18
On behalf of the CEPC VTX study group The 2019 international workshop on the high energy CEPC Nov, 18-20 2019 A compact CMOS pixel design for the CEPC vertex detector Ping Yang

A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

On behalf of the CEPC VTX study group

The 2019 international workshop on the high energy CEPCNov, 18-20 2019

A compact CMOS pixel design for the CEPC vertex detector

Ping Yang

Page 2: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

Ping Yang (CCNU )

Outline

• CEPC vertex detector and design specifications

• CPS development and the prototypes

─ Sensitive diode study

─ First prototype of an asynchronous readout mode and test results

─ A more compact prototype design of rolling-shutter readout mode

• Summary

2

Page 3: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

3Ping Yang (CCNU )

Detector Layout

The vertex detector

Vertex detector:

– Single point resolution near the IP: ≤ 3 µm→ high granularity

– material budget: ≤ 0.15%X0/layer → Low power dissipation,

thinned, monolithic pixel sensor

– pixel occupancy: ≤ 1% → High granularity and/or short readout time

– Radiation tolerance: ~1Mrad/y (TID) and ~1012 Neq/cm2/y (NIEL)

Page 4: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

Design specification

4Ping Yang (CCNU )

◆ Generally require:

• High granularity, σ = 3-5 μm;

• thin pixel sensors with fast readout, readout time = 10 -100 μs ;

• and low power dissipation, Power < 100 mW/cm2

◆ Spatial resolution

•𝟎.𝟓pitch

𝟏𝟐< S.P.resolution <

pitch

𝟏𝟐

• 若 S.P.resolution = 3 μm,10.3 μm < pitch < 20.7 μm

◆ Low power

• Binary circuit inside pixel

• Inside matrix zero-suppression readout, but have large pixel pitch

Page 5: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

Developed CMOS Pixel Sensor prototypes for CEPC

Prototype Pixel size(μm2)

Collection diode bias

(V)

In-pixel circuit R/O architecture Main goals Status

JadePix1 33 × 3316 × 16

< 1.8 SF/amplifer,analog output

Rolling shutter Sensor optimization

Lab. and beam test finished

JadePix2 22 × 22 < 10 V (ac-

coupled)

amp., discriminator,binary output

Rolling shutter Small pixel,Power < 100

mW/cm2

Electricalfunctionality

verified

MIC4 25 × 25 reverse bias

Low power front-end,

address encoder

Data-driven,Asynchronous

Small pixel, fastreadout

Electricalfunctionality

verified

TaiChuPix1 25 × 25 reverse bias

Low power front-end,

address encoder

Data-driven,Asynchronous

Small pixel, fast readout withtime stamp

In measurement

JadePix3 16 × 2616 × 23.11

reverse bias

Low power front-end,

binary output

Rolling shutter with end of col. priority

encoder

Small pixel, low power

In fabrication

JadePix1 (IHEP)

3.9 × 7.9 mm2JadePix2 (IHEP)

3 × 3.3 mm2MIC4 (CCNU & IHEP)

3.2 × 3.7 mm2

All prototypes in TowerJazz 180 nm CIS process

TaiChuPix1 (IHEP, SDU,

NWPU, IFAE, CCNU)

5× 5 mm2

JadePix3(IHEP, CCNU,

Dalian Minzu Unv., SDU)

10.4 × 6.1 mm2

5Ping Yang (CCNU )

Page 6: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

Lower input C lower analog power

6Ping Yang (CCNU )

Fixing the S/N for a given bandwidth higher Q/C allows for a lower power

a = 2 in strong inversion a = 1 in weak inversion

Assuming that main analog power dissipation comes from the input transistor bias

C

Y.Zhang, et al, NIMA 831(2016) 99-104

Page 7: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

7Ping Yang (CCNU )

Sensitive diode test results

• Goals: sensitive diode geometry optimization with JadePix1

L.J.Chen, et al, RDTM (2019)DOI: 10.1007/s41605-019-0124-0

• Conclusion: Small collection electrode

size and large footprint can achieve high

charge-over-capacitance ratio.

