ffluen ts fo r tox ic i ty te st ing .

    e f f lu e n t . T o c o n d u c t t h e m o s t r e l e v a n t t e s t i n g p o s s-

    i b l e, w e r e a s o n e d t h a t e f f lu e n t t o x i c i t y s h o u l d b e

    a s s es s e d f o l l o w i n g a c t u a l o r s i m u l a t e d w a s t e w a t e r

    t r e a t m e n t o f th e m a n u f a c t u r i n g p l a n t w a s t e .

    T h i s r e s e a r c h h a d t w o p u r p o s e s . F i r s t , t o a s se s s t h e

    f e a s i b il i t y o f c o u p l i n g a l a b o r a t o r y - s c a l e w a s t e t r e a t -

    m e n t s y s t e m w i t h e f f l u e n t c h r o n i c t o x i c i t y a s s a y s t o

    d e t e r m i n e t h e c o n t r i b u t i o n o f a n i n f l u e n t s o u r c e t o

    f i n a l W W T P e f f lu e n t t o x i c it y . T h i s r e s e a r c h w a s

    c o n d u c t e d u s i n g a d e t e rg e n t m a n u f a c t u r i n g p l a n t

    w a s t e a s a ca s e s t u d y . T h e m a n u f a c t u r i n g p l a n t

    r e l e a s e s w a s t e s a l o n g w i t h o t h e r d o m e s t i c , c o m m e r -

    c i a l a n d i n d u s t r i a l s o u r c e s to a m u n i c i p a l W W T P .

    E f f lu e n t f r o m t h e m u n i c i p a l W W T P w a s o b s e r v e d to

    b e t o x i c t o a q u a t i c l i f e a n d t h e i ss u e w a s t h e l e v el o f

    f i n al e ff l u e nt to x i c i t y c o n t r i b u t e d b y t h e m a n u f a c t u r -

    i n g p l a n t. T h e s e c o n d o b j e c t i v e o f t h is s t u d y w a s t o

    d e t e r m i n e , u n d e r a r e a l i s t i c w o r s t c a s e s c e n a r i o , i . e . a

    W W T P r e c ei v in g b o t h d o m e s t i c w a s te a n d d e t e r g en t

    m a n u f a c t u r i n g p l a n t w a s t e , w h e t h e r s u r f a c t a n t s , t h e

    m a j o r c o m p o n e n t s o f t h e m a n u f a c t u r i n g p l a n t w a s te ,

    a r e li k e l y t o c o n t r i b u t e t o m u n i c i p a l W W T P e f f lu e n t

    t o x i c i t y .

    MATERIALS AND METHODS

    Wastewater sources

    Two was tewate r t rea tment p lan t s ludges and in f luen t

    sources (A and B) were used to es tab l ish and opera te s ix

    CAS (con t inuous ly -fed ac t iva ted s ludge) un i ts . WWTP A is

    an appro x . 20 mil l ion ga l lons pe r day conven t io na l ac t iva ted

    s ludge t rea tm ent p lan t rece iv ing was te f rom dom es t ic (90 )

    and indus tr ia l (10 ) sources . The indus tr ia l inpu t includes

    w a s te s f ro m th e d e te rg e n t m a n u fa c tu r in g p l a n t . WWT P B

    is a 1 mil l ion ga l lon pe r day , ex tended ae ra t ion ac t iva ted

    s ludge p lan t rece iving w as tes en t i re ly f rom dom es t ic sources .

    C S units

    T h re e C A S u n i t s w e re se ed e d w i th s lu d g e f ro m W W T P A

    (Fig . I ) . One un i t was opera ted with WW TP A in flUent on ly .

    This in f luen t con ta ins ambien t leve ls o f the de te rgen t m anu-

    fac tu r ing p lan t was te . In f luen t to the o the r two CAS un i ts

    w e re s p ik ed w i th a d d i t io n a l d e t e rg e n t m a n u fa c tu r in g p l a n t

    was te a t 4 and 16 t imes the typ ica l level o f p lan t was te in

    WWTP A in f luen t (F ig . 1 ) . Three CAS un i ts were se t up

    w i t h s l u d g e f r o m W W T P B a n d o p e r a t e d w i t h W W T P B

    inf luen t . One un i t was opera ted with un trea ted in f luen t

    a lone ( i .e . normal load in g o f domes t ic was te and n o de te r-

    gen t manufac tu r ing p lan t was te ) . In f luen t to the o the r two

    uni ts were sp iked with 4 an d 16 t imes the p lan t was te leve ls

    in W W TP A influent (Fig. 1).

    Each labora to ry-sca le CAS un i t cons is ted o f a p lex ig las

    aeration basin and a 21. cylindrical c larifier (Fig. 2). The

    aera t ion bas in con ta ined 61 . o f ac t iva ted sludge d ispe rsed by

    two ae ra t ion tubes . The ae ra t ion bas in d ischarged th rough

    an ov erf low tube in to a c la r i f ie r s ti r red by a sha f t m ixer . The

    Pump

    Influsn

    Plus

    PlantWaste

    4o c )

    Compressed

    Air ~

    Aeration

    Section

    /

    Effluent

    Pump

    Waste

    Solids ecycle

    Pump

    Fig . 2 . Schematic d iagram of the CAS un i ts used in the

    trea tment o f the in f luen t and th~ was te f rom a de te rgen t

    m a n u fa c tu r in g p l a n t .

  • 8/18/2019 A Laboratory-scale Model for Evaluating

    3/7

    W a s t e c o n t r i b u t i o n t o e f f l u e n t t o x i c i ty

    719

    c l a r if i e r h a d a r e cy c le d i s c h a r g e t u b e i n t h e b o t t o m a n d a n

    over f low fo r e f f luen t d i scharge . S ludge se t t l ing in the c la r i f i e r

    w a s p e r i o d i c a l l y re c y c le d (1 5 m i n p e r h ) t o t h e a e r a t i o n b a s i n

    b y a p e r i s t a l t ic p u m p . E f f l u e n t f ro m t h e c l a r i f ie r w a s c o r n -

    p o s i t e d i n a 2 0 1 . p o l y p r o p y l e n e p a i l f o r t o x i c o l o g i c a l a n d

    a n a l y t i c a l s a m p l i n g .

