77
Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions A Brief Introduction to Asymmetric Dark Matter Mattias Blennow [email protected] Max–Planck–Institut f¨ ur Kernphysik June 27, 2012 @ GGI, Florence, Italy Mattias Blennow Max–Planck–Institut f¨ ur Kernphysik A Brief Introduction to Asymmetric Dark Matter

A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

A Brief Introduction to Asymmetric Dark Matter

Mattias [email protected]

Max–Planck–Institut fur Kernphysik

June 27, 2012 @ GGI, Florence, Italy

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 2: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

1 Asymmetric Dark Matter

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 3: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

1 Asymmetric Dark Matter

2 Type I: Sharing

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 4: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

1 Asymmetric Dark Matter

2 Type I: Sharing

3 Type II: Cogenesis

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 5: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

1 Asymmetric Dark Matter

2 Type I: Sharing

3 Type II: Cogenesis

4 Summary and conclusions

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 6: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

1 Asymmetric Dark Matter

2 Type I: Sharing

3 Type II: Cogenesis

4 Summary and conclusions

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 7: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Beyond the Standard Model

Hints for physics beyond the StandardModel:

Dark MatterDark EnergyNeutrino oscillations

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 8: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Beyond the Standard Model

Hints for physics beyond the StandardModel:

Dark MatterDark EnergyNeutrino oscillations

Open questions

What is the nature of DM?How is DM created?Why is ΩDM ∼ Ωb?

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 9: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Comparing Baryonic and Dark Matter

Baryons

Mass:

mN ≃ 1 GeVAbundance:

nb/nγ = (6.19± 0.15) · 10−10

Density:

Ωb ≃ 0.046

Dark Matter

Mass:

Abundance:

Density:

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 10: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Comparing Baryonic and Dark Matter

Baryons

Mass:

mN ≃ 1 GeVAbundance:

nb/nγ = (6.19± 0.15) · 10−10

Density:

Ωb ≃ 0.046

Dark Matter

Mass:

mDM = ?Abundance:

Density:

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 11: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Comparing Baryonic and Dark Matter

Baryons

Mass:

mN ≃ 1 GeVAbundance:

nb/nγ = (6.19± 0.15) · 10−10

Density:

Ωb ≃ 0.046

Dark Matter

Mass:

mDM = ?Abundance:

nDM = ?Density:

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 12: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Comparing Baryonic and Dark Matter

Baryons

Mass:

mN ≃ 1 GeVAbundance:

nb/nγ = (6.19± 0.15) · 10−10

Density:

Ωb ≃ 0.046

Dark Matter

Mass:

mDM = ?Abundance:

nDM = ?Density:

ΩDM ≃ 0.23

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 13: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Comparing Baryonic and Dark Matter

Baryons

Mass:

mN ≃ 1 GeVAbundance:

nb/nγ = (6.19± 0.15) · 10−10

Density:

Ωb ≃ 0.046

Dark Matter

Mass:

mDM = ?Abundance:

nDM = ?Density:

ΩDM ≃ 0.23

ΩDM

Ωb

≃ 5

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 14: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

WIMP Dark Matter

Theorists have a (unhealthy)predisposition to expect new physics atthe TeV scale

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 15: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

WIMP Dark Matter

Theorists have a (unhealthy)predisposition to expect new physics atthe TeV scale

Assume dark matter at the TeV scale,mDM ≃ 0.1− 1 TeV

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 16: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

WIMP Dark Matter

Theorists have a (unhealthy)predisposition to expect new physics atthe TeV scale

Assume dark matter at the TeV scale,mDM ≃ 0.1− 1 TeV

Assume dark matter is produced thermallyin the early Universe

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 17: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

WIMP Dark Matter

Theorists have a (unhealthy)predisposition to expect new physics atthe TeV scale

Assume dark matter at the TeV scale,mDM ≃ 0.1− 1 TeV

Assume dark matter is produced thermallyin the early Universe

=⇒ Cross section of weak strength

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 18: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

WIMP Dark Matter

Theorists have a (unhealthy)predisposition to expect new physics atthe TeV scale

Assume dark matter at the TeV scale,mDM ≃ 0.1− 1 TeV

Assume dark matter is produced thermallyin the early Universe

=⇒ Cross section of weak strength

Weakly Interacting Massive Particles(WIMPs)

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 19: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

WIMP Dark Matter

Theorists have a (unhealthy)predisposition to expect new physics atthe TeV scale

Assume dark matter at the TeV scale,mDM ≃ 0.1− 1 TeV

Assume dark matter is produced thermallyin the early Universe

=⇒ Cross section of weak strength

Weakly Interacting Massive Particles(WIMPs)

Great! Or is it?