(a)sensitive diode test circuit scheme

(b) conversion gain VS. sensor geometry

(C) ENC VS. sensor geometry

Page 8: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

First prototype MIC4 overall introduction

8Ping Yang (CCNU )

• Goals: ① To explore a new data-driven readout architecture which can be implemented into a small pixel size; ② Front-end study. ③ Periphery block.

• Pixel size: 25 um x 25 um

• Matrix: 128 rows x 64 columns

• Two different front-ends in the matrix

• Zero suppression readout inside matrix

• DACs, bias

• No memory in the periphery, real time

readout, serial readout rate 1.2 Gbps

• Analog test for the last row pixels

(a) MIC4 structure (MAPS IN CCNU4) P. Yang, et al., NIM-A 924 (2019) 82-86

Page 9: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

MIC4:Pixel digital front-end version 1

9Ping Yang (CCNU )

• Power cons.: 35 nW/pixel

• TN noise 18 e- is consistent with the

sim results, but FPN noise 120e- is

much larger than simulation

(mismatch).

AmplifierSource

follower

Vsub

Cf

Rf

Comp

Collection diode

OUT_A OUT_D

(a) CSA based analog front-end V1

by Ying ZHANG @ IHEP

Test results

(b)

(c)

Page 10: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

MIC4:Pixel digital front-end version 2

10Ping Yang (CCNU )

• The ALPIDE front-end structure, Power: 110 nW/pixel

• Peaking time< 1 μs, duration < 3 μs (sim and test results)

• Mean threshold around 99 e- (test results)

• Mean FPN ~ 31 e-, TN ~ 6 e- ( test results)

(a)Front-end V2 based on ALPIDE by Weiping

Ren @ CCNU

(b) OUT_A with different Vpluse voltage

(c) Test results of peaking time and duration time

Page 11: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

11Ping Yang (CCNU )

➢ ALPIDE matrix readout circuit AERD has many

connection lines occupy large area;

➢ OR gate chain: speed is limited with the

number of the chain pixels;

➢ Combine these two solutions

➢ Digital periphery provide a CLK signal of 60% duty cycle to enhance the readout

circuit to work at 40 MHz to decode 1024 pixels; -> a few μs readout time

8*8 pixels

20 address lines to the PeripheryA

DD

RX

<0

:7>

AD

DR

Y<0

:7>TG1

TG1

SIN STATE

SOUTSELECT

ADDR_EN

ADDR_ENRESET_PIX

RESET_PIX_B

RESET_PIX_B

RESET_PIX

RESET_PIX

DVDD ADDRX

ADDRY

Pix_OR_logic

Active low

AD

DR

<0:

3>

MIC4 data-driven readout scheme

P. Yang, et al.,INT J

MOD PHYS A

DOI:10.1142/S021775

1X17460125

Page 12: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

• In-pixel circuit

– Low power binary front-end

– Optimized DFF

• Matrix Readout

– Rolling shutter

– 200ns/row

• Periphery digital Readout:

– Shared column lines

– End of column Priority Encoder

Zero suppression

– 64 columns processed during readout of

one row

JadePix3: Prototype of small pixel design

12Ping Yang (CCNU )

Serializer & LVDS

➢ Goal: Small pixel size → Low power FE + Rolling shutter Readout

Matrix 512 row x 192 col

Pixel

Periphery digital readout

Page 13: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

• Design goals: small pixel size and low power consumption

• Sensor: High Q/C (collected charge/sensor capacitance) ➔ low power

➢ Electrode size of 4 µm2, with a large footprint of 36 µm2→ compromise of Q/C

with area

• Front-end:

➢ Operating principle derived from ALPIDE front end, two version designed (diff.

power & peaking time)

➢ Reduction on layout area, ~210 µm2

➢ Improvement on the threshold dispersion (compromise with area)

JadePix3:Sensor & Front-end design

Footprint

Electrode

16 μm

16 μm

110 120 130 140 150 160 170

0.0

0.2

0.4

0.6

0.8

1.0

Mismatch

µ = 138.1 e-

σ = 3.1 e-

Qin [e-]