    G r a b s a m p l e s o f W W T P i n f t u e n t s w e r e c o l l e c te d tw i c e

    w e e k l y , t r a n s p o r t e d t o t h e l a b o r a t o r y a n d s t o r e d i n

    p o l y p r o p y l e n e c o n t a i n e r s a t 4 °C . S a m p l e s w e r e f e d i n t o

    C A S u n i t s i m m e d i a t e l y u p o n r e c e ip t a t t h e l a b o r a t o r y . D u e

    t o t h e i n f l u e n t f e e d ra t e , a p o r t i o n o f i n f l u e n t s a m p l e s w e r e

    4 d a y s o l d w h e n t r e a t e d . I n f l u e n t w a s f e d b y p e r i s t a l t ic

    p u m p t o t h e C A S u n i t s a t a m e a n f lo w r a t e o f 1 6 .6 m l / m i n .

    O p e r a t i o n a l p a r a m e t e r s i n t h e C A S u n i t s w e r e d e s ig n e d t o

    b e s i m i l a r t o a c t u a l c o n v e n t i o n a l w a s t e w a t e r t r e a t m e n t

    p l a n t s ( T a b l e 1 ) ( M e t c a l f & E d d y , 1 9 79 ; N a m k u n g a n d

    R i t t m a n n , 1 9 8 7 ) . W a s t i n g o f s l u d g e w a s c a r r i e d o u t a s

    n e e d e d t o m a i n t a i n t h e m i x e d l i q u o r s u s p e n d e d s o l i d s

    ( M L S S ) l i m i t s . I n fl u e n t , e ff l u e nt a n d m i x e d l i q u o r t o t a l

    s u s p e n d e d s o l i d s , a n d i n f l u e n t a n d e ff l u e n t p H a n d t o t a l

    o r g a n i c c a r b o n w e r e r o u t i n e ly m o n i t o r e d d u r i n g t h e d o s i n g

    p e r i o d .

    I n i ti a l ly , C A S u n i t s w e r e o p e r a t e d f o r 1 4 d a y s w i t h

    u n t r e a t e d i n f l u e n t o n l y . T h i s p r e d o s e p e r i o d a l l o w e d t h e

    C A S u n i t s t o r e a c h a s t a t e o f e q u i l i b r i u m b e f o r e d o s i n g w i t h

    p l a n t w a s t e . A f t e r t h e p r e d o s e p e r i o d , i n f l u e n t s w e re s u p p l e -

    m e n t e d w i t h d e t e r g e n t m a n u f a c t u r i n g p l a n t w a s t e t o a p -

    p r o x i m a t e i n c r e a s e s o f z e r o ( a m b i e n t i n f l u e n t ) , 4 a n d 1 6

    t i m e s th e l e ve l o f m a n u f a c t u r i n g p l a n t w a s t e i n W W T P A

    i n f l u e n t . T h e e x a g g e r a t e d d o s e s o f p l a n t w a s t e s w e r e i n -

    t e n d e d t o g e n e r a t e e f f lu e n t s f o r t o x i c it y t e s t i n g w h i c h c o u l d

    b e c o m p a r e d i n a d o s e -r e l a te d m a n n e r . O b s e r v a t i o n o f a

    d o s e - r e s p o n s e r e l a ti o n s h i p b e tw e e n t h e c o n c e n t r a t i o n o f t h e

    m a n u f a c t u r i n g p l a n t w a s t e a n d e f f l u e n t t o x i c i t y w o u l d b e

    s u b s t a n t i a l e v i d e n c e o f a c a u s e a n d e f f ec t r e l a t i o n s h i p . T h e

    d o s i n g p e r i o d l a s t e d f o r 3 2 d a y s a l l o w i n g s u f f i c ie n t ti m e f o r

    a c c l i m a t i o n o f t h e a c t i v a t e d s l u d g e m i c r o b i a l c o m m u n i t i e s

    t o p l a n t w a s t e u n d e r l a b o r a t o r y c o n d i t i o n s . C o n t r o l C A S

    u n i t e f f lu e n t s am p l e s w e r e c o l l e ct e d f o r a c u t e t o x i c i t y t e s t i n g

    d u r i n g t h e e n t i r e d o s i n g p e r i o d . E f f l u e nt s a m p l e s f o r c h r o n i c

    t o x i c i t y te s t i n g w e r e c o ll e c t e d d u r i n g t h e l a s t 7 d a y s o f t h e

    d o s i n g p e r i o d .

    T o x i c i t y t e s t s

    C o n t r o l C A S u n i t i n f l u e n t s a n d e f f lu e n t s w e r e t e s t e d f o r

    a c u t e t o x i c it y t o Cer i o d a p h n i a d u b i a b y t h e m e t h o d o f P e l ti e r

    a n d W e b e r ( 1 9 8 5 ) . G r a b s a m p l e s o f i n f l u e n t a n d 2 4 h

    c o m p o s i t e s a m p l e s o f e f f l u e n t w e r e u s e d . T o x i c i t y t e s t s w e re

    i n i t i a t e d i m m e d i a t e l y a f t e r s a m p l i n g a n d t e s t s a m p l e s w e r e

    c h a n g e d a f t e r 2 4 h w i t h a f r e s h g r a b s a m p l e o f i n f l u e n t a n d

    a secon d 24-h comp os i te o f e f fluen t . Th ese t e s t s were

    c o n d u c t e d t o d e t e r m i n e t h e v a r i a b i l i t y i n i n f l u e n t t o x ic i t y

    a n d t h e a b i l i t y o f C A S u n i t s t o r e m o v e t o x i c i t y ,

    E f f lu e n t s h o r t - t e r m c h r o n i c t o x i c it y t e s ts w i t h

    C e r i o d a p h -

    nia dubia

    a n d

    S e l en a s t ru m ca p r i co rn u t u rn

    were used to assess

    t h e c h r o n i c t o x i c i t y o f C A S e f f lu e n t s a n d f i n a l e ff l u en t s f ro m

    W W T P s A a n d B . C e r i o d a p h n i a w e r e c h o s e n d u e t o t h e i r

    g e n e r a l l y g r e a t e r s e n s i t i v it y t h a n f i sh t o W W T P e f f lu e n t s

    ( d a t a n o t s h o w n ) . S e l e n a s t r u m w a s s e l e c te d d u e t o t h e

    s e n s i t iv i t y o f a l g a e t o s u r f a c t a n t s , t h e s h o r t d u r a t i o n o f

    t o x i c i t y t e s t s w i t h a l g a e , a n d t h e i r c r i t i c a l p o s i t i o n i n t h e

    e c o s y s t e m . T h e s e t e s t s w e r e c o n d u c t e d a c c o r d i n g t o t h e

