1
A Dimension-adaptive Sparse Pseudo-Spectral Projection Method in Linear Gyrokinetics Ionut , -Gabriel Farcas , § , Tobias Goerler * , Hans-Joachim Bungartz § , Tobias Neckel § § Technical University of Munich, Chair of Scientific Computing, Boltzmannstr. 3, 85748 Garching, Germany, [email protected] * Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany A. Motivation A.1 Plasma micro-turbulence goal: characterization of the turbulent transport in magnetically con- fined fusion devices by gyrokinetic fully nonlinear simulations modelling: 5D integro-differential Vlasov-Maxwell system of eqs. here: restriction to linear physics less complicated testbed insights into sensitivies of underlying micro-instabilities Linear/local simulations ∂g ∂t = L[g ] here: two particle species: deuterium ions and electrons typical output of interest: dominant eigenmode with magnitude γ and frequency ω 3 Global gyrokinetic simulation of turbulence 5 A.2 UQ in plasma micro-turbulence strong temperature and density gradients in fusion plasmas free energy for micro-instabilities saturate via nonlinear coupling and de- velop a quasi-stationary state far from thermodynamic equilibrium turbulent fluxes are highly sensitive to changes in temperature/density gradients uncertainty quantification and sensitivity analysis needed for both validation and prediction Challenges large number of stochastic inputs significant computational demand Our approach employ HPC-ready micro-turbulence simulation codes (here, GENE 5 ) construct non-intrusive, dimension-adaptive sparse grid surrogates exploit sensitivity information to further tune the adaption B. Methodology Standard vs. adaptive sparse pseudo-spectral pro- jection. The multiindex sets are depicted in the top part. In the bottom plot, the associated two- dimensional Leja grids are visualized. Dimension adaptivity based on error work ratio (left) vs. error work ratio + directional variance (right). In the right plot, the algorithm does not refine further in the directions where the available variance is below a given tolerance tol 2 . B.1 Sparse pseudo-spectral projection 1 sparse approximation based on pseudo-spectral projection operators constructed on internal aliasing error-free spaces starting point: 1D projection operators P (1) 1 ,P (1) 2 ,... P (1) l : f (θ ) P (1) l f (θ )= p l /2 X p=0 f p Ψ p (θ ) •{f p } p l /2 p=0 evaluated via quadrature f p Q (1) l (f Ψ p )= N l -1 X n=0 f (θ l n p (θ l n )ω l n , p l /2=(N l - 1)/2 internal aliasing error-free construction: Ψ i , Ψ j = Q (1) l i Ψ j ), Ψ i , Ψ j in d-dimensions: l =(l 1 ,...,l d ) N d , Δ (1) l i = P (1) l i - P (1) l i-1 , Δ (l 1 ) 1 = P (1) 1 P (d) l (f )(θ )= X l∈L SG (1) l 1 ... Δ (1) l d )(f )(θ )= X l∈L SG (Δ (d) l )(f )(θ ) •L SG admissible: l ∈L SG : l - e j ∈L SG , (e j ) i=1,...,d = δ ij for a given level L, the standard L SG = {l N d : |l| 1 L + d - 1} alternative: construct L SG adaptively B.2 Leja sequences 4 sparse pseudo-spectral projection constructed on Leja points u 0 =0.5 u n = argmax u[0,1] | n-1 Y i=0 (u - u i )| Leja sequences are nested The number of points at level l , N l , depends linearly on l : N l =2l - 1 B.3 Dimension-adaptivity construct L SG based on a tolerance tol and a maximum level L max begin with L SG = {1 d = (1, 1,..., 1)} •L SG = O∪A, O - old index set, A - active set •A - set of multiindices that drive the adaption process add multiindices using g (||Δ (d) l (f )(θ )|| L 2 ,M l ), M l = cost • ||Δ (d) l (f )(θ )|| 2 L 2 = k∈K l f 2 k , K l = S {k N d : k i p l i /2} Error/work criterion g (||Δ (d) l (f )(θ )|| L 2 ,M l )= ||Δ (d) l (f )(θ )|| L 2 /M l Error/work + directional variance criterion g (||Δ (d) l (f )(θ )|| L 2 ,M l )= ||Δ (d) l (f )(θ )|| L 2 /M l additionally, perform a Sobol’ decomposition of l∈A (Δ (d) l )(f )(θ ) and find the “available” variance V i in all directions 1,...d stop adding multiindices in directions where V i tol 2 i C. Results: benchmark test case 2 simplified setup: simple geometry the dominant mode clearly changes with k y ρ ref C.1 Scenario I: three stochastic parameters stochastic parameter left bound right bound density gradient 1.665 2.775 ions temperature gradient 5.220 8.700 electrons temperature gradient 5.220 8.700 output of interest: the dominant mode γ (real part) ω (imaginary part) dimension-adaptivity (L max = 100) based on: error/cost criterion using tol = 10 -5 error/cost + directional derivative with tol = 10 -5 and tol 2 i = 10 -9 , i =1, 2 error plot (left) vs. multiindex sets obtain after refinement for ω and k y ρ ref =0.4 (right) error/work + directional variance criterion significant computational savings for k y ρ ref 0.5 the quantification of uncertainty is challenging for k y ρ ref 0.6 total Sobol’ indices when refining for γ (left) vs. ω (right) C.2 Scenario II: eight stochastic parameters stochastic parameter left bound right bound β 0.59e - 03 0.73e - 03 collision frequency ν c 0.23e - 02 0.32e - 02 magnetic shear ˆ s 0.71 0.87 safety factor q 1.33 1.47 density gradient 1.665 2.775 ions temperature gradient 5.220 8.700 ions temperature T ions 0.95 1.05 electrons temperature gradient 5.220 8.700 output of interest: the dominant mode γ (real part) ω (imaginary part) dimension-adaptivity (L max = 12) based on: error/cost + directional derivative with tol = 10 -5 and tol 2 i = 10 -9 , i =1, 2,..., 8 error plot 8D setup (left), error plot 3D vs. 8D setup (right) total Sobol’ indices when refining for γ (left) vs. ω (right) References [1] P. R. C ONRAD AND Y. M. M ARZOUK, Adaptive smolyak pseudospectral approximations, SIAM J. Sci. Comput., 35 (2013), pp. A2643 – A2670. [2] A. M. D IMITS, G. B ATEMAN , M. A. B EER , B. I. C OHEN , W. D ORLAND, G. W. H AMMETT , C. K IM , J. E. K INSEY , M. KOTSCHENREUTHER , A. H. K RITZ , L. L. L AO, J. M ANDREKAS, W. M. N EVINS, S. E. P ARKER , A. J. R EDD, D. E. S HUMAKER , R. S YDORA , AND J. WEILAND, Comparisons and physics basis of tokamak transport models and turbulence simulations, Physics of Plasmas, 7 (2000), pp. 969–983. [3] T. G OERLER, Multiscale effects in plasma microturbulence, dissertation, Universität Ulm, Mar. 2009. [4] A. N ARAYAN AND J. D. J AKEMAN, Adaptive leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci. Comput., 36 (2014), pp. A2952–A2983. [5] T HE GENE CODE, 2017.

