22
A Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M. Grothmann, M. Haase, P. Nimsch, H. Ploog, A. Wassatsch, D. Timmermann University of Rostock (Germany) Dep. Electrical Engineering and Information Technology Institute of Applied Microelectronics and CS

A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

Embed Size (px)

Citation preview

Page 1: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

A Design Flow for12.8 GBit/s Triple DES using

Dynamic Logic andStandard Synthesis Tools

F. Grassert, S. Flügel, M. Grothmann, M. Haase, P. Nimsch, H. Ploog, A. Wassatsch, D. Timmermann

University of Rostock (Germany)Dep. Electrical Engineering and Information Technology

Institute of Applied Microelectronics and CS

Page 2: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

2/22

Purpose

• Wanted: Fast Triple DES processor• Wanted: Integration of dynamic logic in standard synthesis

½Development of design flow for TSPC Logic½Application: Triple DES

Page 3: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

3/22

Outline

• Introduction• Basics of dynamic logic and TSPC logic• Design flow for TSPC• Realization of Triple DES• Summary

Page 4: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

4/22

Dynamic Logic

• Application– High-end chips

i.e. Posluszny et al „Design methodology for a 1.0 GHz Microprocessor“, ICCD 1998– Ultra fast logic

i.e. Yee, Sechen, „Clock-Delayed Domino for Dynamic Circuit Design“, Trans. On VLSI Systems 2000

• Advantages– Very fast– Can be small

• Disadvantages– Difficult to design– Not supported by synthesis tools– Power consumption– Expensive clock-tree design

Page 5: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

5/22

Dynamic Logic - Function

• Works only with two phases

φ

φ

n-BlockInputs

Precharge

EvaluateOutput

Inputs

φ − ClockOutput

Precharge Evaluate

• Logic function using n-transistors (“n-block”) – fast and small

• No direct interconnect of outputs and inputs possible

Page 6: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

6/22

True Single Phase Clock (TSPC) Logic (1)

• True Single Phase Clock

• Realizes register function → combined register and logic • Only non-inverting logic functions• P-block: slow, large area

φ

φ

n-BlockφIN

n-Latchn-Logic

p-Block

φ

φ

φ

OUT

p-Latchp-Logic Complementary

part

Page 7: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

7/22

True Single Phase Clock (TSPC) Logic (2)

• Second TSPC realization: N-N2 logic• Inverting logic functions only

φ

φ

n-BlockφIN

n-Latchn-Logic

n-Block

φ

φ

φ

OUT

p-Latchn2-Logic

Page 8: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

8/22

True Single Phase Clock (TSPC) Logic (3)

• Result: non-inverting and inverting logic functions• No use of second logic block, but possible• Robust and fast cells• Extreme pipelining – extreme clock load• Problem: clock distribution

φ

φ

n-Block φp-Block

φ

φ

φ

OUTIN

n-Latch p-Latchp-Logikn-Logik

φ

φ

n-Block φn-Block

φ

φ

φ

OUTIN

n-Latch p-Latchn2-Logikn-Logik

Non-inverting functions Inverting functions

Used for logic Used for logic

Page 9: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

9/22

• Generating the library

• Generating a combinational netlist

• Generating the pipeline

• Implementing the pipeline in the design

• Generating the library

• Generating a combinational netlist

• Generating the pipeline

• Implementing the pipeline in the design

Synthesis of TSPC Logic

Page 10: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

10/22

Building a Library

• Cell layout• Verifying the cells• Simulation• Compiling the library

• Combinational function is the main point• Timing behavior not interesting• Register function not important

Page 11: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

11/22

Synthesis of TSPC Logic

• Compiling the library

• Generating a combinational netlist

• Generating the pipeline

• Implementing the pipeline in the design

Page 12: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

12/22

Generating a Combinational Netlist

• Standard design flow– VHDL description, analyzing, elaboration

• Mapping (using the library with TSPC gates)

• No feedbacks allowed – only straightforward– Otherwise splitting in shorter combinational parts or hand design

Page 13: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

13/22

Synthesis of TSPC Logic

• Compiling the library

• Generating a combinational netlist

• Generating the pipeline

• Implementing the pipeline in the design

Page 14: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

14/22

Generating the Pipeline

• Interpreting all cells as registers (pipeline stages)• Building the pipeline and integrating buffers

AND

OR

E1E2

E3

A1

A2

AND

OR

E1E2

E3

A1

A21

11

1

Page 15: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

15/22

Synthesis of TSPC Logic

• Compiling the library

• Generating a combinational netlist

• Generating the pipeline

• Implementing the pipeline in the design

Page 16: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

16/22

DES Core as an Example

• Data Encryption Standard (DES) – symmetric encryption• 64 bit message with 56 bit key to 64 bit cipher text• 16 rounds per data word• Loop-unrolling ideal for pipelining

Li-1 Ri-1

Li=Ri-1 Ri=Li-1⊗f(Ri-1,Ki)

f Ki48

32

48

32

Expansion

permute

SBoxes

Page 17: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

17/22

Structure of the DES Chip

• One round – Single DES• Three rounds – Triple DES• 4 channels for encryption• Communication with control

unit through parallel and I²C interfaces

• Control part, Input / Output 200MHz, SCMOS

• Core part 800Mhz, TSPC• Built In Self Test (BIST)

Input Scheduler

DES Core

Output Scheduler

Con

trol

Uni

t

Input Selector

Late

ncy

feedback data

data in

I/O

Output Selector

data

out

Page 18: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

18/22

Realization DES Chip

• DES - Core completely realized with automatic synthesis

• Black box verification between VHDL description and C-program via CLI

• Compiling VHDL to combinational netlist with TSPC library information

• Micro Pipeline Reorganization (MPR) step using developed tool

• Verification steps

Input Scheduler

DES Core

Output Scheduler

Con

trol

Uni

t

Input Selector

Late

ncy

feedback data

data in

I/O

Output Selector

data

out

Page 19: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

19/22

Realization DES Chip

• Scheduler – TSPC handmade• VHDL description needs

register information• Combining with DES core• Verification

Input Scheduler

DES Core

Output Scheduler

Con

trol

Uni

t

Input Selector

Late

ncy

feedback data

data in

I/O

Output Selector

data

out

Page 20: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

20/22

Realization DES Chip

• Control parts with standard synthesis

• VHDL description compiled to standard library

• Complete chip:Combination with TSPC parts

• Verification of behavior• Verification of cycles

Input Scheduler

DES Core

Output Scheduler

Con

trol

Uni

t

Input Selector

Late

ncy

feedback data

data in

I/O

Output Selector

data

out

Page 21: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

21/22

Discussion

• 12.8 GBit Triple DES chip (64 Bit @ 200 MHz)• Three separated parts during synthesis• Speed-up of the calculation intensive parts through TSPC• All parts work to capacity – no bottleneck

• Very long TSPC pipeline (ca. 250 stages)• Large area (no optimizations yet)

Page 22: A Design Flow for 12.8 GBit/s Triple DES using Dynamic ... fileA Design Flow for 12.8 GBit/s Triple DES using Dynamic Logic and Standard Synthesis Tools F. Grassert, S. Flügel, M

22/22

Summary

• Automatic design of dynamic logic with standard synthesis tools• Example: GBit DES• Disadvantages: very large area and high power consumption• Demonstrates the possibility to speed up designs through extreme

pipelining and using dynamic logic• Compared with other realizations: large area, but high speed,

standard synthesis