    Table 1. Operational conditions of the CAS units

    Parameter

    Aeration tank volume (litres) 6.0

    Aeration rate (l/min) 6.0

    Wastew ater flow (I/d) 23.9

    Hydraulic retention time (h) 6.0

    Sludge retention time (d) 12.0

    Mixed l iquor suspended so lids MLS S (m g / l ) 200 0-3 000

    Sludge volume inde x SVI (ml/I) < 100

    m e t h o d s o f H o r n i n g a n d W e b e r ( 1 9 8 5 ) w i t h t h e e x c e p ti o n

    t h a t C e r i o d a p h n i a w e r e c u l t u r e d a n d t e s t e d i n i n d i v i d u a l

    30 ml p las t i c cups f i l l ed wi th 20 ml o f t e s t so lu t ion . F i l t e red

    L i t t l e M i a m i r i v e r w a t e r, a r e l a ti v e l y c l e a n s o u r c e o f n a t u r a l

    d i l u t i o n w a t e r , w a s c o l l ec t e d a t X e n i a , O h i o a n d u s e d f o r

    C e r i o d a p h n i a a n d S e l e n a s tr u m c u l t u r e a n d a s d i l u t i o n w a t e r

    i n t o x i c it y t e st s . D u r i n g C e r i o d a p h n i a 7 d a y c h r o n i c t o x i c it y

    t e s t s , d a i l y 2 4 - h c o m p o s i t e d s a m p l e s f r o m e a c h C A S u n i t

    e f f lu e n t w e r e u s e d t o m a k e t h e d a i l y r e n e w a l s o f t e s t

    s o l u t i o n s . O b s e r v a t i o n s o n t h e s u r v i v a l a n d r e p r o d u c t i o n o f

    C e r i o d a p h n i a w e r e m a d e d a i l y a t t h e t i m e o f t r a n s f e r .

    T h e 4 d a y a l g a l t e s t s w e r e r u n c o n c u r r e n t l y w i t h t h e

    C e r i o d a p h n i a t o x i c i t y t e s ts . T e s t s o l u t i o n s w e r e n o t r e n e w e d

    d u r i n g t h e te s t . A l g a e w e r e i n c u b a t e d a t 2 4°C a n d 8 6 E s - 1

    m - 2 ( e q u i v a l e n t t o 4 0 0 f t - c c o o l w h i t e f l u o r e s c e n t l i g h t) o n

    a s h a k e r t a b l e o s c i l l a t i n g a t 1 0 0 r p m . A f t e r 4 d a y s o f

    i n c u b a t i o n , p o p u l a t i o n g r o w t h w a s a s s e s s e d b y q u a n t i f y i n g

    a l g a l b i o m a s s ( c h l o r o p h y l l a ) f l u o r o m e t r i c a l l y o n a T u r n e r

    m o d e l 1 11 f l u o r o m e t e r ( A P H A , 1 9 85 ).

    A n a l y t i c a l

    S u r f a c t a n t a n a l y t i c a l s a m p l e s w e r e 2 4 h c o m p o s i t e s o f

    C A S e f f l u e n t s . S a m p l e s c o l l e c t e d f o r a n i o n i c a n d n o n i o n i c

    s u r f a c t a n t a n a l y s e s w e r e p r e s e r v e d w i t h 1 % f o r m a l i n a n d

    s t o r e d a t 4 °C . S a m p l e s c o l l e c t e d f o r c a t i o n i c s u r f a c t a n t

    a n a l y s e s w e re p r e s e r v e d w i t h 1 % f o r m a l i n a n d 5 m g / l o f

    alkyl ethoxylate (C14_15A E 7 ), a n d s t o r e d a t 4 °C . T h e s a m p l e s

    w e r e a n a l y z e d f o r t o t a l n o n i o n i c s u r f a c t a n t s b y a m o d i f ic a -

    t i o n o f t h e c o b a l t t h i o c y a n a t e a c t i v e s u b s t a n c e m e t h o d

    ( A P H A , 1 9 8 5 ) , l i n e a r a l k y l b e n z e n e s u l f o n a t e s ( L A S ) b y

    d e s u l f o n a t i o n g a s c h r o m a t o g r a p h y ( O s b o r n e , 1 9 86 ), a n d t h e

    f o l l o w i n g c a t i o n i c s u r f a c t a n t s b y a m o d i f i c a t i o n o f t h e

    m e t h o d o f W e e ( 19 8 4) ; d i t a l l o w d i m e t h y l a m m o n i u m c h l o -

    r id e , m o n o t a l l o w t r i m e t h y l a m m o n i u m c h l o r i d e a n d d o d e -

    c yl t ri m e t h y l a m m o n i u m c h l o r i d e . N o t e t h a t t h e a n a l y t ic a l

    m e t h o d f o r t h e n o n i o n i e s u r f a c t a n t s i s a n o n s p e c if i c c o l o r i-

    m e t r i c m e t h o d r e p o r te d t o o v e r e s t i m a t e t h e c o n c e n t r a ti o n o f

    n o n i o n i c s u r f a c t a n t i n W W T P e f f l u e n t s ( G l e d h i l l et a l .

    1 9 89 ). T h u s , r e s u l ts o f n o n i o n i c s u r f a c t a n t a n a l y s e s a r e

    r e p o r t e d i n g e n e r a l t e r m s o n l y .

    W a t e r q u a l i t y p a r a m e t e r s i n c l u d i n g h a r d n e s s , a lk a l i n i t y ,

    d i s s o l v e d o x y g e n , t o t a l o r g a n i c c a r b o n , t o t a l s u s p e n d e d

    s o l i d s , a m m o n i a , c o n d u c t i v i t y a n d p H w e r e m e a s u r e d i n

    d i l u t i o n w a t e r a n d C A S i n f l u e n t a n d e f f l u e n t b y a c c e p t e d

    m e t h o d s ( A P H A , 1 9 85 ). C A S u n i t s l u d g e v o l u m e in d e x

    ( S V I ) w a s m e a s u r e d a c c o r d i n g t o A P H A ( 1 9 8 5 ) u s i n g a

    3 0 m i n s e t t l i n g ti m e . W a t e r q u a l i t y p a r a m e t e r s w e r e m e a -

    s u r e d a t t h e b e g i n n i n g o f t h e a l g a l t e s t a n d d a i l y d u r i n g

    C e r i o d a p h n i a t e s t i n g .

