22
A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto Co-Supervisor: Prof. M. Zaccariotto

A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

A HYBRID NONLOCAL-LOCAL MESHLESS

APPROACH FOR DYNAMIC CRACK

PROPAGATION

Arman Shojaei

CISAS 16 September 2016

Supervisor: Prof. U. Galvanetto

Co-Supervisor: Prof. M. Zaccariotto

Page 2: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Introduction:

• Peridynamic [1] is a new developed nonlocal continuum

theory well suited to model crack propagation .

• The main advantage of Peridynamics is that no a-priori

knowledge about the crack initiation is required.

• Crack is free to arise and grow in every part of the

structure, only following physical and geometrical

constraints.

Stewart Silling

[1]: Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids. 48,

175–209 (2000).

Page 3: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Introduction:

The Peridynamic formulation:

HX

X

X'f

δ

dVX'

{ , }XH X X X

The equation of motion:

( ( , ) ( , ), ) ( , ) ( , )X

XH

t t dV t t f u X u X X X b X u X

The pairwise force function should satisfy:

( , ) ( , ) f η ξ f η ξ

( , ) ( ) f η ξ η ξ 0

conservation of linear

momentum

conservation of angular

momentum ξ X X

( , ) ( , )t t η u X u X

Page 4: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

The main idea of the present study:

Rationale:

• Meshless Peridynamic models due to nonlocal integration involved in the theory and the interaction of

each integration point with multiple neighbors, are computationally more demanding than the majority of

other meshless methods based on classical elasticity.

Our idea:

• The main idea of the present study is taking full advantage of both theories by coupling a meshless

Peridynamic method [2] with simple and computationally cheap meshless finite point method (FPM) [3].

[2]: Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput.

Struct. 83, 1526–1535 (2005).

[3]: Oñate, E., Perazzo, F., Miquel, J.: A finite point method for elasticity problems. Comput. Struct. 79, 2151–

2163 (2001).

Page 5: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Discretized numerical methods:

Peridynamic:

Xi

Xj

A generic horizon in discrete form

( , )n n n n

i i j i j j j i

j

V u f u u X X b

Volume correction factor

2 2

1 1 2 1 1 2

11 122 2

2 1 2 2

21 222

1 1 2

2

2

ij ij

ij j i j

ij ij

cV V

k kk

k kξ

1 2=( , ) ξTruss element

Page 6: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Discretized numerical methods:

FPM:

Xi

Xc

XbXa

X

Y

x

y

xib

δF

Governing equation:

( , ) ( , ) ( , )t t t TS DSu X b X u X

0

0

TX Y

Y X

S Differential operator

1 0

1 0(1 )(1 2 )

0 0 (1 2 ) 2

E

D

Plane stress condition

Page 7: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Discretized numerical methods:

FPM:

Approximation Scheme:

1

ˆ ( ) ( ) ( ) , ( , )pm

n n T n

l l

l

u p x y

x x p x α x 2 2( ) 1, , , , , , for 6T

px y x y xy m p x

, ( = - ) & i

ia

R

ij j i j Xib

ic

C

x

x x X X Xx

x

ˆ ( )

ˆ ˆ ( )

ˆ ( )

n T

a ia

n n nn T

R b ib

n T

c ic

u

u

u

p x

u α Cαp x

p x

Least squareCloud moment matrix

1

1

ˆ ˆ ˆ( )Rn

n T n n

R j j

j

u N u

x p C u

Shape functions

Page 8: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Coupling technique:

Г

1

2

3

d

e

crack path

a2

b1

d2

e1

e2

b

a

b2

a1

c1 c

c2

d1

Peridynamic zone

FPM zone

Page 9: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Coupling technique:

Г

1

2

3

d

e

crack path

a2

b1

d2

e1

e2

b

a

b2

a1

c1 c

c2

d1

Peridynamic zone:

Layers “a” and “b”:

1 1 2 2

1 1 2 2

ˆ ˆ

ˆ ˆ ˆ

n n n n n

a aa aa aa aa

n n n n n n n

ab ab ab ab ab ab a

u f f

f f f b

1 1 2 2

1 1 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

n n n n n n n

b ba ba bb bb bb bb

n n n n n n n

bc bc bc bc bc bc b

u f f f

f f f b

11 21ˆn n n

ij ij i ij j f k u k u

Page 10: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Coupling technique:

Finite Point zone:

Layers “c” and “d”:

1 2

n

c cb cc cc cc

n

c

u f f f f

b

1 2

n n

d dd dd dd d u f f f b

( )i

n

ij j X j Tf S DSN u

Г

1

2

3

d

e

crack path

a2

b1

d2

e1

e2

b

a

b2

a1

c1 c

c2

d1

Page 11: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Coupling technique:

Ghost force Test:

a Dirichlet boundary condition is imposed

on all the boundaries as:

1,1T

u

Norm of error for different layers:

15

15

15

15

1.44 10

1.17 10

1.30 10

8.67 10

a

b

c

d

e

e

e

e

Page 12: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Coupling technique:

Partitioning configurations:

Static configurations:

Adaptive and Dynamic configuration:

0t tft t

0t t ft t

Page 13: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Coupling technique:

The switching technique:

dc δ

F

q1 q2 q3

q4 q5 q6 q7

HorizonCloud

Factious horizon

Page 14: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Coupling technique:

The switching technique:

n n

i jn

ij

ij

s

u u

x

The switching criterion:

0 0 , 0 1n

ijs s s

q8

q9 q10

q1 q2 q3

q4 q5 q6 q7

Page 15: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Crack growth in a pre-cracked plate:

The problem parameters:

The solution based on a pure Peridynamic model with 64,000

nodes:

[4]: Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and

crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010).

Ha & Bobaru 2010

Material: Duran 50 glass

Duration: 46 µs

σ = 12 MPa

Page 16: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Crack growth in a pre-cracked plate:

Solution:

Static configuration Model I: (4242 nodes)

t = 0 s

t = 32.2 µs

t = 46.2 µs

Ha & Bobaru 2010

Page 17: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Crack growth in a pre-cracked plate:

Solution:

Dynamic configuration Model II: (4242 nodes)

t = 0 s

t = 32.2 µs

t = 46.2 µs

Ha & Bobaru 2010

χ=0.6

Page 18: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Crack growth in a pre-cracked plate:

Solution:

Dynamic configuration Model II: (4242 nodes)

t = 0 s

t = 32.2 µs

t = 46.2 µs

Ha & Bobaru 2010

χ=0.8

Page 19: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Crack growth in a pre-cracked plate:

Discussion:

Model Portion of

Peridynamic nodes

at

at t=0

Portion of

Peridynamic nodes

at t=46 µs

CPU Time

(s)

Model I 59 % 59 % 2362.78

Model II 9 % 29.4 % 1256.80

Model III 9 % 25.69 % 1207.52

• Intel® Core™ i7-3770 CPU @ 3.40 GHz

• Ram: 6 GB

• Windows 7 Professional

System Properties:

Page 20: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Remarks:

• A new coupling technique to couple Peridynamic with FPM is introduced.

• The coupling is done in a complete meshless style preserving the originality of the both

formulations.

• The coupling is done through which no ghost forces emerge in the solution domain.

• The method is suitable to be applied for dynamic crack propagation.

Page 21: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Publications in Journals:

[1]: Galvanetto, U., Mudric, T., Shojaei, A., & Zaccariotto, M. (2016). An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems. Mechanics Research Communications, 76, 41-47.

[2]: Shojaei, A., Zaccariotto, M., & Galvanetto, U. (2017). Coupling of 2D discretized Peridynamics with a meshless method based on classical elasticity using switching of nodal behavior. (Revision Submitted)

[3]: Shojaei, A., Mudric, T., Zaccariotto, M., & Galvanetto, U. (2017). A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis. (Under Review)

Our plan for the third year:

Extending the work for practical 3D challenging problems.

Page 22: A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH ......A HYBRID NONLOCAL-LOCAL MESHLESS APPROACH FOR DYNAMIC CRACK PROPAGATION Arman Shojaei CISAS 16 September 2016 Supervisor: Prof. U. Galvanetto

Thank you very much