1
A Hierarchical State-Space Model with Gaussian Process Dynamics for Functional Connectivity Estimation Rahul Nadkarni ([email protected]), Nicholas J. Foti ([email protected]), Adrian KC Lee ([email protected]), Emily B. Fox ([email protected]) Goal We present an approach for learning directed, dynamic functional interactions between brain regions across multiple subjects from magnetoencephalography (MEG) data We pool subjects’ data to learn a group-level connectivity structure while also modeling interesting subject- specific differences Our method incorporates Gaussian processes to model functional connections that are smoothly time- varying while capturing estimation uncertainty Problem setup Obtain MEG sensor recordings ! from multiple subjects performing a task Observation model – which includes forward model (lead field matrix) " and sensor noise covariance # – is known (i.e., can be calculated) for each subject Goal is to infer time-varying, directed functional interactions between a specified set of brain regions of interest (ROIs) using sensor recordings and observation model for each subject Results Hierarchical model is able to learn global dynamic connectivity structure (top left) as well as subject-specific variation (other subplots) Bayesian inference allows the model to capture uncertainty in the time-varying connectivity (blue band shows 95% CI) Future directions Application to real MEG data recorded from multiple subjects performing an auditory attention task (analysis ongoing) Incorporating subject-specific auxiliary data (e.g., behavioral and cognitive assessments, audiological test results, subjective questionnaire answers) Description of model Sensor values ! $ (&) and observation model " (&) , # (&) known for each subject ROI dynamics ( (&) () ), ( (*+,-.+) () ) and noise / unknown, inferred via Gibbs sampling Entries of (() ) indicate strength of directed interaction between regions over time Simulation experiments Sensor data simulated from hierarchical model for 3 subjects and 2 ROIs (above), using real MEG forward model " (&) and sensor noise covariance # (&) for each subject Simulated dynamics ( *+,-.+ ) constructed to include a time-varying interaction from one ROI (blue) directed towards the other (red) 1 2 is a Gaussian process with mean function and covariance function . We use the squared exponential kernel: GP (m, k ) m k k (t i ,t j )= σ 2 exp(-d(t i - t j ) 2 ) model Inference Gibbs sampling with iterative approximation methods for efficient sampling from posterior of ( (&) () ) Conjugate gradient (CG): Σ, x → approximation to Σ 45 x used for 6 7 = 9[( ;< (&) ∣ ?@A)] Lanczos algorithm: Σ 45 ,x→ approximation to Σ 5/D x Used to sample from E(0, Σ) Given Σ 7 45 = Cov ( ;< & ?@A) 45 : CG to construct 6 7 Lanczos to generate J 7 ~E 0, Σ 7 Construct sample 6 7 +J 7 A (global) ij (·) GP (I ij ,k 0 ) A (s) ij (·) GP (A (global) ij (·),k 1 ),s =1,..., # subjects x (s) t+1 = A (s) (t) x (s) t + (s) t , (s) t N (0,Q) y (s) t = C (s) x (s) t + (s) t , (s) t N (0,R (s) ) ROIs sensors Example of global time-varying connection with subject-specific variation

A Hierarchical State-Space Model with Gaussian Process ...rahuln/pdf/2019-neurips-lmrl-post… · A Hierarchical State-Space Model with Gaussian Process Dynamics for Functional Connectivity

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Hierarchical State-Space Model with Gaussian Process ...rahuln/pdf/2019-neurips-lmrl-post… · A Hierarchical State-Space Model with Gaussian Process Dynamics for Functional Connectivity

A Hierarchical State-Space Model with Gaussian Process Dynamics for Functional Connectivity EstimationRahul Nadkarni ([email protected]), Nicholas J. Foti ([email protected]), Adrian KC Lee ([email protected]), Emily B. Fox ([email protected])

Goal

• We present an approach for learningdirected, dynamic functionalinteractions between brain regionsacross multiple subjects frommagnetoencephalography (MEG) data

• We pool subjects’ data to learn agroup-level connectivity structure whilealso modeling interesting subject-specific differences

• Our method incorporates Gaussianprocesses to model functionalconnections that are smoothly time-varying while capturing estimationuncertainty

Problem setup

• Obtain MEG sensor recordings ! frommultiple subjects performing a task

• Observation model – which includesforward model (lead field matrix) " andsensor noise covariance # – is known(i.e., can be calculated) for each subject