    S t a t i s t i c s

    S u r v i v a l d a t a w e r e a n a l y z e d b y t h e m e t h o d s d e s c r i b e d i n

    P e l t i e r a n d W e b e r ( 1 9 8 5 ) . C e r i o d a p h n i a y o u n g p r o d u c t i o n

    a n d a l ga l p o p u l a t i o n g r o w t h d a t a w e r e a n al y z e d b y n o n l i n -

    ea r mul t ip le regress ion ana lys i s on SAS (SAS, 1986) .

    T o x i c i t y t e s t r e s u l t s a r e s u m m a r i z e d i n t h i s s t u d y a s t h e

    e f fe c t iv e c o n c e n t r a t i o n o f e f f lu e n t r e d u c i n g b i o l o g i c a l re -

    s p o n s e , s u r v i v a l o r r e p r o d u c t i o n , b y 5 0 % ( E Cs 0 v a l u e s ) w i t h

    95% conf idence in te rva l s . The ECs0 s ta t i s t i c was se lec ted to

    iden t i fy e f f luen t concen t ra t ions caus ing a spec i f i c l eve l o f

    t o x i c i t y a n d d o e s n o t i n d i c a t e a t o x i c i t y t h r e s h o l d o r

    b i o l o g i c a l r el e v a n c e i n t h e r e c e i v i n g e n v i r o n m e n t . I n u s i n g

    n o o b s e r v e d e f f ec t ( N O E C ) a n d f i r st o b s e r v e d e f fe c t c o n c e n -

    t r a t i o n s ( F O E C ) , b i o l o g i c a l e f f e c t s v a r i e d g r e a t l y a m o n g

    C A S u n i t t r ea t m e n t s w i t h s i m i la r N O E C s a n d F O E C s .

    O t h e r s h a v e o b s e r v e d t h i s e f f e c t a n d r e c o m m e n d t h e u s e o f

    a d o s e - r e s p o n s e s t a t i s ti c a l a p p r o a c h i n p l a ce o f t h e h y p o t h -

    e s is t e s t i n g a p p r o a c h ( K r u m p , 1 9 84 ; B a r n t h o u s e e t a l .

    1 98 7) . T h u s , t o m a k e m e a n i n g f u l c o m p a r i s o n s a m o n g C A S

    u n i t t r e a t m e n t s i n t h i s s t u d y , b i o l o g i c a l e f f e c t s w e r e h e l d

    c o n s t a n t a t 5 0 % .

    F o r C e r i o d a p h n i a c h r o n i c t e s t s , E C s 0 v a l u e s w e r e c a lc u -

    l a t e d b a s e d o n s u r v iv a l a n d y o u n g p r o d u c t i o n . T h e l o w e r o f

  • 8/18/2019 A Laboratory-scale Model for Evaluating

    4/7

    7 2 0 D O N A L D J . V E R ST E EG a n d D A N I E L M . W O L T E R I N G

    T a b l e 2 . C o n c e n t r a t i o n [ m e a n ( m g / l ); ( S D ) ; n = 4 ] o f s u r f a c t a n t s * i n C A S u n i t s a n d a c t u a l W W T P e f f lu e n ts

    T r ea tm e n t s ys te m D T D M A C M T T M A C C I : T M A C L A S

    W as t e wat e r t r e a t m e n t p l an t s

    W W T P A e f fl u en t ( n = 7 ) 0 . 0 38 ( 0 .0 1 8) < 0 . 0 1 2 t < 0 . 0 1 0 t < 0 . 0 5 0 t

    W W T P B e f f l u e n t ( n = 3 ) 0 . 0 2 5 ( 0 . 0 2 7 ) < 0 .0 0 5 I < 0 . 0 0 5 t 0 . 1 3 0 t

    C S u n it s

    W W T P A c o n t r o l 0 . 7 6 0 ( 0 .3 9 ) 0 . 0 0 9 ( 0 . 00 2 ) < 0 . 0 0 5 t 0 . 0 7 0 ( 0 . 03 2 )

    W W T P A 4 × p l a n t w a s t e 4 . 5 3 (0 . 8 4 ) 0 . 0 0 8 (0 . 0 0 3 ) < 0 . 0 0 5 t 0 . 3 9 0( 0 . 04 2 )

    W W T P A 1 6 x p l a n t w a s t e 2 0 .3 ( 4 .5 7 ) 0 . 0 2 4 ( 0 . 00 1 ) < 0 . 0 0 5 t 3 . 10 ( 1 . 4 6 )

    W W T P B c o n t r o l 0 . 5 5 0 ( 0 .2 8 ) 0 . 0 1 0 ( 0 . 00 5 ) < 0 . 0 0 5 t 0 . 1 4 0 ( 0 . 01 0 )

    W W T P B + 4 x p l a n t w a s t e 2 . 9 8 ( 1 . 4 1 ) 0 . 0 1 1 ( 0 . 0 0 5 ) 1 0 0 % , b u t w a s g e n e r a l l y l es s t o x i c th a n W W T P

    i n f l u e n t B ( T a b l e 3 ). W W T P B i n fi u e n t w a s c o n s i s -

    t e n t l y a c u t e l y t o x i c t o C e r i o d a p h n i a ; L C s 0 v a l u e s

    w e r e l es s t h a n 5 0 % . E f f lu e n t s fr o m c o n t r o l C A S u n i t s

    w e r e c o n s i s t e n t ly o f l o w a c u t e t o x i c i t y i n d i c a t i n g

    C A S u n i t s e f fe c ti v e ly r e m o v e d a c u t e l y to x i c c o m p o -

    n e n t s . M o r e s e n si t iv e c h r o n i c e n d p o i n t s , t h o u g h ,

    w e r e n e e d e d t o d i s t i n g u i s h e f fl u en t t o x i c i t y a m o n g

    C A S u n i t s .

    C h r o n i c t o x i c i t y

    T o x i c i t ie s o f W W T P A a n d B e ff lu e n ts w e r e s i m i l a r

    t o C e r i o d a p h n i a ( T a b l e 4 ) . E C 50 c o n c e n t r a t i o n s w e r e

    2 4 a n d 2 2 °/ '0 e f f lu e n t in W W T P A a n d B , r e s p e c t i v e l y .

    C o n t r o l C A S u n i t a n d a c t u a l e f f l u e n t s a l s o h a d

    s i m i l a r t o x i ci t ie s . F o r W W T P A , c h r o n i c E C s 0 c o n -

    c e n t r a t i o n s w e r e 2 4 % i n t h e a c t u a l W W T P e f f l u e n t

    a n d 3 3 % i n t h e c o n t r o l C A S u n i t e f f l u e n t t o C e r i o -

    d a p h n i a . F o r W W T P B , e ff lu e n t E C s 0 c o n c e n t r a t i o n s

    w e r e 2 2 a n d 1 6 % i n th e a c t u a l W W T P a n d c o n t r o l

    C A S u n i t e f f l u e n t s , r e s p e c t i v e l y .

