48
WCCM - BARCELONA - 2014 A first order conservation law framework for solid dynamics J. BONET College of Engineering Collaborators: A.J. Gil, C.H. Lee, M. Aguirre, R. Ortigosa

A first order conservation law framework

Embed Size (px)

Citation preview

WCCM - BARCELONA - 2014

A first order conservation law framework for

solid dynamics

J. BONET

College of Engineering

Collaborators: A.J. Gil, C.H. Lee, M. Aguirre, R. Ortigosa

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

OUTLINE

Motivation

Standard FE Formulations

Aims

Conservation laws

Momentum and energy

Geometric conservation laws

Polyconvex constitutive models

Entropy variables

Conjugate stresses

Conservation laws in symmetric form

Discretisation

Possible CFD techniques

SUPG

Examples and validation

Concussions

WC

CM

-B

AR

CE

LO

NA

-2014

2

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

MOTIVATION – Fast Transient Dynamics

Computational Solid Dynamics is a well established and mature

subject and there is extensive software available.

Standard FE formulation based on

Explicit codes

Hexahedral elements

Updated Lagrangian formulations

Co-rotational stress updates

WC

CM

-B

AR

CE

LO

NA

-2014

3

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

Consider the motion of a discretised solid:

Equilibrium can be defined by :

Time integration:

0 a a a aDIV ma P f a E T

MOTIVATION – Standard Solid Formulation

a a

01 1,X x

3 3,X x

2 2,X x

4

WC

CM

-B

AR

CE

LO

NA

-2014

1 1 12 2 2

12

1

1

; ;n n nn n na a a a a a

n n n

t t

t

v v a x x v

0 0

0 ;e e e

a a a a ae e e

N dV N dv N dVT P E f

0

( , )

( , ,...)

:

p

tx X

v x

a v x

F

P F FF

v

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Motivation

Standard solid dynamic formulations are have a number of

difficulties:

Linear tetrahedral elements behave poorly in incompressible and

bending dominated problems – ad hoc solutions using nodal

elements are available (Bonet, Dohrman, Gee, Scovazzi,…)

Under integrated hexahedral elements suffer from hourglass

modes

Convergence of stresses and strains is only first order

Shock capturing technologies are poorly developed

In contrast in the CFD community:

Many robust techniques are available for linear triangles and

tetrahedra

Convergence of pressure and velocity at same rate

Robust shock capturing

WC

CM

-B

AR

CE

LO

NA

-2014

5

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Aims

To derive a mixed formulation for Lagragian solid dynamics

as a set of first order conservation laws so as to permit the

use of CFD technology

To obtain the convex entropy extension, the set of

conjugate entropy variables to conservation variables and

the symmetric form of the conservation laws

To explore several CFD discretisation techniques applied to

Lagrangian Solid Dynamics in conservation form

To assess the advantages and disadvantages of the

proposed conservation formulation

WC

CM

-B

AR

CE

LO

NA

-2014

6

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Consider the conservation of linear momentum:

In differential form:

Constitutive model:

However, energy function is not convex

Conservation of momentum W

CC

M -

BA

RC

EL

ON

A -

2014

7

0 DIVt

vP f

0 0 0

0 ;d

dV dV dAdt

v f t t PN

( ,...)( ,...)

FP P F

F

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et Large strain polyconvex strain energy functions satisfy (Ball):

Neo-Hookean (or 2-D):

Mooney-Rivlin:

Nearly incompressible forms can be derived using isochoric

components of F and H (Schroder et al.)

Polyconvex elasticityW

CC

M -

BA

RC

EL

ON

A -

2014

8

convex( ,...) ( , , ,...);W J W

d d

d d

dv JdV

F F H

x F X

a H A

12

( , ) : ( )NHW J f JF F F

( , , ) : : ( )MRW J f JF H F F H H

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Geometric Conservation Laws

Conservation of deformation gradient:

Conservation of Jacobian:

WC

CM

-B

AR

CE

LO

NA

-2014

9

0 0

0 0

0 dV d

ddV d

dt

F F A

F v A

0 0

: ( )d ddv d J dV d

dt dtv a H v A

( )DIVt

Fv I 0

( ) 0TJDIV

tH v

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Area Map

The area map tensor is usually evaluated via Nanson’s rule:

The time derivative of this equation does not lead to a useful

conservation law.