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 20: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

The WIMP miracle

Baryons

Mass:

mN ≃ 1 GeVAbundance:

nb/nγ = (6.19± 0.15) · 10−10

Density:

Ωb ≃ 0.046

WIMP Dark Matter

Mass:

mDM ≃ 1 TeVAbundance:

nDM ≃ 10−3nb

Density:

ΩDM ≃ 0.23

ΩDM

Ωb

≃ 5

The WIMP miracle!

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 21: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

The WIMP miracle

Baryons

Mass:

mN ≃ 1 GeVAbundance:

nb/nγ = (6.19± 0.15) · 10−10

NOT thermal production!Density:

Ωb ≃ 0.046

WIMP Dark Matter

Mass:

mDM ≃ 1 TeVAbundance:

nDM ≃ 10−3nb

Thermal freezoutDensity:

ΩDM ≃ 0.23

ΩDM

Ωb

≃ 5

The WIMP miracle!

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 22: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Facing the WIMP miracle

If you like WIMPS:

“Just assuming new physics atTeV scale, we derived that DMinteracts with a weak scale crosssection to the SM. This fits myexpectations of how and wherenew physics should be found.”

If you do not like WIMPS:

“I dont believe that just bycoincidence you would get thesame DM and baryonabundances when they have sodifferent masses and productionmechanisms. I want DM andbaryons to be more similar.”

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 23: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

Facing the WIMP miracle

If you like WIMPS:

“Just assuming new physics atTeV scale, we derived that DMinteracts with a weak scale crosssection to the SM. This fits myexpectations of how and wherenew physics should be found.”

If you do not like WIMPS:

“I dont believe that just bycoincidence you would get thesame DM and baryonabundances when they have sodifferent masses and productionmechanisms. I want DM andbaryons to be more similar.”

Let us try to see if we can achieve this: Asymmetric DarkMatter (ADM)

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 24: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Motivation

How to make DM similar to baryons

Baryons are Dirac fermions

Baryon abundance is tied tobaryon number B

Baryons asymmetry seededin early Universe

Make DM a Dirac fermion

Introduce dark matternumber X

Make the X “talk” to B

These assumptions makes DM similar to baryons and have similarnumber density, thus

mDM

mb

≃ΩDM

Ωb

≃ 5

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 25: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

1 Asymmetric Dark Matter

2 Type I: Sharing

3 Type II: Cogenesis

4 Summary and conclusions

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 26: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Sharing and Cogenesis

There are two main mechanisms behind ADM production:Sharing:

Baryons and Dark Matter sharesa primordial asymmetry producedin an arbitrary sector.

Cogenesis

The Baryon and Dark Matterasymmetries are produced by thesame processes.

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 27: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Conditions for Sharing

A few ingredients necessary for generating ADM in sharing models

B

XX

B

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 28: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Conditions for Sharing

A few ingredients necessary for generating ADM in sharing models

1 Asymmetry generation inarbitrary sector B

XX

B

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 29: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Conditions for Sharing

A few ingredients necessary for generating ADM in sharing models

1 Asymmetry generation inarbitrary sector

2 Asymmetry transfer

B

XX

B

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 30: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Conditions for Sharing

A few ingredients necessary for generating ADM in sharing models

1 Asymmetry generation inarbitrary sector

2 Asymmetry transfer

3 Annihilation of symmetric(thermal) component

X

B

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 31: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Asymmetry generation

Baryon number B

Baryogenesis Sakharov 1967

Lepton number L

Leptogenesis Fukugita, Yanagida 1986

Dark matter number XDarkogenesis Shelton, Zurek, arXiv:1008.1997

Xogenesis Buckley, Randal, arXiv:1009.0270

. . .

B

XX

B

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 32: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Asymmetry transfer

B

XX

B The transfering processes need to be:

Fast and active in the early Universe

Inactive at lower energies

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 33: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Asymmetry transfer

B

XX

B The transfering processes need to be:

Fast and active in the early Universe

Inactive at lower energies

Effective operators

B X

O6

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 34: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Asymmetry transfer

B

XX

B The transfering processes need to be:

Fast and active in the early Universe

Inactive at lower energies

Effective operators

B X

O6

Sphaleron processes

Sphaleron

νeνµ

ντ

bL

bL

tLsL

sL

cL

dL

dL

uL

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 35: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Thermal component annihilation

ADM has a mass in the few GeV region

WIMPs get the correct relic abundancewith a weak scale cross section

Annihilation of lighter species requirelarger cross sections

X

B

=⇒ Larger annihilation cross section than weak – Problem!

ADM mass is higher, butabundance is Boltzmannsuppressed compared to B

Thermal component does notannihilate directly into SMparticles

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 36: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Cosmological phenomenology

ADM generally has different cosmology than WIMP DM

Only consisting of particles (no anti-particles) ⇒ no indirectdetectionAccumulates in stellar bodies – what is the effect on stellarevolution?Frandsen, Sarkar, arXiv:1003.4505; Taoso, et al, arXiv:1005.5711

Short range self-interacting ADM could alter halo evolution(to the better)Spergel, Steinhard, astro-ph/9909366

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 37: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

How asymmetric is ADM?