    I n W W T P A C A S u n i t s , C e r io d a p h n i a c h ro n i c

    e f fl u e n t E C s0 c o n c e n t r a t i o n s w e r e 3 3 % f o r t h e c o n t r o l

    C A S u n i t , 4 6 % f o r th e C A S u n i t re c e i v in g 4 x p l a n t

    w a s t e a n d 1 3 % f o r t h e 1 6 x p l a n t w a s t e C A S u n i t

    ( T a b l e 4 ) . I n W W T P B C A S u n i t s , c h r o n i c e f f l u e n t

    C e r i o d a p h n i a E Cs 0 c o n c e n t r a t i o n s w e r e 1 6 % f o r t h e

    c o n t r o l C A S u n i t , 3 5 % f o r t h e C A S u n i t r e c e i v i n g

    T a b l e 3 . T h e a c u t e t o x i c i ty o f i n f lu e n t s a n d e f f l u e nt s f r o m c o n t r o l C A S u n i t s t o Ce r i odaphn i a dub i a

    4 8 - h L C s 0 v a l u e ( % )

    S a m p l e t y p e W e e k : 1 2 3 4 5

    W W T P A c o n t r o l

    i n f l u e n t 2 2 . 2 > 5 0 > 1 0 0 > 1 0 0 - -

    ( 1 6 . 5 - 2 9 . 6 )

    ef f luen t > 100 > 100 > 100 > 100 > 100

    W W T P B co n t ro l

    i n f l u e n t 4 4 . 6 1 6 . 0 3 8 . 0 < 2 5 - -

    ( 3 2 . 9 - 9 2 . 3 ) ( 1 2 . 0 - 2 5 . 0 ) ( 2 5 . 0 - 5 0 . 0 )

    ef f luen t 52 .9 > 100 > 100 > 100 > 100

    ( 0 - 1 0 0 )

  • 8/18/2019 A Laboratory-scale Model for Evaluating

    5/7

    Waste contribution to effluent toxicity

    721

    Table 4. Effect on the survival and reproduction of Ceriodaphnia

    dubia and the growth of Selenastrum caprieornutum of effluents rom

    WWTPs and CAS units

    Ceriodaphnia Selenastrum

    ECs0 ECs0

    Treatment ( ) ( )

    Wastewater treatment plants

    WWTP A effluent 24 > 100

    (16.8-36.9)

    WWTP B effluent 22 13

    (8.4-58.4) (9.0-17.8)

    CAS u n i t s

    WWTP A control 33 > 100

    (25.0-50.0)

    WWTP A + 4 x plant waste 46 > 100

    (25.0-50.0)

    WWTP A + 16 × plant waste 13 > 100

    (9.6-18.7)

    WWTP B control 16 72

    (12.5 25 .0 ) (60.8-86.1)

    WWTP B + 4 x plant waste 35 59

    (27.6-45.3) (46. 74.8)

    WWTP B + 16 x plant waste 28 58

    (20.5-37.1) (49.4-67.0)

    4 x plan t waste and 28 for the 16 x plant waste

    CAS unit effluent (Table 4).

    Toxicities of WWTP A and B effluents to

    S e l e -

    n a s t r u m c a p r i c o r n u t u m

    differed (Table 4). The ECs0

    concentr ations were > 100 in WW TP A effluent

    and 13 in WW TP B effluent. The control CAS units

    reflected this difference in effluent toxicity. Ef fluent

    from the WWTP A control CAS unit were also

    nontoxic to algae with 4-day ECs0 concentrat ions

    exceeding 100 effluent. With WWT P B influent, the

    control CAS unit effluent was less toxic to algae than

    the actual WWT P effluent. The ECs0 concentrati on of

    the WWTP B effluent was 13 effluent while the

    control CAS unit effluent EC50 level was 72 .

    In WW TP A CAS units, all algal CAS un it effluent

    ECs0 concentr ations exceeded 100 effluent (Table

    4). In WWTP B CAS units, algal chronic ECs0

    concentr ation s were similar at 72, 59 and 58 in the

    ambien t, 4 x and 16 x pla nt waste units (Table 4).

    Regression of effluent toxicity to Cer ioda phnia and

    Selenastrum on infiuent manufacturing plant waste

    levels and effluent surfactant concen trat ions indicated

    the lack of a statistically significant relationship

    between toxicity and the level of plant waste com-

    ponents in the influent or effluent (Table 5).

    DISCUSSION

    Federal and state agency regulati on of effluents has

    expanded to include the moni torin g and regulation of

    whole effluent toxicity (U.S. EPA, 1984, 1985). Tech-

    Table 5. Regressionstatistics (r; Pearsoncorrelation

    coefficients) describing the regression of toxicity

    (ECs0) to Ceriodaphniaand Selenastrumon influent

    manufacturingplantwaste levelsand effluentsurfac-

    tant concentrations

    Correlation coefficient(r)

    Species lnfluent Effluent

    Ceriodaphnia 0.03 0.05

    Selenastrum 0.28 0.15

    niques used to control whole effluent toxicity at

    municipal WWTPs include utilization of alternative

    treatment options to remove final effluent toxicity

    and chemical identification and remediation of efflu-

    ent compounds causing toxicity (U.S. EPA, 1985;

    Mount and Anderson-Carnahan, 1988). These tech-

    niques are useful and effective a t controlling effluent

    toxicity. However, in some cases a more cost effective

    and direct approach to cont roll ing effluent toxicity,

    source reduction, is recommended (U.S. EPA Science

    Adviso ry Board, 1988). In this approach , the waste

    streams contributing to final effluent toxicity would

    be identified and regulated.

    Interpretation of the results of toxicity tests on

    municipal WWTP influent waste streams is not

    straightforward. Due to the potential chemical com-

    plexity of a waste stream, the differential impact of

    treatment on the components of the waste, and the

    effect of the effluent matrix on the toxicity of waste

    components, the waste treatment process should be

    incorporated in evaluating the contribution of a

    waste stream to final effluent toxicity.

    Laboratory-scale, con tinuou sly fed activated

    sludge treatment systems (CAS units) have been

    validated as effective models of the activated sludge

    process giving removals of conventio nal parameters

    and consumer product chemicals similar to actual

    WWTPs (King, 1980; Vashon

    e t a l .