A Dimension-adaptive Sparse Pseudo-Spectral Projection Method … · 2018-02-12 · A Dimension-adaptive Sparse Pseudo-Spectral Projection Method in Linear Gyrokinetics Ionut,-Gabriel

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Dimension-adaptive Sparse Pseudo-Spectral Projection Method … · 2018-02-12 · A Dimension-adaptive Sparse Pseudo-Spectral Projection Method in Linear Gyrokinetics Ionut,-Gabriel

A Dimension-adaptive Sparse Pseudo-SpectralProjection Method in Linear GyrokineticsIonut,-Gabriel Farcas, §, Tobias Goerler∗, Hans-Joachim Bungartz§, Tobias Neckel§§ Technical University of Munich, Chair of Scientific Computing, Boltzmannstr. 3, 85748 Garching, Germany, [email protected]∗ Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany

A. MotivationA.1 Plasma micro-turbulence• goal: characterization of the turbulent transport in magnetically con-

fined fusion devices by gyrokinetic fully nonlinear simulations•modelling: 5D integro-differential Vlasov-Maxwell system of eqs.• here: restriction to linear physics

– less complicated testbed– insights into sensitivies of underlying micro-instabilities

Linear/local simulations

∂g

∂t= L[g]

• here: two particle species:deuterium ions and electrons• typical output of interest:

dominant eigenmode withmagnitude γ and frequency ω

3

Global gyrokinetic simulation of turbulence5

A.2 UQ in plasma micro-turbulence• strong temperature and density gradients in fusion plasmas → free

energy for micro-instabilities→ saturate via nonlinear coupling and de-velop a quasi-stationary state far from thermodynamic equilibrium• turbulent fluxes are highly sensitive to changes in temperature/density

gradients→ uncertainty quantification and sensitivity analysis neededfor both validation and prediction

Challenges• large number of stochastic inputs• significant computational demand

Our approach

• employ HPC-ready micro-turbulence simulation codes (here, GENE5)• construct non-intrusive, dimension-adaptive sparse grid surrogates• exploit sensitivity information to further tune the adaption

B. Methodology

Standard vs. adaptive sparse pseudo-spectral pro-jection. The multiindex sets are depicted in thetop part. In the bottom plot, the associated two-dimensional Leja grids are visualized.

Dimension adaptivity based on error work ratio (left)vs. error work ratio + directional variance (right). Inthe right plot, the algorithm does not refine further inthe directions where the available variance is belowa given tolerance tol2.

B.1 Sparse pseudo-spectral projection1

• sparse approximation based on pseudo-spectral projection operators• constructed on internal aliasing error-free spaces

• starting point: 1D projection operators P (1)1 , P

(1)2 , . . .

