29
A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University of Amsterdam 16 August, 2019. HoTT 2019

A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

A General Framework for the Semantics of TypeTheory

Taichi Uemura

ILLC, University of Amsterdam

16 August, 2019. HoTT 2019

Page 2: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

CwF-semantics of Type Theory

Semantics of type theories based on categories with families (CwF)(Dybjer 1996).

Martin-Lof type theory

Homotopy type theory

Homotopy type system (Voevodsky 2013) and two-level typetheory (Annenkov, Capriotti, and Kraus 2017)

Cubical type theory (Cohen et al. 2018)

Goal

To define a general notion of a “type theory” to unify theCwF-semantics of various type theories.

Page 3: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Outline

1 Introduction

2 Natural Models

3 Type Theories

4 Semantics of Type Theories

Page 4: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Outline

1 Introduction

2 Natural Models

3 Type Theories

4 Semantics of Type Theories

Page 5: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Natural Models

An alternative definition of CwF.

Definition (Awodey 2018)

A natural model consists of...

a category S (with a terminal object);

a map p : E→ U of presheaves over S

such that p is representable: for any object Γ ∈ S and elementA ∈ U(Γ), the presheaf A∗E defined by the pullback

A∗E E

よΓ U

yp

A

is representable, where よ is the Yoneda embedding.

Page 6: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Interpreting Type Theory

Natural model Type theory

Γ ∈ S Γ ` ctxA ∈ U(Γ) Γ ` A type

a ∈ {x ∈ E(Γ) | p(x) = A} Γ ` a : Af : ∆→ Γ context morphismA · f ∈ U(∆) substitutiona · f ∈ E(∆) substitution

Page 7: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Representable Maps

The representable map p : E→ U models context comprehension:

よ{A} E

よΓ U

δA

πAy

p

A

よ{A} ∼= A∗E

Natural model Type theory

A :よΓ → U Γ ` A type

{A} ∈ S Γ , x : A ` ctxπA : {A}→ Γ (Γ , x : A)→ Γ

A · πA :よ{A}→ U Γ , x : A ` A type

δA :よ{A}→ E Γ , x : A ` x : A

Page 8: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Variable Binding

Variable binding is modeled by the pushforwardp∗ : [S

op,Set]/E→ [Sop, Set]/U, that is, the right adjoint to thepullback p∗.

Example

p∗(E×U) is the presheaf of type families: for Γ ∈ S andA :よΓ → U, we have

p∗(E×U)

よΓ UA

∼=

{よ{A} U

},

so a section of p∗(E×U) over A is a type family Γ , x : A ` B type.

Page 9: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Modeling Type Constructors

Consider dependent function types (Π-types).

Γ ` A type Γ , x : A ` B type

Γ `∏x:A

B type

It is modeled by an operation Π such that

ΠΓ (A,B) ∈ U(Γ) for Γ ∈ S, A ∈ U(Γ) and B ∈ U({A});Π commutes with substitution.

Thus Π is a map p∗(E×U)→ U of presheaves.

Page 10: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Cubical Type Theory

To model (cartesian) cubical type theory, we need morerepresentable maps.

Example

Contexts can be extended by an interval:

Γ ` ctxΓ , i : I ` ctx

This is modeled by a presheaf I such that the map I→ 1 isrepresentable.

Page 11: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Summary on Natural Models

An (extended) natural model consists of...

a category S (with a terminal object);

some presheaves U,E, . . . over S;

some representable maps p : E→ U, . . .;

some maps X→ Y of presheaves over S where X and Y arebuilt up from U,E, . . . ,p, . . . using finite limits andpushforwards along the representable maps p, . . ..

Page 12: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Outline

1 Introduction

2 Natural Models

3 Type Theories

4 Semantics of Type Theories

Page 13: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Representable Map Categories

Definition

A representable map category is a category A equipped with aclass of arrows called representable arrows satisfying the following:

A has finite limits;

identity arrows are representable and representable arrows areclosed under composition;

representable arrows are stable under pullbacks;

representable arrows are exponentiable: the pushforwardf∗ : A/X→ A/Y along a representable arrow f : X→ Y exists.

Example

[Sop,Set] with representable maps of presheaves.

Page 14: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Representable Map Categories

Proposition (Weber 2015)

Exponentiable arrows are stable under pullbacks.

Example

A category A with finite limits has structures of a representablemap category:

Smallest one only isomorphisms are representable;

Largest one all exponentiable arrows are representable.

Also, given a class R of exponentiable arrows, we have the smalleststructure of a representable map category containing R.

Page 15: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Type Theories

Definition

A type theory is a (small) representable map category T.

Definition

A model of a type theory T consists of...

a category S with a terminal object;

a morphism (−)S : T→ [Sop,Set] of representable mapcategories, i.e. a functor preserving everything.

Cf. Functorial semantics of algebraic theories (Lawvere 1963),first-order categorical logic (Makkai and Reyes 1977)

Page 16: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Generalised Algebraic Theories

We give an example G of a type theory whose models are preciselythe natural models.

Definition

We denote by G the opposite of the category of finitely presentablegeneralised algebraic theories (GATs) (Cartmell 1978).

From the general theory of locally presentable categories (Adamekand Rosicky 1994), we get:

Proposition

G is essentially small and has finite limits, and Funfinlim(G,Set) isequivalent to the category of generalised algebraic theories.