    1982). In this

    study, we demonstrated the utility of CAS units to

    assess the contribution of a specific WWTP influent

    waste stream to post-treatment toxicity by verifying

    that, for Ceriodaphnia and Selenastrum, CAS units

    generate effluent toxicologically similar to actual

    WW TP effluents. For Ceriodaphnia, effluent toxicity

    in the control CAS units and the actual WWTPs were

    similar for both influent sources. For algae, although

    some differences between toxicity in the WWTP s and

    the control CAS unit effluents were observed, effluent

    toxicities were comparable for an influent source. At

    WWTP A, both control CAS unit and the actual

    WWTP effluents had similar toxicity to algae with

    ECs0 conce ntrat ions exceeding 100 effluent. The

    WWTP B control CAS uni t effluent was less toxic to

    algae tha n the actual WW TP effluent. However, given

    the possible variability in effluent toxicity and in the

    toxicity test, algal toxicity of the control CAS units

    and the actual WWTP effluents were comparable.

    Effluents of increasing manufactur ing plant waste

    strength were generated by exaggerating influent

    plant waste loadings to CAS units. There was no

    overall effect of plant waste components on toxicity.

    However, effluent from W WT P A CAS un it receiving

    the 16-fold addition of plant waste and having the

    highest effluent total surfactant concentrations did

    have increased toxicity to Ceriodaphnia relative to

    effluent from the WWTP A control CAS unit. A

    4-fold addition of manufacturing plant waste to

    untreated influent had no effect on the toxicity of the

    WWTP A CAS unit effluent. Thus, the current level

    of detergent manufacturing plant waste being re-

  • 8/18/2019 A Laboratory-scale Model for Evaluating

    6/7

    722 DONALD J. VERSTEEGand DANIELM . WOLT RING

    c e i v e d a t W W T P A i s n o t i m p a c t i n g e f fl u e n t t o x i c it y .

    I n f a c t , a 4 - f o l d i n c r e a s e i n i n f lu e n t p l a n t w a s t e l e v e l s

    w o u l d n o t b e e x p e c t e d t o i m p a c t e f f l u e n t t o x i c i t y .

    I n t h e W W T P B C A S u n i t s , i n c r e a s e s i n p l a n t

    w a s t e l e v e l s i n c l u d i n g t h e 1 6 - f o l d a d d i t i o n d i d n o t

    a d v e r s e l y im p a c t e f f lu e n t t o x i c it y t o a l g a e o r C e r i o -

    d a p h n i a . T h e r e a s o n f o r t h e 1 6 x p l a n t l e ve l c o n -

    t r i b u t i n g t o e ff lu e n t t o x i c i ty i n W W T P A b u t n o t

    W W T P B is n o t k n o w n b u t m a y h a v e b e e n d u e t o

    i n c r e a s e d le v e ls o f m a n u f a c t u r i n g p l a n t w a s t e i n t h i s

    ef f luent .

    D u e t o a d d i t i o n o f p l a n t w a st e s to C A S u n i t

    i n f l u e n t s , C A S u n i t e f f l u e n t s c o n t a i n e d g r e a t l y i n -

    c r e a s e d c o n c e n t r a t i o n s o f t w o d e t e r g e n t a c t i v e s ,

    l i n e a r a l k y l b e n z e n e s u l f o n a t e a n d d i t a l l o w d i m e t h y l

    a m m o n i u m c h l o ri d e D T D M A C ) , i n c o m p a r i s o n t o

    t h e a c t u a l W W T P s T a b l e 2). D e s p i t e t h e s e g r e a t l y

    e l e v a t e d c o n c e n t r a t i o n s o f s u r f a c t a n t s , e f f l u e n t t o x i c -

    i t y t o a l g a e a n d C e r i o d a p h n i a w a s n o t a f f e c te d e x c e p t

    i n t h e C A S u n i t w i t h t h e g r e a t e s t e f f l u e n t s u r f a c t a n t

    c o n c e n t r a t i o n i .e . W W T P A 1 6 × p l a n t w a s t e C A S

    uni t ) .

    I n a l l C A S u n i t e f f l u e n t s , l i n e a r a l k y l b e n z e n e s u l -

    f o n a t e c o n c e n t r a t i o n s r e m a i n e d b e l o w l e v e ls re p o r t e d

    t o b e t o x i c t o a q u a t i c o r g a n i s m s M a k i , 1 97 9; H o l -

    m a n a n d M a c e k , 1 9 8 0 ; T a y l o r , 1 9 8 5 ) . H o w e v e r , C A S

    u n i t e ff lu e nt co n c e n t r a t io n s o f D T D M A C e x c ee d e d

    l e v e ls r e p o r t e d t o b e t o x i c . L e w i s a n d W e e 1 9 8 3 )

    o b s e r v ed t h a t D T D M A C c o m p l e t e ly i n h i b it e d S e l e -

    n a s t r u m c a p r i c o r n u t u m g r o w t h E C l0 0 o r a l g i s t a t i c

    c o n c e n t r a t i o n ) a t c o n c e n t r a t i o n s r a n g i n g f r o m 0 .7 t o

    2 . 6 m g / l i n f i l t e r e d r i v e r w a t e r . I n a c h r o n i c t o x i c i t y

    t e s t c o n d u c t e d i n r i v e r w a t e r , t h e D T D M A C E C s0

    c o n c e n t r a t i o n t o D a p h n i a m a g n a w a s a p p r o x .

    1 .0 m g /1 . I n o u r s t u d y , D T D M A C c o n c e n t r a t i o n s u p

    t o 2 0 . 3 m g / l i n a C A S u n i t e f f l u e n t h a d n o e f f e c t s o n