P(1)l : f (θ)→ P

(1)l f (θ) =

pl/2∑p=0

fpΨp(θ)

• {fp}pl/2p=0 evaluated via quadrature

fp ≈ Q(1)l (fΨp) =

Nl−1∑n=0

f (θln)Ψp(θln)ωln, pl/2 = (Nl − 1)/2

• internal aliasing error-free construction:⟨Ψi,Ψj

⟩= Q

(1)l (ΨiΨj), ∀Ψi,Ψj

• in d-dimensions: l = (l1, . . . , ld) ∈ Nd,∆(1)li

= P(1)li− P (1)

li−1, ∆

(l1)1 = P

(1)1

P(d)l (f )(θ) =

∑l∈LSG

(∆(1)l1⊗ . . .⊗∆

(1)ld

)(f )(θ) =∑l∈LSG

(∆(d)l )(f )(θ)

• LSG admissible: ∀l ∈ LSG : l− ej ∈ LSG, (ej)i=1,...,d = δij

• for a given level L, the standard LSG = {l ∈ Nd : |l|1 ≤ L + d− 1}• alternative: construct LSG adaptively

B.2 Leja sequences4

• sparse pseudo-spectral projection constructed on Leja points

u0 = 0.5

un = argmaxu∈[0,1]

|n−1∏i=0

(u− ui)|

• Leja sequences are nested• The number of points at level l, Nl, depends linearly on l: Nl = 2l−1

B.3 Dimension-adaptivity• construct LSG based on a tolerance tol and a maximum level Lmax• begin with LSG = {1d = (1, 1, . . . , 1)}• LSG = O ∪A, O - old index set, A - active set• A - set of multiindices that drive the adaption process

• add multiindices using g(||∆(d)l (f )(θ)||L2,Ml), Ml = cost

• ||∆(d)l (f )(θ)||2L2 =

∑k∈Kl f

2k, Kl =

⋃{k ∈ Nd : ki ≤ pli/2}

Error/work criterion

• g(||∆(d)l (f )(θ)||L2,Ml) = ||∆(d)

l (f )(θ)||L2/Ml

Error/work + directional variance criterion

• g(||∆(d)l (f )(θ)||L2,Ml) = ||∆(d)

l (f )(θ)||L2/Ml

• additionally, perform a Sobol’ decomposition of∑l∈A(∆

(d)l )(f )(θ)

and find the “available” variance Vi in all directions 1, . . . d

• stop adding multiindices in directions where Vi ≤ tol2i

C. Results: benchmark test case2• simplified setup: simple geometry • the dominant mode clearly changes with kyρref

C.1 Scenario I: three stochastic parametersstochastic parameter left bound right bound

density gradient 1.665 2.775ions temperature gradient 5.220 8.700

electrons temperature gradient 5.220 8.700

output of interest: the dominant modeγ (real part)

ω (imaginary part)

• dimension-adaptivity (Lmax = 100) based on:– error/cost criterion using tol = 10−5

– error/cost + directional derivative with tol = 10−5 and tol2i = 10−9, i = 1, 2

• error plot (left) vs. multiindex sets obtain after refinement for ω and kyρref = 0.4 (right)

• error/work + directional variance criterion→ significant computational savings for kyρref ≤ 0.5

• the quantification of uncertainty is challenging for kyρref ≥ 0.6

• total Sobol’ indices when refining for γ (left) vs. ω (right)

C.2 Scenario II: eight stochastic parametersstochastic parameter left bound right bound

β 0.59e− 03 0.73e− 03collision frequency νc 0.23e− 02 0.32e− 02

magnetic shear s 0.71 0.87safety factor q 1.33 1.47

density gradient 1.665 2.775ions temperature gradient 5.220 8.700

ions temperature Tions 0.95 1.05electrons temperature gradient 5.220 8.700

output of interest: the dominant modeγ (real part)

ω (imaginary part)

• dimension-adaptivity (Lmax = 12) based on:– error/cost + directional derivative with tol = 10−5 and tol2i = 10−9, i = 1, 2, . . . , 8

• error plot 8D setup (left), error plot 3D vs. 8D setup (right)

• total Sobol’ indices when refining for γ (left) vs. ω (right)

References[1] P. R. CONRAD AND Y. M. MARZOUK, Adaptive smolyak pseudospectral approximations, SIAM J. Sci. Comput., 35 (2013), pp. A2643 – A2670.

[2] A. M. DIMITS, G. BATEMAN, M. A. BEER, B. I. COHEN, W. DORLAND, G. W. HAMMETT, C. KIM, J. E. KINSEY, M. KOTSCHENREUTHER, A. H. KRITZ,L. L. LAO, J. MANDREKAS, W. M. NEVINS, S. E. PARKER, A. J. REDD, D. E. SHUMAKER, R. SYDORA, AND J. WEILAND, Comparisons and physics

basis of tokamak transport models and turbulence simulations, Physics of Plasmas, 7 (2000), pp. 969–983.

[3] T. GOERLER, Multiscale effects in plasma microturbulence, dissertation, Universität Ulm, Mar. 2009.

[4] A. NARAYAN AND J. D. JAKEMAN, Adaptive leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci.Comput., 36 (2014), pp. A2952–A2983.

[5] THE GENE CODE, 2017.