35
MIT Lincoln Laboratory A Distributed Time-Difference of Arrival Algorithm for Acoustic Bearing Estimation Peter Boettcher Gary Shaw Jeff Sherman SensIT PI Meeting January 15-17, 2002 This work is sponsored by DARPA under A/F Contract #F19628-00-C-0002. Opinions, interpretations, recom- mendations and conclusions are those of the authors and are not necessarily endorsed by the Department of Defense. TDOA-1 PWB January 15, 2002

A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

MIT Lincoln Laborator y

A Distrib uted Time-Diff erence of Arriv alAlgorithm for Acoustic Bearing Estimation

Peter Boettc herGary Shaw

Jeff Sherman

SensIT PI MeetingJanuary 15-17, 2002

This work is sponsored by DARPA under A/F Contract #F19628-00-C-0002. Opinions, interpretations, recom-mendations and conclusions are those of the authors and are not necessarily endorsed by the Department ofDefense.

TDOA-1PWB January 15, 2002

Page 2: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Outline

MIT Lincoln Laborator y

Motiv ation

Time-Diff erence of Arriv al Algorithm

Time sync hronization

GPS averaging

Reference coherent bearing estimates

Summar y

TDOA-2PWB January 15, 2002

Page 3: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Motiv ation

MIT Lincoln Laborator y

Algorithm that produces instantaneous position estimates

Tracker that operates outside the field of sensor s

Algorithm that is invariant to analog gain

Algorithm that assumes no target dynamics and does not constrain targetmotion

Tracker whose accurac y scales with additional sensor s

TDOA-3PWB January 15, 2002

Page 4: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Outline

MIT Lincoln Laborator y

Motiv ation

Time-Diff erence of Arriv al Algorithm– TDOA Estimation– Localization algorithms– TDOA Performance Simulations– TDOA Results from SITEX02

Time sync hronization

GPS averaging

Reference coherent bearing estimates

Summar y

TDOA-4PWB January 15, 2002

Page 5: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Acoustic Time-Diff erence of Arriv al

MIT Lincoln Laborator y

Estimate dominant frequenc y on each node

Downsample dominant frequenc y series, share among nodes

Cross-correlate to determine time delays

PSfrag replacements

Time

Em

itter

Fre

quen

cy

(Hz)

PSfrag replacements Nod

eN

ode

Time

Time

locationTargetTDOANetwork

communication generationestimation

frequencyestimation

Dominant

samplingAcoustic

TDOA-5PWB January 15, 2002

Page 6: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Acoustic Time-Diff erence of Arriv al

MIT Lincoln Laborator y

Estimate dominant frequenc y on each node

Downsample dominant frequenc y series, share among nodes

Cross-correlate to determine time delays

PSfrag replacements

Time

Em

itter

Fre

quen

cy

(Hz)

PSfrag replacements Nod

eN

ode

Time

Time

locationTargetTDOANetwork

communication generationestimation

frequencyestimation

Dominant

samplingAcoustic

TDOA-5-aPWB January 15, 2002

Page 7: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Acoustic Time-Diff erence of Arriv al

MIT Lincoln Laborator y

Estimate dominant frequenc y on each node

Downsample dominant frequenc y series, share among nodes

Cross-correlate to determine time delays

PSfrag replacements

Time

Em

itter

Fre

quen

cy

(Hz)

PSfrag replacements

�����

� ���

����� �

Nod

e

Nod

e

��

� �� �

�������Time

Time

locationTargetTDOANetwork

communication generationestimation

frequencyestimation

Dominant

samplingAcoustic

TDOA-5-bPWB January 15, 2002

Page 8: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Acoustic Time-Diff erence of Arriv al

MIT Lincoln Laborator y

Estimate dominant frequenc y on each node

Downsample dominant frequenc y series, share among nodes

Cross-correlate to determine time delays

PSfrag replacements

Time

Em

itter

Fre

quen

cy

(Hz)

PSfrag replacements

�����

� ���

����� �

Nod

e

Nod

e

��

� �� �

�������Time

Time

locationTargetTDOANetwork

communication generationestimation

frequencyestimation

Dominant

samplingAcoustic

TDOA-5-cPWB January 15, 2002

Page 9: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Bearing solution

MIT Lincoln Laborator y

Pairwise TDOA exchang e gives two ambiguous bearings

wavefront

wavefront

sensor �sensor �� ����

�! �"