    S e l e n a s t ru m . F o r C e r i o d a p h n i a , a c o n g e n e r i c sp e c ie s

    t o D a p h n i a , t h e ef fl u en t D T D M A C c o n c e n t r a t io n a t

    t h e E C s 0 l e v e l o f e ff l u e n t r e a c h e d a m a x i m u m o f

    3 . 0 m g /1 . T h e s e o b s e r v a t i o n s i n d i c a t e t h a t t h e w a s t e

    t r e a t m e n t p r o c e s s a n d e f f lu e n t m a t r i x m a y h a v e r e -

    d u c e d t h e a p p a r e n t t o x i ci t y o f D T D M A C . T h i s ef fe ct

    o n t o x i c i ty i s p r e s u m e d t o b e d u e t o a n e f f ec t o n

    D T D M A C s p e c ia t i o n a n d b i o a v a i la b i l it y . S i m i l ar

    r e s ul t s o n t h e a m e l i o r a t i o n o f t h e t o x i c i t y o f c a t i o n i c

    c o m p o u n d s b y s u s p e nd e d s o l id s an d o r g a n i c c a rb o n

    h a v e b e e n r e p o r t e d C a r y e t a l . 1987) . S ince the se

    f a c t o r s a f fe c t t h e t o x i c i t y o f th e s e c o m p o u n d s i n t h e

    e n v i r o n m e n t , i t i s i m p o r t a n t t o u t i l i z e t h e m o s t

    e n v i r o n m e n t a l l y r e l e v a n t m e t h o d t o i n t ro d u c e t h e s e

    c o m p o u n d s i n t o a q u a t i c t o x i c i t y t e s t s y s t em s . T h e s e

    r e s u l t s s u g g e s t t h a t C A S u n i t s a r e a n e f f e c ti v e m e t h o d

    f o r g e n e r a t i n g i n c r e a s e d c o n c e n t r a t i o n s o f t e s t m a t e -

    r i a ls in a n e n v i r o n m e n t a l l y r e a li s ti c m a t r i x a n d t h a t

    r e l e v a n t s a f e t y d a t a c a n b e o b t a i n e d w i t h t h e s e

    m e t h o d s .

    I n t h i s c a s e s t u d y , e f f l u e n t c o n c e n t r a t i o n s o f t h e

    m a j o r p l a n t w a s t e c o m p o n e n t s c o u l d b e m e a s u r e d .

    H o w e v e r , i f p l a n t w a s t e c o m p o n e n t s c o u l d n o t b e

    m e a s u r e d d u e t o t h e n u m b e r o f c o m p o u n d s o r t h e

    i n a b i l i t y to a c c u r a t e l y q u a n t i f y s p e ci fi c c o m p o n e n t s ,

    t h e C A S u n i t a p p r o a c h w o u l d r e m a i n v a li d . D u e t o

    t h e a b i l i t y to m a n i p u l a t e i n f lu e n t w a s t e l o a d i n g s , t h e

    C A S u n i t a p p r o a c h c a n b e a p o w e r f u l t o o l t o a s s e s s

    t h e c o n t r i b u t i o n o f w a s t e c o n t r i b u t o r s t o e f f lu e n t

    t o x i c it y . In u t i li z i n g t h i s a p p r o a c h , c a r e s h o u l d b e

    e x e r c i s e d t o a v o i d e f f e c t s o f t h e w a s t e o n t h e t r e a t -

    m e n t p r o ce s s . A d d i t i o n o f w a s t e a t a b n o r m a l l y h i g h

    l e v e ls c o u l d c a u s e e f f ec t s i n c l u d i n g t o x i c i t y t o a c t i -

    v a t e d s l u d g e o r g a n i s m s , a l t e r n a t iv e s u b s t r a t e u t i l iz a -

    t i o n o r d i l u t i o n o f i n fl u e n t a n d m i x e d l i q u o r s t re n g t h .

    T h e s e , a n d o t h e r p o t e n t i a l e f f ec ts , c o u l d a m e l i o r a t e o r

    p o t e n t i a t e t h e o b s e r v e d t o x i c i t y o f t h e w a s t e . T h e

    i n c i d e n c e o f t h e s e e f f e c t s c a n b e r e d u c e d b y p r o p e r

    s e l e ct i o n o f i n f lu e n t w a s t e l e v el s a n d m o n i t o r i n g o f

    a c t i v a t e d s l u d g e p r o c e s s e s .

    CONCLUSIONS

    U s e o f l a b o r a t o r y - s c a l e , c o n t i n u o u s a c t i v a t e d

    s l u d g e u n i t s c o u p l e d w i t h e f f l u e n t t o x i c i t y te s t p r o c e -

    d u r e s w e r e e ff e c ti v e m e t h o d s t o a s s e s s t h e c o n t r i b u -

    t i o n o f a n i n f lu e n t s o u r c e t o f in a l W W T P e f fl u en t

    t o x i c it y . C A S u n i t s p r o v i d e d t r e a t m e n t o f i n fl u e n t

    w a s t e s t r e a m s a n d g e n e r a t e d t o x i c o l o g i c a l l y r e l e v a n t

    e f fl u en t s f o r C e r i o d a p h n i a a n d S e l e n a s tr u m . A m a j o r

    c o m p o n e n t o f th e d e t e r g e n t m a n u f a c tu r i n g p l a n t

    w a s te , D T D M A C , w a s l es s t o x ic as a c o m p o n e n t o f

    a C A S u n i t e f f l u e n t t h a n h a s b e e n r e p o r t e d i n t h e

    l i t e r a t u r e i n c o n v e n t i o n a l l a b o r a t o r y t o x i c i t y t e s t s

    s u g g e s ti n g t h a t c o m p o n e n t s o f W W T P e f fl u e nt s a m e -

    l i o r a t e t h e t o x i c i t y o f t h i s s u r f a c t a n t . I n t h i s c a s e

    s t u d y , t h e d e t e r g e n t m a n u f a c t u r i n g p l a n t w a s t e w a s

    n o t a s i g n i fi c a n t c o n t r i b u t o r t o W W T P e f fl u e nt to x i -

    c i ty a t c u r r e n t r a t es o f m a n u f a c t u r i n g p l a n t w a s t e

    i n p u t t o t h e W W T P .

    R E F E R E N E S

    A P H A 1 9 8 5 ) S t a n d a r d M e t h o d s f o r t h e E x a m i n a t i o n

    o f W a t e r s a n d W a s t e w a t e r s . American Public Health

    Associat ion, Washington, D.C.

    Barnthouse L. W., Suter G. W., Rosen A. E. and

    Beauchamp J. J. 198 7) Estimating responses of f ish

    populat ions to toxic contaminants .

    Envir . Toxic. Chem.

    6, 811-824.

    Botts J. A., Braswell J. W., Zy ma n J. , Goodfe llow W. L.

    and M oore S . B. 1989) Toxicity reduction ev aluat ion

    protocol for municipal wastewater t reatment plants .

    EPA-600/2-88-062, U.S. EPA, Cincinnati, Ohio.

    Cary G. A. , McM ahon J . A. and Kuc W . J . 1987) The effect

    of suspended solids and naturally occurring dissolved

    organics in reducing the acute toxicities of cationic

    polyelectrolytes to aquatic organisms. Envir . Toxic.

    Chem. 6 469-474.