Page 17: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

An Exponentiable Map of GATs

Definition

U0 ∈ G is the GAT consisting of a type constant A0.

E0 ∈ G is the GAT consisting of a type constant A0 and aterm constant a0 : A0.

∂0 : E0 → U0 is the arrow in G represented by the inclusionU0 → E0.

Proposition

∂0 : E0 → U0 in G is exponentiable.

So G has the smallest structure of a representable map categorycontaining ∂0.

Page 18: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

An Exponentiable Map of GATs

Example

Let Σ denote the finite GAT

` B type

x1 : B, x2 : B ` C(x1, x2) type

x : B ` c(x) : C(x, x).

Then (∂0)∗(E0 × Σ) is the finite GAT

` A0 type

x0 : A0 ` B(x0) type

x0 : A0, x1 : B(x0), x2 : B(x0) ` C(x0, x1, x2) type

x0 : A0, x : B(x0) ` c(x0, x) : C(x0, x, x).

Page 19: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Representable Map Category of Finite GATs

Theorem

G is “freely generated by ∂0” as a representable map category: fora representable map category A and a representable arrowf : X→ Y in A, there exists a unique, up to isomorphism,morphism F : G→ A of representable map categories equippedwith an isomorphism F∂0

∼= f.

Corollary

Models of G ' Natural models (' CwFs)

Page 20: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Outline

1 Introduction

2 Natural Models

3 Type Theories

4 Semantics of Type Theories

Page 21: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Bi-initial Models

Let T be a type theory.

Theorem

The 2-category ModT of models of T has a bi-initial object.

Page 22: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Theory-model Correspondence

Definition

A T-theory is a functor T→ Set preserving finite limits. PutThT := Funfinlim(T,Set).

Example

A G-theory is a generalised algebraic theory.

Page 23: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Theory-model Correspondence

Definition

We define the internal language 2-functor LT : ModT → ThT as

LT(S) =

(T [Sop, Set] Set

(−)S X 7→X(1))

.

Theorem

LT has a left bi-adjoint with invertible unit.

ModT

aThT.

LT

MT

Page 24: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Theory-model Correspondence

Example

When T = G, we get a bi-adjunction

CwFs

a

GATs

Page 25: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

Conclusion

Definition

A type theory is a (small) representable map category T.

Further results and future directions:

Logical framework for representable map categories

Application: canonicity by gluing representable map categories(instead of gluing models)?

What can we say about the 2-categoty ModT?

What can we say about the category ThT?

Variations: internal type theories? (∞, 1)-type theories?

Page 26: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

References I

J. Adamek and J. Rosicky (1994). Locally Presentable andAccessible Categories. Vol. 189. London Mathematical SocietyLecture Note Series. Cambridge University Press.

D. Annenkov, P. Capriotti, and N. Kraus (2017). Two-Level TypeTheory and Applications. arXiv: 1705.03307v2.

S. Awodey (2018). “Natural models of homotopy type theory”. In:Mathematical Structures in Computer Science 28.2,pp. 241–286. doi: 10.1017/S0960129516000268.

J.W. Cartmell (1978). “Generalised algebraic theories andcontextual categories”. PhD thesis. Oxford University.

Page 27: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

References II

C. Cohen et al. (2018). “Cubical Type Theory: A ConstructiveInterpretation of the Univalence Axiom”. In: 21st InternationalConference on Types for Proofs and Programs (TYPES 2015).Ed. by T. Uustalu. Vol. 69. Leibniz International Proceedings inInformatics (LIPIcs). Dagstuhl, Germany: SchlossDagstuhl–Leibniz-Zentrum fuer Informatik, 5:1–5:34. doi:10.4230/LIPIcs.TYPES.2015.5.

P. Dybjer (1996). “Internal Type Theory”. In: Types for Proofs andPrograms: International Workshop, TYPES ’95 Torino, Italy,June 5–8, 1995 Selected Papers. Ed. by S. Berardi andM. Coppo. Berlin, Heidelberg: Springer Berlin Heidelberg,pp. 120–134. doi: 10.1007/3-540-61780-9_66.

F. W. Lawvere (1963). “Functorial Semantics of AlgebraicTheories”. PhD thesis. Columbia University.

Page 28: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

References III

M. Makkai and G. E. Reyes (1977). First Order Categorical Logic.Model-Theoretical Methods in the Theory of Topoi and RelatedCategories. Vol. 611. Lecture Notes in Mathematics.Springer-Verlag Berlin Heidelberg. doi: 10.1007/BFb0066201.

V. Voevodsky (2013). A simple type system with two identitytypes. url: https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf.

M. Weber (2015). “Polynomials in categories with pullbacks”. In:Theory and Applications of Categories 30.16, pp. 533–598.

Page 29: A General Framework for the Semantics of Type Theory › HoTT-2019 › conf-slides › Uemura.pdf · A General Framework for the Semantics of Type Theory Taichi Uemura ILLC, University

The Bi-initial Model

For a type theory T, we define a model I(T) of T:

the base category is the full subcategory of T consisting ofthose Γ ∈ T such that the arrow Γ → 1 is representable;

we define (−)I(T) to be the composite

T よ−→ [Top,Set]→ [I(T)op,Set].

Given a model S of T, we have a functor

I(T) S

T [Sop,Set]

F

よ∼=

(−)S

and F can be extended to a morphism of models of T.