Alternative forms using alternating tensor:

Giving conservation laws (Qin 98, Wagner 2008):

Notation highly cumbersome!

WC

CM

-B

AR

CE

LO

NA

-2014

10

TJH F

12

1

2iI ijk IJK jJ kK ijk IJK j kKJ

H F F x FX

0 0

0iI ijk IJK j kKJ

iI ijk IJK jJ k K

H v FX

dH dV F v dA

dt

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Tensor Cross Product Notation

Define cross product of a vector by a tensor:

Cross product of two tensors:

Curl of a tensor:

With this notation:

WC

CM

-B

AR

CE

LO

NA

-2014

11

[ ] ; [ ]iI ijk j kK iI IJK iJ Kv A A Vv A A Vx x

[ ]iI ijk IJK jJ kKA BA Bx

[ ( )] iKiI IJK

J

ACURL

XA

0 0

( )

( )

ddV d

dt

CURLt

H F v A

Hv F 0

x

x

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Conservation laws for solid dynamicsW

CC

M -

BA

RC

EL

ON

A -

2014

12

The complete set of conservation laws is:

With involutions:

And constitutive model

0

( )

( )

( )

0T

DIVt

DIVt

JDIV

CURLt

t

H

vP f

Fv I

0

0

H v

v Fx

;CURL DIVF 0 H 0

( , , ,...)JP P HF

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

System of conservation laws

Using the combined notation:

The system can be expressed in standard form:

WC

CM

-B

AR

CE

LO

NA

-2014

13

0

1,2,3

1 0 0

; ; 0 , 1 , 0

0 0 1: )

( )

(

I

II

I

IJ

v PE

F v E

H F v EE

H v E

x

;

0

I

It X

f

00

0

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Convex entropy extension

The system has a convex entropy extension function and

associated fluxes such that (Wagner):

Where for non-thermal problems:

Define the set of entropy variables:

WC

CM

-B

AR

CE

LO

NA

-2014

14

0I

I

S

t X

102

( , , ); : ( )I IS E W Jv v F H P v E

J

S F

H

v

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Conjugate Stresses

The conjugate stresses to geometric conservation variables are:

The relationship between Piola-Kirchhoff and these stresses is:

For Mooney-Rivlin:

WC

CM

-B

AR

CE

LO

NA

-2014

15

; ; JW W W

JF HF H

: ( )

( , , )

: :

: : ( ) :

:

J

J

J

W J

JF H

F H

F H

P F F

F H

F H

F F F H F

F H F

x

x

JF HP F Hx

2 , 2 , ( )J f JF HF H

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Symmetric System

The system of conservation laws can be written in symmetric

form in terms of entropy variables:

For Mooney-Rivlin material this gives the symmetric system:

WC

CM

-B

AR

CE

LO

NA

-2014

16

12

; TII I I

I

S

t X

0 0

0

0

0

1

2

1: 0

1

( )

2

J

J

CUDIVt

t

f J

RL

t

t

F

H

H

F F

F v 0

vH f

v 0

H v

x

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Symmetric Flux Matrix – 2D

In 2-D:

WC

CM

-B

AR

CE

LO

NA

-2014

17

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0

X

Y

HxXHyX

H HxX yX

HxYHyY

H HxY yY

1

yY yX

xY xX

F F

F F

F

H

F

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

CFD Formulations for Solid Dynamics

Given a first order conservation formulation of solid dynamics,

the following discretisation techniques are available:

2 Step Taylor-Galerkin:

I. Karim, C.H. Lee, A.J. Gil & J. Bonet, 2011

Upwind Cell Centred Finite Volume:

C.H. Lee, A.J. Gil & J. Bonet, 2012

Hibridazable Discontinuous Galerkin: Nguyen & Peraire, 2012

Jameson-Schmidt-Turkel Vertex Centred FV:

M. Aguirre. A.J. Gil & J. Bonet, 2013

Petrov-Galerkin, CH Lee, AJ Gil, J Bonet, 2013

Fractional Step Petrov-Galerkin,

AJ Gil, CH Lee, J Bonet & M Aguirre, 2014

Upwind Vertex Centred FV, M. Aguirre. A.J. Gil & J. Bonet, 2014

SUPG Stabilised FE

WC

CM

-B

AR

CE

LO

NA

-2014

18

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Stabilised Petrov-Galerkin

Integrating by parts

STABILISED PETROV-GALERKINW

CC

M -

BA

RC

EL

ON

A -

2014

19

st st

0

0;T

T T I

I

dVX

0 0 0

0

T T TI I

TI

II

dV dV N dAt

dVX

Variational

Multiscale

stabilisation

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Petrov-Galerkin Stabilised Discretisation

Using standard linear FE discretisation for conservation

variables and virtual entropy variables:

Gives:

WC

CM

-B

AR

CE

LO

NA

-2014

20

st st st

st

t

st

s

0 00

0 0

0

0 0

0

0

0

0

0

( , , )

: ( ) )

( ) ( )

: (

t

ab b a B a ab

ab b a B ab

ab

ab b a B

B a

ab

b ab

M N dV N dA J N d

M N

V

M N d N dV

M J N d N d

d N dV

V

v f t P F H

F v A v

H F v A F v

H v A H v

x x

= ...

0 0 ; ; ;

; ; ;

a a a a a a a aa a a a

a aa a a a

a a a

N N N J J N

N N NF F H H

v v F F H H

v v

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Stabilised Conservation Variables

The stabilised conservation variables are:

Typically

In practice:

WC

CM

-B

AR

CE

LO

NA

-2014

21

st

st

st

0

0

0

0

( )

( )

( )

( )

( ) )

(det )[ ( ) ]TJ

t

J

s DIV

CURL

DIV JJ JJ

F

H x

v

F

H

f P v

v F

v F H

x F

H

v v

F F

H H

H

H

xv

x

2e

p

h

U

0; ; 0.05 0.12e

J J

tv F H F H

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

SUPG in Entropy Variables

Symmetric system can be discretised using SUPG in entropy

variables:

Where

And both entropy variables and virtual entropy variables are

interpolated in the same FE space

Boundary conditions can only be enforced in strong form:

WC

CM

-B

AR

CE

LO

NA

-2014

22

0

10 0

T

I II I

dVX t X

1/22 21 1 10 0 02 X Y

h

1

; ;

( ) ( )

B BB J J

B

F Fv v N N

I HN HN t PN

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

Edge Based Vertex Centred Upwind FVW

CC

M -

BA

RC

EL

ON

A -

2014

23

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

TIME INTEGRATION

Integration in time is achieved by means of an explicit Total

Variational Diminishing (TVD) Runge-Kutta scheme:

with a stability constraint:

Fractional time stepping (implicit in pressure component) used

for Incompressible and Nearly incompressible materials

Geometry increment:

WC

CM

-B

AR

CE

LO

NA

-2014

24

(1)1

(2) (1) (1)2 1 1

(2)1 11 22 2

n n n

n n n

n n n

t

t

min

maxn

ht CFL

U

1 1( )2n n n nt

x x v v

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

2D SWINGING PLATE: MESH CONVERGENCE

25

WC

CM

XI 2

014Velocity @ t =

0.012s

Stress @ t = 0.012s

Analytical solution of the form

𝒖 = 𝑈0 cos𝑐𝑑𝜋𝑡

2

sin𝜋𝑋12

cos𝜋𝑋22

−cos𝜋𝑋12

sin𝜋𝑋22

; 𝑐𝑑 =𝜇

𝜌0

Problem description: Unit square plate, 𝜌0 = 1.1 × 103𝑘𝑔/𝑚3, 𝐸 = 1.7 × 107𝑃𝑎, 𝜈 = 0.45, 𝛼𝐶𝐹𝐿 = 0.4, 𝑈0 = 5 ×10−4, 𝜏𝐹 = 0.5 Δ𝑡, 𝜏𝑝 = 𝜁𝐹 = 0, lumped mass matrix

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

2D TENSILE PLATE II

26

WC

CM

XI 2

014

Avoid spurious pressure modes in near incompressibility limit

Effectiveness of PG formulation using linear triangular

mesh

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

27

WC

CM

XI 2

014

2D TENSILE PLATE I

27Conservation and entropy formulations yield practically identical

results

Problem description: Unit square plate @ 𝑡 = 0.001𝑠, 𝜌0 = 7𝑀𝑔/𝑚3, 𝐸 = 21 𝐺𝑃𝑎, 𝜈 = 0.3, 𝛼𝐶𝐹𝐿 ≈ 0.3, 𝑉𝑝𝑢𝑙𝑙 =