• Goal is to infer time-varying, directedfunctional interactions between aspecified set of brain regions of interest(ROIs) using sensor recordings andobservation model for each subject

Results

• Hierarchical model is able to learnglobal dynamic connectivity structure(top left) as well as subject-specificvariation (other subplots)

• Bayesian inference allows the model tocapture uncertainty in the time-varyingconnectivity (blue band shows 95% CI)

Future directions

• Application to real MEG data recordedfrom multiple subjects performing anauditory attention task (analysisongoing)

• Incorporating subject-specific auxiliarydata (e.g., behavioral and cognitiveassessments, audiological test results,subjective questionnaire answers)

Description of model

• Sensor values !$(&) and observation model "(&), #(&) known for each subject

• ROI dynamics ((&)()), ((*+,-.+)()) and noise / unknown, inferred via Gibbs sampling• Entries of (()) indicate strength of directed interaction between regions over time

Simulation experiments

• Sensor data simulated from hierarchical model for 3 subjects and 2 ROIs (above), using real MEG

forward model "(&) and sensor noise

covariance #(&) for each subject

• Simulated dynamics ( *+,-.+ )

constructed to include a time-varying interaction from one ROI (blue) directed towards the other (red)

12

is a Gaussian process with mean function and covariance function . We use the squared exponential kernel:

GP(m, k)<latexit sha1_base64="SQ2d7PrCkQ3rqqT9qEm5VOIsRuo=">AAAB+3icbVDLSsNAFJ3UV62vWJduhhahopREEV0WXeiygn1AE8pkOmmHziRhZiKGkL9w7caFIm79EXf9GydtF9p6YOBwzr3cM8eLGJXKsiZGYWV1bX2juFna2t7Z3TP3y20ZxgKTFg5ZKLoekoTRgLQUVYx0I0EQ9xjpeOOb3O88EiFpGDyoJCIuR8OA+hQjpaW+WXY4UiOMWHrbzGr8FI6P+2bVqltTwGViz0m1UXFOnieNpNk3v51BiGNOAoUZkrJnW5FyUyQUxYxkJSeWJEJ4jIakp2mAOJFuOs2ewSOtDKAfCv0CBafq740UcSkT7unJPKlc9HLxP68XK//KTWkQxYoEeHbIjxlUIcyLgAMqCFYs0QRhQXVWiEdIIKx0XSVdgr345WXSPqvb5/WLe93GNZihCA5BBdSADS5BA9yBJmgBDJ7AC3gD70ZmvBofxudstGDMdw7AHxhfP+S+lqs=</latexit>

m<latexit sha1_base64="DEhp+DyYvHI4WO3F1aJPm+sIa5g=">AAAB6HicbZDLSgMxFIbP1Fsdb1WXboJFcFVmFNGNWHTjsgV7gXYomTTTxiaZIckIZegTuHGhiFt9GPduxLcxbV1o6w+Bj/8/h5xzwoQzbTzvy8ktLC4tr+RX3bX1jc2twvZOXcepIrRGYh6rZog15UzSmmGG02aiKBYhp41wcDXOG3dUaRbLGzNMaCBwT7KIEWysVRWdQtEreROhefB/oHjx7p4nb59upVP4aHdjkgoqDeFY65bvJSbIsDKMcDpy26mmCSYD3KMtixILqoNsMugIHVini6JY2ScNmri/OzIstB6K0FYKbPp6Nhub/2Wt1ERnQcZkkhoqyfSjKOXIxGi8NeoyRYnhQwuYKGZnRaSPFSbG3sa1R/BnV56H+lHJPy6dVL1i+RKmysMe7MMh+HAKZbiGCtSAAIV7eIQn59Z5cJ6dl2lpzvnp2YU/cl6/ATdnkDU=</latexit>

k<latexit sha1_base64="VE7fMrsTtUpC0ToJYouNmnwqX4Y=">AAAB6HicbZBNS8NAEIYn9avGr6pHL8EieCqJInoRi148tmA/oA1ls520azebsLsRSugv8OJBEa/6Y7x7Ef+N29aDtr6w8PC+M+zMBAlnSrvul5VbWFxaXsmv2mvrG5tbhe2duopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cYdSsVjc6GGCfkR6goWMEm2s6qBTKLoldyJnHrwfKF682+fJ26dd6RQ+2t2YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOgXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVbDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3u/I81I9K3nHppOoWy5cwVR72YB8OwYNTKMM1VKAGFBDu4RGerFvrwXq2XqalOeunZxf+yHr9BjRfkDM=</latexit>

k(ti, tj) = �2exp(�d(ti � tj)

