22
Michael Ortiz Pisa 09/06 Multiscale modeling of materials: (1) Dislocation structures polycrystals M. Ortiz M. Ortiz California Institute of Technology Scuola Normale di Pisa September 15, 2006

A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizPisa 09/06

Multiscale modeling of materials: (1) Dislocation structures → polycrystals

M. OrtizM. OrtizCalifornia Institute of Technology

Scuola Normale di Pisa September 15, 2006

Page 2: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Metal plasticity − Multiscale hierarchy

Lattice defects, EoS

Dislocation dynamics

Subgrainstructures

length

time

mmnm µm

µsns

ms

Polycrystals

Engineeringapplications

Ultimate goal: Ascertain macroscopic behavior from first principles

Continuum

Quantum mechanical

Discrete

Page 3: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Classical view of crystal lattices

Simple cubic(SC)

Body-centered cubic(BCC)

Face-centered cubic(FCC)

Page 4: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Straight dislocations: 2D view

slip plane

dislocationcore

Page 5: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Straight dislocations: 2D view

Burgerscircuit C

Burgersvector

Page 6: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Discreteness of crystallographic slip

Slip traces on crystal surface(AFM, C. Coupeau)

Slip occurs on discrete planes!

Page 7: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocations and crystallography

The 12 slip systems of fcc crystals

(Schmidt and Boas nomenclature):

Page 8: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

General linear elastic dislocations

elastic deformationplastic deformation

dislocation loop

slip plane

Page 9: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation field theory

Page 10: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

General dislocations − Energy

Page 11: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Straight dislocations – Energy

Screw dipoleof size r

in square lattice,applied stress

logarithmicdivergence!

Page 12: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Straight dislocations – Mobility

Kink

lattice friction

Page 13: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation transport and plasticity

slip planes

Page 14: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation transport and plasticity

expandingdislocation

loop

dislocation velocity

Page 15: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Obstacles − Topological obstructions

(Humphreys and Hirsch ’70)Impenetrable obstacles

pinningpoints

Page 16: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Junctions − Strong latent hardening

LatticeOrientation

PrimaryTest Lattice

OrientationSecondary

Test

PrimaryTest

SecondaryTest

Page 17: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation structures - Fatigue

Labyrinth structure in fatiguedcopper single crystal(Jin and Winter ´84)

Nested bands in copper single crystalfatigued to saturation

(Ramussen and Pedersen ´80)

Dipolar dislocation walls

Page 18: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation lamellar structures

Dislocation walls

Lamellar dislocation structurein 90% cold-rolled Ta

(DA Hughes and N Hansen, Acta Materialia,44 (1) 1997, pp. 105-112)

Dislocation walls

Lamellar structurein shocked Ta

(MA Meyers et al., Metall. Mater. Trans.,

26 (10) 1995, pp. 2493-2501)

Lamellar dislocation structures at large strains

Page 19: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation structures – Pile-ups

LiF plate impact experiment.Dislocation pile-ups at surfaces

and grain boundaries(G Meir and RJ Clifton, J. Appl. Phys.,

59 (1) 1986, pp. 124-148)

Dislocationpile ups

Dislocation pile-upat Ti grain boundary

(I. Robertson)

Effect of grain boundaries, surfaces

Page 20: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation structures – Effect of strain

X1

x1

x2

Die Exit

Shear Plane

X2

ϕ

Die EntryEqual Channel

Angular Extrusionprocess

(Beyerlein, Lebensohnand Tome, LANL, 2003)

Route C Route A

Increasin

g d

eform

ation

Evolution of dislocation structures in Cu specimen. Lamellar width:

Page 21: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation structures – Scaling laws

Pure nickel cold rolled to 90%Hansen et al. Mat. Sci. Engin.

A317 (2001).

Lamellar width and misorientation angle as a function of deformatation

Hansen et al. Mat. Sci. Engin. A317 (2001).

Scaling of lamellar width and misorientation angle with deformation

Page 22: A facility for simulating the dynamic response of materials · dislocation loop slip plane. Michael Ortiz MRS 11/04 Dislocation field theory. Michael Ortiz MRS 11/04 General dislocations

Michael OrtizMRS 11/04

Dislocation structures – Scaling laws

Classical scaling laws of crystal plasticity

Taylor scaling(SJ Basinski and ZS Basinski,

Dislocations in Solids,FRN Nabarro (ed.)

North-Holland, 1979.)

Hall-Petch scaling(NJ Petch,

J. Iron and Steel Inst.,174, 1953, pp. 25-28.)

Taylor hardening(RJ Asaro,

Adv. Appl. Mech.,23, 1983, p. 1.)