With several sensor pair s, the correct estimate appear s consistentl y, pic kaverage bearing

PSfrag replacementsPick median bearing

SensorsIncorrect bearingCorrect bearing

TDOA-6PWB January 15, 2002

Page 10: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Bearing solution

MIT Lincoln Laborator y

Pairwise TDOA exchang e gives two ambiguous bearings

wavefront

wavefront

sensor �sensor �� ����

�! �"

With several sensor pair s, the correct estimate appear s consistentl y, pic kaverage bearing

PSfrag replacementsPick median bearing

SensorsIncorrect bearingCorrect bearing

TDOA-6-aPWB January 15, 2002

Page 11: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Hyperbolic location theor y

MIT Lincoln Laborator y

The hyperbola is the set of points at a con-stant range-difference ( # ) from two foci

Each sensor pair gives a hyperbola on whic hthe emitter lies

Location estimation is inter section of all hy-perbolas

Hyperbola ofconstantrange−differance

21PSfrag replacements

$&% $&'

SensorsLocation estimate

Hyperbola from (1,2)

Hyperbola from (1,3)

Hyperbola from (2,3)3

21PSfrag replacements

TDOA-7PWB January 15, 2002

Page 12: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Location on Conic Axis (LOCA) solution

MIT Lincoln Laborator y

With three sensor s, rewrite hyperbolic equations to form mathematical dual .

Sensor s on a conic with emitter at a focus.

Foci ambiguity:– Conic is ellipse: the ‘wr ong’ focus gives negative time-dela ys.

– Conic is hyperbola: the ambiguity is unresolv able

SensorsLocation estimates

conic axis

foci

SensorsLocation estimates

coni

c ax

is

foci

coni

c ax

is

conic axis

foci

foci

SensorsLocation estimates

Hyperbola − unremovable ambiguityEllipse − removable ambiguity

TDOA-8PWB January 15, 2002

Page 13: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Location on Conic Axis (LOCA) solution

MIT Lincoln Laborator y

With three sensor s, rewrite hyperbolic equations to form mathematical dual .

Sensor s on a conic with emitter at a focus.

Foci ambiguity:– Conic is ellipse: the ‘wr ong’ focus gives negative time-dela ys.

– Conic is hyperbola: the ambiguity is unresolv able

SensorsLocation estimates

conic axis

foci

SensorsLocation estimates

coni

c ax

is

foci

coni

c ax

is

conic axis

foci

foci

SensorsLocation estimates

Hyperbola − unremovable ambiguityEllipse − removable ambiguity

TDOA-8-aPWB January 15, 2002

Page 14: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Location on Conic Axis (LOCA) solution

MIT Lincoln Laborator y

With three sensor s, rewrite hyperbolic equations to form mathematical dual .

Sensor s on a conic with emitter at a focus.

Foci ambiguity:– Conic is ellipse: the ‘wr ong’ focus gives negative time-dela ys.

– Conic is hyperbola: the ambiguity is unresolv able

SensorsLocation estimates

conic axis

foci

SensorsLocation estimates

coni

c ax

is

foci

coni

c ax

is

conic axis

foci

foci

SensorsLocation estimates

Hyperbola − unremovable ambiguityEllipse − removable ambiguity

TDOA-8-bPWB January 15, 2002

Page 15: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

LOCA solution

MIT Lincoln Laborator y

With four or more sensor s, conic type irrele vant

Each triad of sensor s gives a line (conic axis) containing emitter

– Number of conic axes = Number of triads =(*) )

Least-squares solution finds the point closest to all the lines

Feasib le rang e-diff erence bivector correction as prefilter

SensorsLocation estimate

TDOA-9PWB January 15, 2002

Page 16: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Clustered netw orks

MIT Lincoln Laborator y

Intra-c luster distance is much less than inter -cluster distance .

Compute TDOAs within cluster s to minimiz e comm unication rang e

Each cluster pub lishes results

Users and other cluster s subscribe with long distance comm unication andfuse results

Inter−cluster communication

Long range publish/subscribeUser/hub

SensorsClusters

Comm.