Pro

b

110 120 130 140 150 160 170

VCASP

VCASN

IBIAS

ITHR

IDB

VCASN2

M1

M2

M4

M6M10

M7

M8

M9

AVDD

Out_A

Out_D

PIX_IN

M3

M5

Amplification Discrimination

area limitationFE_V0

13Ping Yang (CCNU )

Page 14: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

JadePix3: DFF optimized for compact pixel

~6*6 um2

Standard version: ~16*6 um2

In-pixel DFF Modified :

• Compared with standard version:

– Transistor Num.: reduced from 36 → 16

– Layout size: 16*6 μm2 → 6*6 μm2

(reduced >60% )

• D connect to ground;

• Signal input from pin CLK;

• One control line shared for:

– RST of row n / Read of row n+1

Layout of modified DFF compared with standard version

14Ping Yang (CCNU )

Page 15: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

Zero suppression at the EOC

• Priority encoder and reset decoder

- 4 bit address encoder * 4 Sectors

- 3 Columns as one block

• Hit information 16bit:

- 9 bit row Addr. + 4bit col. Addr. + 3bit hit

(one-hot code)

• FIFO R/W clk: 80 MHz

• FIFO depth: 48

• Data after 8b/10b : 400Mhz

• Layout: ~ 5120 μm * 200 μm

• Power: 15.35 mW

JadePix3: Digital periphery readout

15Ping Yang (CCNU )

Priority encoder

1 16

1

2

3

1 2 3 4

Multiplexer

FSM

8b/10b

FIFO FIFO FIFO FIFO

Serializer

LVDS

PLL

16bit 16bit 16bit 16bit

8bit 8bit 8bit 8bit

8bit

400 Mhz

80 Mhz

W/R CLK

Hit Reset Hit Reset Hit Reset Hit Reset

Cache

9 bit Row Addr.

Sensor Out

Zero Suppression

Matrix

Priority encoder Priority encoder Priority encoder

Page 16: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

JadePix3: Status

6.1 mm

10

.4m

m

Sector Diode Front-end Pixel digital Pixel layout

0 2 + 2 μm FE_V0 DGT_V0 16×26 μm2

1 2 + 2 μm FE_V0 DGT_V1 16× 26 μm2

2 2 + 2 μm FE_V0 DGT_V2 16× 23.11 μm2

3 2 + 2 μm FE_V1 DGT_V0 16×26 μm2

Team IHEP, CCNU, Dalian Minzu Unv., SDU

• Submission in Sept. 2019

• Sensitive diode, minimum size

• Front-end based on ALPIDE, but 2 versions

– FE_V0, FE_V1 (9mW/cm2 , 26mW/cm2 )

• Pixel digital, 3 versions

– DGT_V0,DGT_V1, DGT_V2

• Pixel area

– 16×26 μm2

– 16×23.11 μm2

16Ping Yang (CCNU )

Page 17: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

Summary

17Ping Yang (CCNU )

• Sensitive diode geometry was studied, minimum sensitive area (JadePix1/2)

• Explored a new zero-suppression structure inside matrix, with low power

front-end and almost full chip periphery blocks. All of the modules are

functional. The threshold and noise was studied. (MIC4 chip)

• JadePix3 optimized the pixel size and chip periphery power consumption

- Small pixel size, better spatial resolution expect ~3 um

• Radiation test and beam test is ongoing

Page 18: A compact CMOS pixel design for the CEPC vertex …...110 120 130 140 150 160 170 0.0 0.2 0.4 0.6 0.8 1.0 Mismatch µ = 138.1 e-σ = 3.1 e-Qin [e-] b 110 120 130 140 150 160 170 VCASP

Thank you for your attention!

Thanks to my colleagues:

IHEP: Yunpeng Lu, Ying Zhang, Yang Zhou, Zhigang Wu, Qun OuYang

CCNU: Xiangming Sun, Di Guo, Chaosong Gao,Le Xiao, Chenxing Meng,

Anyang Xu

Dalian Minzu Unv: Zhan Shi

SDU: Liang Zhang