    Gled hill W . E., Hudd leston R. L., Kravetz L., Nielson

    A. M. , Sedlak R. I . and Vash on R. D. 1989) Treatabil i ty

    of surfactants at a wastewa ter treatment plan t. Tenside

    S u r f D e t e r g . 26, 276-281.

    Holm an W. F . and M acek K. J . 1980) An aq uatic safety

    assessment of linear alkylbenzene sulfonate LAS):

    chron ic effects on fathea d minnows. Trans. Am. Fish. Soc.

    109, 122-131.

    Hom ing W . B. and W eber C. I . eds) 1985) Shor t- term

    meth ods fo r estimating the chronic tox icity of effluents

  • 8/18/2019 A Laboratory-scale Model for Evaluating

    7/7

    Waste con tr ibu t ion to e ff luen t tox ic i ty

    723

    and rece iv ing wa te rs to f reshwate r o rgan isms . EP A-600/4-

    85-014 , U.S . EPA, Cinc inna t i , Ohio .

    Horn ing W. B. , Robinson E . L . and Pe trasek A. C. (1984)

    R e d u c t io n in to x ic i ty o f o rg a n ic p r io r i ty p o l lu t a n t s b y

    p i lo t-sca le conven t iona l was tewate r t rea tment p rocess .

    Arch. envir , contain. Toxic. 13, 191-196.

    K in g J . E . (1 9 8 0 ) T re a ta b i l i t y o f T y p e A z e o l it e in a

    w a s t e w a t e r - - P a r t

    I . J . Wa t . Po l lu t . Con tro l Fed .

    52,

    2875-2886.

    K ru mp K . S . (1 9 84 ) A n e w me th o d fo r d e t e rmin in g a l lo w -

    able daily intakes. Fund . appl . Toxic. 4, 854-871.

    Lewis M. A . and W ee V. T . (1983) Aq ua t ic sa fe ty assess -

    ment fo r ca t ion ic su rfac tan ts . Envir . Toxic. Chem. 2,

    105-118.

    Ma k i A . W. (1 9 7 9 ) C o r re l a t io n s b e tw e e n

    D a p h n i a m a g n a

    a n d fa th e a d min n o w

    ( P i m e p h al e s p r o m e l a s )

    c h ro n ic to x i -

    city values for several c lasses of test substances. J. Fish.

    Res . Bd Can . 36, 411-421.

    Me tc a l f E d d y (1 9 7 9 ) Wastewater Eng ineer ing Trea tment ,

    Disposal , Reuse. M c G r a w - H i l l , N e w Y o r k .

    Mo u n t D . I . a n d A n d e rs o n -C a rn a h a n L . (1 9 8 8 ) Me th o d s

    for aqu a t ic tox ic i ty iden t if ica t ion eva lua t ions . Phase I :

    tox ic i ty charac te r iz a t ion p rocedures . N a t io na l Eff luen t

    T o x ic i ty A s s e s s me n t C e n te r , D ra f t T e c h n ic a l R e p o r t

    02 88 , Dulu th , Minn .

    N a m k u n g E . a n d R i t tm a n n B . E . (19 8 7) E s t ima t in g v o la ti l e

    organ ic compound emiss ions f rom publ ica l ly owned

    trea tment works .

    J . Wa t . Po l lu t . Con tro l Fed .

    59,

    670~578.

    N e ih e i s e l T . W . , H o rn in g W . B . , A u s te rn B . M. , B i s h op D .

    F . , Reed T . L . and Es ten ik J . F . (1988) Toxic i ty reduc t ion

    a t munic ipa l was tewate r t rea tment p lan ts . J . Wat . Po l lu t .

    Con tro l Fed .

    60, 57q57.

    O s b o rn e Q . W . (1 9 8 6 ) A n a ly t i c a l m e th o d o lo g y fo r l i n e a r

    a lky lbenzene su lfona te (LAS ) in wa te rs and was tes . J. of f .

    ana ly t . Chem. Soc .

    63~ 257-263.

    Pe l t ie r W. H . and W eber C. I . (Eds ) (1985) Me thods fo r

    measuring the acu te tox ic i ty o f e ff luen ts to f reshwate r

    and marine o rgan isms . EPA-600/4-85-013, U.S . EPA ,

    Cinc inna t i , Ohio .

    S A S (1 9 8 6 )

    S A S U s e r s G u i d e: S t a t is t i c s .

    SAS Ins t i tu te ,

    C a ry , N . C .

    Ta ylo r M. J . (1985) Effect of diet on th e sensitivity

    o f D a p h n i a

    m a g n a to l inea r a lky lbenzene su lfona te . In A q u a t i c T o x i -

    c o l o g y a n d H a z a r d A s s e s s m e n t : S e v e n t h S y m p o s i u m (E d -

    i ted by Cardw el l R . D. et al.), pp . 53-72 . ASTM STP 854 ,

    Am erican Soc ie ty o f Tes t ing M ate r ia ls , Ph i lade lph ia , Pa .

    Tebo L . B. (1986) Environmenta l moni to r ing : h is to r ica l

    perspective. In

    E n v i r o n m e n t a l H a z a r d A s s e s s m e n t o f E f f l u -

    en t s (E d i t e d b y B e rg ma n H . L . , K ime r l e R . A . a n d M a k i

    A. W.) , pp . 13-31 . Pe rgamon Press , New York .

    U . S . E P A . (1 9 8 4 ) D e v e lo p m e n t o f w a te r q u a l i ty b a s e d

    permit l imita t ions fo r tox ic po l lu tan ts : na t iona l po l icy .

    Federa l Reg is te r , U.S . EPA, 49 (48) , 9016-9019 .

    U . S . E P A . (1 9 8 5 ) T e c h n ic a l s u p p o r t d o c u me n t fo r w a te r

    qua l i ty -based tox ics con tro l . Off ice o f W ate r , U.S . EPA ,

    Wa s h in g to n , D . C .

    U.S . EPA Sc ience Advisory Board (1988) Technica l support

    docum ent fo r w a te r qua l i ty -based tox ics con tro l . Off ice o f

    Wa te r , U . S . E P A , Wa s h in g to n , D . C .

    V a s h o n R . D . , J o n e s W. J . a n d P a y n e A . G . (1 9 8 2 ) T h e

    effec t o f wa te r ha rdness on n i t r i lo t r iace ta te rem ova l and

    microb ia l acc l imat ion in ac t iva ted s ludge . W a t . R e s . 16,

    1429-1432.

    We e V . T . (1 9 8 4 ) D e te rmin a t io n o f c a t io n ic s u rfa c t an t s i n

    waste- and river waters .

    W a t . R e s .

    18, 223-225.