RemoteComm.

Local

On−node processing

TDOA-10PWB January 15, 2002

Page 17: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Outline

MIT Lincoln Laborator y

Motiv ation

Time-Diff erence of Arriv al Algorithm– TDOA Estimation– Localization algorithms– TDOA Performance Simulations– TDOA Results from SITEX02

Time sync hronization

GPS averaging

Reference coherent bearing estimates

Summar y

TDOA-11PWB January 15, 2002

Page 18: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Cluster comm unication constraints

MIT Lincoln Laborator y

PSfrag replacements

x (meters)y

(met

ers)

Local communication

x (meters)

y(m

eter

s)

Global communication

x (meters)

y(m

eter

s)

x (meters)

y(m

eter

s)

x (meters)

y(m

eter

s)

Sch

mid

tLO

CA

Sph

er.

Inte

rp.

Bea

ring

Inte

rp.

0 500 1000

0 500 10000 500 1000

0 500 10000 500 1000

0

200

400

600

800

1000

0

100

200

0

200

400

600

800

1000

0

20

40

0

200

400

600

800

1000

0

100

200

0

200

400

600

800

1000

0

20

40

0

200

400

600

800

1000

0

100

200

TDOA-12PWB January 15, 2002

Page 19: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Geometric precision sim ulations

MIT Lincoln Laborator y

PSfrag replacements

x (meters)

y(m

eter

s)+

rms ,

x (meters)

y(m

eter

s)

+rms ,

x (meters)

y(m

eter

s)

+rms ,

x (meters)

y(m

eter

s)

+rms ,

0 500 10000 500 1000

0 500 10000 500 1000

0

200

400

600

800

0

50

100

150

200

0

200

400

600

800

0

50

100

150

200

0

200

400

600

800

0

50

100

150

200

0

200

400

600

800

0

50

100

150

200

TDOA-13PWB January 15, 2002

Page 20: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Outline

MIT Lincoln Laborator y

Motiv ation

Time-Diff erence of Arriv al Algorithm– TDOA Estimation– Localization algorithms– TDOA Performance Simulations– TDOA Results from SITEX02

Time sync hronization

GPS averaging

Reference coherent bearing estimates

Summar y

TDOA-14PWB January 15, 2002

Page 21: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

SITEX02 Frequenc y Estimation

MIT Lincoln Laborator y

PSfrag replacements

Fre

q(H

z)

50

60

70

80

90

100

110

120

130

140

150

TDOA-15PWB January 15, 2002

Page 22: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

SITEX02 2-Node Delay Estimation

MIT Lincoln Laborator y

origin1

PSfrag replacements

Del

ay(s

)

Time (s)0 200 400 600 800 1000 1200 1400

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

TDOA-16PWB January 15, 2002

Page 23: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Outline

MIT Lincoln Laborator y

Motiv ation

Time-Diff erence of Arriv al Algorithm

Time sync hronization

GPS averaging

Reference coherent bearing estimates

Summar y

TDOA-17PWB January 15, 2002

Page 24: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Time sync hronization

MIT Lincoln Laborator y

Inter -node time sync hronization is essential for many algorithms– Localization error is related to percenta ge error in time delay estimates.

– Using nodes spaced at 100m, 2.9ms is 1% error

– Nodes might be spaced more closel y

Crystal oscillator s drift at 10-100 ppm, equiv alent to accum ulated error of36-360 ms per hour of operation.

External time reference is necessar y.

NTP is a free program for sync hronizing computer s over a netw ork

Also sync hroniz es cloc ks from reference signals (GPS, radio signal, etc)– GPS provides a timing signal accurate to 100ns.

– Not availab le on Sensoria hardware (firmware/software upgrades will correct this)

NTP netw ork sync hronization used for SITEX02. Accurac y often better than10ms, depending on netw ork load.