500𝑚/𝑠, PG stabilisation: 𝜏𝐹 = Δ𝑡, 𝜁𝐹 = 0.1, 𝜏𝑝 = 0, lumped mass matrix

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

2D COLUMN I

28

WC

CM

XI 2

014

Examine the bending capability of the PG formulation

Given initial constant velocity:

𝑉0 = 10 𝑚/𝑠 Experiences bending locking

phenomena

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

2D COLUMN II

29

WC

CM

XI 2

014

Performance of the PG in bending dominated scenario

Problem description: Column 1 × 6 @ 𝑡 = 0.45𝑠, 𝜌0 = 1.1 × 103𝑘𝑔/𝑚3, 𝐸 = 1.7 × 107𝑃𝑎, 𝜈 = 0.45, 𝛼𝐶𝐹𝐿 ≈ 0.3,

𝑉0= 10 𝑚/𝑠, 𝜏𝐹= 0.5 Δ𝑡, 𝜁𝐹 = 0.05, 𝜏𝑝 = 0, lumped mass matrix

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

2D COLUM III

30

WC

CM

XI 2

014

Effectiveness with only 1 element across the thickness

Pressure contour plot

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D BENDING COLUMN I

31

WC

CM

XI 2

014

Hu-Washizu type

variational

formulation

JST p-F vertex

centred FVMStabilised p-F-H-J PG

formulation

Problem description: Bending column 1 ×1×6, 𝜌0 = 1.1 𝑀𝑔/𝑚3, 𝐸 = 0.017𝐺𝑃𝑎, 𝜈 = 0.3, linear variation in velocity

field v0 = 𝑉0 𝑋3/𝐿, 0, 0𝑇 where 𝑉0 = 10 𝑚/𝑠, compressible Mooney-Rivlin model (𝛼 = 𝛽 =

𝜇

4)

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D SWINGING PLATE I

32

WC

CM

XI 2

014

Analytical solution of the form

𝒖 = 𝑈0 cos3

2𝑐𝑑𝜋𝑡

𝐴 sin𝜋𝑋12

cos𝜋𝑋22

cos𝜋𝑋32

B cos𝜋𝑋12

sin𝜋𝑋22

cos𝜋𝑋32

C cos𝜋𝑋12

cos𝜋𝑋22

sin𝜋𝑋32

; 𝑐𝑑 =𝜇

𝜌0

Problem description: Unit solid cube, 𝜌0 = 1.1 × 103𝑘𝑔/𝑚3, 𝐸 = 1.7 × 107𝑃𝑎, 𝜈 = 0.45, 𝛼𝐶𝐹𝐿 = 0.3, 𝑈0 = 5 ×10−4, 𝜏𝐹 = 0.5 Δ𝑡, 𝜏𝑝 = 𝛼 = 0, 𝐴 = 𝐵 = 1, 𝐶 = −2 , lumped mass matrix

Stresses @ t = 0.002s Velocity @ t = 0.002s

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

33

WC

CM

XI 2

014

3D TWISTING COLUMN I

33

Problem description: Twisting column 1 ×1×6, 𝜌0 = 1.1 𝑀𝑔/𝑚3, 𝐸 = 0.017𝐺𝑃𝑎, 𝜈 = 0.3, linear variation in velocity

field v0 = 𝑉0 𝑋3/𝐿, 0, 0𝑇 where 𝑉0 = 10 𝑚/𝑠, compressible Mooney-Rivlin model (𝛂 = 𝛃 =

𝛍

𝟒)

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

34

WC

CM

XI 2

014

3D TWISTING COLUMN IV

34

Square Hollow Section

Assess the robustness of the proposed PG formulation

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D L-SHAPED BLOCK I

35

WC

CM

XI 2

014

Initial Condition

Components of the angular momentum evolution

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D L-SHAPED BLOCK III

36

WC

CM

XI 2

014

Ability of the algorithm to preserve angular momentum

Pressure distribution of a L-shaped block

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D L-SHAPED BLOCK II

37

WC

CM

XI 2

014

Problem description: L-shaped block, 𝜌0 = 1 𝑀𝑔/𝑚3, 𝐸 = 50046 𝑃𝑎, 𝜈 = 0.3, compressible Neo-Hookean model