2)

<latexit sha1_base64="JcAd+jU4xbiSD78ZTaaxY6KcoPQ=">AAACGXicbVDLSgNBEJyNrxhfqx69DAYhARN2o6IXIejFYwTzgCQus5NJMmb2wUyvGJb8hhd/xYsHRTzqyb9xNslBEwsaiqpuurvcUHAFlvVtpBYWl5ZX0quZtfWNzS1ze6emgkhSVqWBCGTDJYoJ7rMqcBCsEUpGPFewuju4TPz6PZOKB/4NDEPW9kjP511OCWjJMa1BDhx+iMG5y+Nz3FK855HbEm6xhzBX6OCcdjguJD7Oaz3vmFmraI2B54k9JVk0RcUxP1udgEYe84EKolTTtkJox0QCp4KNMq1IsZDQAemxpqY+8Zhqx+PPRvhAKx3cDaQuH/BY/T0RE0+poefqTo9AX816ifif14yge9aOuR9GwHw6WdSNBIYAJzHhDpeMghhqQqjk+lZM+0QSCjrMjA7Bnn15ntRKRfuoeHJ9nC1fTONIoz20j3LIRqeojK5QBVURRY/oGb2iN+PJeDHejY9Ja8qYzuyiPzC+fgDzoZx/</latexit>

model

Inference

• Gibbs sampling with iterative approximation methods for efficient

sampling from posterior of ((&)())• Conjugate gradient (CG):

Σ, x → approximation to Σ45x

used for 67 = 9[(;<(&) ⋅ ∣ ?@A)]

• Lanczos algorithm:Σ45, x → approximation to Σ5/DxUsed to sample from E(0, Σ)

• Given Σ745 = Cov (;<& ⋅ ?@A)

45:

CG to construct 67Lanczos to generate J7 ~E 0, Σ7Construct sample 67 + J7

A

(global)

ij (·) ⇠ GP(Iij , k0)

A

(s)ij (·) ⇠ GP(A(global)

ij (·), k1

), s = 1, . . . ,# subjects

x

(s)t+1

= A

(s)(t) x(s)t + ✏

(s)t , ✏

(s)t ⇠ N (0, Q)

y

(s)t = C

(s)x

(s)t + ⌘

(s)t , ⌘

(s)t ⇠ N (0, R(s))

<latexit sha1_base64="iXFN9PMF3b/iyFl74ZeYwEhHGhI=">AAADeHichVJLb9NAEN44PEp4NIVjLyNChaNGkV2EQFSVWnoALihBpK2UDdZ6s0m3WT/kHaNElv8CZ34IEv+DGz+ECyfWjoE2rWAk25++eXwz4/FjJTU6zveaVb92/cbNtVuN23fu3ltvbtw/0lGacDHgkYqSE59poWQoBihRiZM4ESzwlTj2Z4eF//ijSLSMwve4iMUoYNNQTiRnaChvo/aJophjlgOljQMvk2f5h2xJ2VMV+Uy189ymfBxhG6iWAdCA4SlnKnvVy+03ZUYHZp5j3PR8EVu3/5H4H6miomvedBc07IFrkKG1+ZTxtAU69c8ER51XsnMvw2230jUpB1UHhfouzD2sPNtARaylMsNXVKmySq60/Da3nQ70f8+4+BO2B4cVuiiBbKX8X+LK0u+WvrbXbDldpzS4DNwKtPa7L7587fQ/97zmN7MZngYiRK6Y1kPXiXGUsQQlVyJv0FSLmPEZm4qhgSELhB5l5eHksGWYMUyixDwhQsmez8hYoPUi8E1k0a5e9RXkVb5hipPno0yGcYoi5EuhSaoAIyiuEMYyMT9PLQxgPJGmV+CnLGEcza02zBLc1ZEvg6Odrvuk+7RvtvGSLG2NbJKHxCYueUb2yWvSIwPCaz+sTeuRtWX9rEP9cb29DLVqVc4DcsHqO78AYCoVMg==</latexit>

← ROIs

← sensors

Example of global time-varying connection with subject-specific variation