TDOA-18PWB January 15, 2002

Page 25: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Single Node Time Skew

MIT Lincoln Laborator y

PSfrag replacements

UTC

Tim

esk

ew

(s)

SH4 Time

DSP Time

21:45 21:50 21:55 22:00 22:05 22:10 22:15-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

TDOA-19PWB January 15, 2002

Page 26: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Time Skew

MIT Lincoln Laborator y

PSfrag replacements

UTC

Tim

esk

ew

(s)

DSP Time

SH4 Time

21:45 21:50 21:55 22:00 22:05 22:10 22:15-0.15

-0.1

-0.05

0

0.05

0.1

TDOA-20PWB January 15, 2002

Page 27: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Outline

MIT Lincoln Laborator y

Motiv ation

Time-Diff erence of Arriv al Algorithm

Time sync hronization

GPS averaging

Reference coherent bearing estimates

Summar y

TDOA-21PWB January 15, 2002

Page 28: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

GPS averaging

MIT Lincoln Laborator y

Handheld GPS used at SITEX02for node sur veying

Single GPS measurement is ac-curate to 10m

GPS averaging over severalhour s significantl y impr oves theaccurac y.

PSfrag replacements

mm

-10 0 10-10

0

10

PSfrag replacements

Meters

Met

ers

-200 -100 0 100 200

-100

0

100

200

300

TDOA-22PWB January 15, 2002

Page 29: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Outline

MIT Lincoln Laborator y

Motiv ation

Time-Diff erence of Arriv al Algorithm

Time sync hronization

GPS averaging

Reference coherent bearing estimates

Summar y

TDOA-23PWB January 15, 2002

Page 30: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Reference coherent bearing estimates

MIT Lincoln Laborator y

5-element acoustic sensor

Coherent bearing estimation & classification

Provides additional ground truth for later analysis

PSfrag replacements

Nov 14 2001, UTC

Bea

ring

tota

rget

18:30 19:00 19:30 20:00 20:30-200

-100

0

100

200

TDOA-24PWB January 15, 2002

Page 31: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Outline

MIT Lincoln Laborator y

Motiv ation

Time-Diff erence of Arriv al Algorithm

Time sync hronization

GPS averaging

Reference coherent bearing estimates

Summar y– Contrib utions– Future work– Publications

TDOA-25PWB January 15, 2002

Page 32: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Contrib utions

MIT Lincoln Laborator y

SITEX02: TDOA software ran in real-time over ISI Diffusion routing

TDOA perf ormance sim ulations- demonstrate benefits of cluster -basedprocessing

Enhanced SITEX02 recor ded data by implementing time sync h/GPSaccurac y impr ovements

Collected ground-truth bearing data

Demonstrated bearing fusion and used Declarative Routing Protocol in For tBenning Tanks Under Trees demonstration, Oct 2001.

Released/documented DRP software

TDOA-26PWB January 15, 2002

Page 33: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Future work

MIT Lincoln Laborator y

TDOA enhancements– Impr ove frequenc y trac ker for high-band width data

– Extend to multi-tar get trac king

– Integrate with trac king/displa y system

Dynamic cluster formation

Acoustic multipath mitigation

On-line refinement of sensor locations and/or time sync hronization

NTP and Lin ux fix es to allo w GPS time sync hronization

TDOA-27PWB January 15, 2002

Page 34: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Publications

MIT Lincoln Laborator y

P. W. Boettc her and G. A. Shaw, “A Distrib uted Time-Diff erence of Arriv alAlgorithm for Acoustic Bearing Estimation”, in Proc. 2001 InternationalConf . on Information Fusion, vol. 1, Montreal, August 2001.

P. W. Boettc her, J. A. Sherman, and G. A. Shaw, “Target localization usingacoustic time-diff erence of arriv al in distrib uted sensor netw orks”, to appearin SPIE AeroSense , Orlando, FL, April 2002.

Project repor ts– Declarative Routing Protocol project repor t

– TDOA sim ulation project repor t

TDOA-28PWB January 15, 2002

Page 35: A Distributed Time-Difference of Arrival Algorithm for Acoustic … · 2018-01-10 · P. W. Boettcher, J. A. Sherman, and G. A. Shaw, “Target localization using acoustic time-difference

Bearing example

MIT Lincoln Laborator y

PSfrag replacements

Local time (hh:mm)

Bea

ring

tota

rget

(deg

rees

)

08:12 08:14 08:16 08:18-200

-150

-100

-50

0

50

100

150

TDOA-29PWB January 15, 2002