(𝛼 =𝜇

2, 𝛽 = 0), 𝛼𝐶𝐹𝐿 = 0.3, lumped mass contribution

Norm of the velocity distribution 𝐯

Stabilised p-F-H-J PG formulation

Stabilised p-F-J PG formulation

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D TENSILE CUBE I

38

WC

CM

XI 2

014

Problem description: Unit cube, 𝜌0 = 7 𝑀𝑔/𝑚3, 𝐸 = 21 𝑃𝑎, 𝜈 = 0.3, compressible Neo-Hookean model (𝛼 =𝜇

2, 𝛽 = 0), 𝛼𝐶𝐹𝐿 = 0.3, lumped mass contribution

Pressure distribution @ t = 0.0016s

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D TENSILE CUBE III

39

WC

CM

XI 2

014

Avoid the appearance of spurious pressure modes

Pressure distribution of a tensile cube

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

40

WC

CM

XI 2

014

3D TENSILE CUBE II

40

Problem description: Unit cube, 𝜌0 = 7 𝑀𝑔/𝑚3, 𝐸 = 21 𝑃𝑎, 𝜈 = 0.3, compressible Neo-Hookean model (𝛼 =𝜇

2, 𝛽 = 0), 𝛼𝐶𝐹𝐿 = 0.3, lumped mass contribution

Time integrated stabilisation 𝜻𝑱 = 𝟎.5 𝝁

𝜿

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D TAYLOR IMPACT BAR I

41

WC

CM

XI 2

014

Initial radius 𝑟0 = 0.0032 𝑚 and length 𝐿0 =0.0324 𝑚Compressible and nearly incompressible NH model

Young’s modulus 𝐸 = 117 𝐺𝑃𝑎

Density 𝜌0 = 8930 𝑘𝑔/𝑚3

Velocity 𝑉0 = 1000 𝑚/𝑠

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

3D TAYLOR IMPACT BAR II

42

WC

CM

XI 2

014

3D TAYLOR IMPACT BAR II

42Compressible and nearly Incompressible NH models

Pressure distribution of an Impact bar

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

1D CABLE: SHOCK CAPTURING SCHEME

43

WC

CM

XI 2

014

Problem description: 𝐿 = 10m , 𝜌0 = 8 𝑀𝑔/𝑚3 , 𝐸 = 200 𝐺𝑃𝑎 , 𝜈 = 0 , 𝛼𝐶𝐹𝐿 = 0.3 , 𝑃 𝐿, t = −5 × 107𝑁 ,

𝜏𝐹= 0.5 Δ𝑡, 𝜏𝑝 = 𝜁𝐹 = 0, lumped mass contribution

Velocity @ mid-bar

Stress @ mid-bar

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

SOD’s Shock TestW

CC

M -

BA

RC

EL

ON

A -

2014

44

SW

AN

SE

A U

NIV

ER

SIT

YS

ch

oo

l o

f E

ng

ine

eri

ng

P

rof.

J.

Bo

ne

t

SOD’s Test solution (Acustic Riemann Solver)W

CC

M -

BA

RC

EL

ON

A -

2014

45

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

WC

CM

-B

AR

CE

LO

NA

-2014

46

SUMMARY & CONCLUSIONS

A first order conservation formulation can be used to derive

mixed type of solutions in Lagrangian solid dynamics

Equations can be written in conservation or symmetric form

Entropy variables are the velocity and a new set of

conjugate stresses

Linear triangles and tetrahedra can be used without the

usual volumetric and bending difficulties

Standard CFD discretisation techniques can be used

Cell centred Finite volume

SUPG in conservation and entropy variables

Fractional step integration for Incompressible materials

Vertex centred Finite Volume

Only 2-step explicit TVD R-K time integration has been used

Convergence of velocities/displacements and stresses at

equal rates – avoidance of locking

, , JF H

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

ACKOWLDEGEMENTSW

CC

M -

BA

RC

EL

ON

A -

2014

47

SW

AN

SE

A U

NIV

ER

SIT

YC

oll

eg

e o

f E

ng

ine

eri

ng

Pro

f. J

. B

on

et

PublicationsW

CC

M -

BA

RC

EL

ON

A -

2014

48