Cross section close to whatis required

Annihilation is not complete

Residual componenet ofanti-ADM

Phenomenologicalconsequences?

Graesser, Shoemaker, Vecchi, JHEP 1110 (2011) 110

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 38: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

An example of sharing

Standard leptogenesis

Generation of lepton number asymmetry by CP violating decays ofheavy Majorana fermion singlets NR (typically type-I seesaw)

NR

L

Φ

+ NR

L

Φ

+ NR

L

Φ

Seeds a lepton number asymmetry L

Transfers to baryon sector through SU(2)L sphaleronsconserving B − L

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 39: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

An example of sharing

Asymmetry transfer from L

The asymmetry in L could transfer to both B and X

SU(2)L

L

NR

B

OoE decay

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 40: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

An example of sharing

Asymmetry transfer from L

The asymmetry in L could transfer to both B and X

Couple X to SU(2)L likebaryons and leptonsBarr, et al, 1990; Kaplan, 1992

SU(2)L

NR

OoE decay

X

L B

SU(2)LSU(2)L

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 41: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

An example of sharing

Asymmetry transfer from L

The asymmetry in L could transfer to both B and X

Couple X to SU(2)L likebaryons and leptonsBarr, et al, 1990; Kaplan, 1992

Implies weakly interactinglight X , excluded by LEP

SU(2)L

NR

OoE decay

X

L B

SU(2)LSU(2)L

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 42: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

An example of sharing

Aidnogenesis via Leptogenesis

The basic idea: New gauge group to provide new sphalerons

Extend the gauge sector ofthe SM

Additional sphaleronprocesses

Is this possible to acheive?MB, et al, arXiv:1009.3159

SU(2)L

NR

OoE decay

X

L B

newnew

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 43: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

1 Asymmetric Dark Matter

2 Type I: Sharing

3 Type II: Cogenesis

4 Summary and conclusions

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 44: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Cogenesis

Necessary ingredients for generating ADM in cogenesis models:

B

XX

B

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 45: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Cogenesis

Necessary ingredients for generating ADM in cogenesis models:

1 DM-SM interactionsviolating both B

XX

B

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 46: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Cogenesis

Necessary ingredients for generating ADM in cogenesis models:

1 DM-SM interactionsviolating both

2 Out of thermal equilibrium

B

XX

B

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 47: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Cogenesis

Necessary ingredients for generating ADM in cogenesis models:

1 DM-SM interactionsviolating both

2 Out of thermal equilibrium

3 Annihilation of symmetric(thermal) component

B X

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 48: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Asymmetry production in Cogenesis

Consider a heavy field H with a CP violating decay

Γ(H → BX ) 6= Γ(H → BX )

If the decays are out of thermal equilibrium (cf. Leptogenesis),asymmetries can result in both B and X

Typically, it will be possible to assign X such that X = −B

Dark Matter can be viewed as being anti-baryonic and carrythe missing baryon number with BSM + BDM = 0 Kitano, Low,

hep-ph/0411133; Agashe, Servant, hep-ph/0411254

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 49: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Cogenesis versus Sharing

There are pros and cons with both Cogenesis and Sharing:

Cogenesis typically relates Band X through somefundamental interaction

Typically B-X relation at arelatively low energy scale

Problems consolidating withcurrent bounds

Difficulty of model building

Sharing does not implystrong B-X interactions,just communication betweenthe sectors

Asymmetry production notrelated to B-X relation

Asymmetry production canbe put at very high scales

More possibility ofseparating the physics of thetwo sectors

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 50: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

An example of Cogenesis

Hylogenesis

Use the following ingredients: Davoudiasl, et al, arXiv:1008.2399

Two heavy Dirac fermions X1, X2 (MXa& TeV)

A GeV scale Dirac fermion Y

A GeV scale scalar Φ

With proper assignment of Baryon numbers,BXa

= 1 = −(BY + BΦ):

−L ⊃λa

M2XaPRdu

cPRd + ζaXaYcΦ∗ + h.c.

X1

u

d

d

X1

X2

Y

Φ

u

d

d

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 51: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

1 Asymmetric Dark Matter

2 Type I: Sharing

3 Type II: Cogenesis

4 Summary and conclusions

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 52: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Summary

We have . . .

discussed the general principles of ADM

discussed how different ADM models can be constructed

discussed the two dominant ways of generating ADM

seen selected examples

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 53: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

Outline Asymmetric Dark Matter Type I: Sharing Type II: Cogenesis Summary and conclusions

Incomplete set of references

Nussinov, 1985Barr, et al, 1990Kaplan, 1992Kitano, Low, hep-ph/0411133Agashe, Servant, hep-ph/0411254Kaplan, arXiv:0901.4117An, et al., arXiv:0911.4463Frandsen, Sarkar, arXiv:1003.4505Taoso, et al, arXiv:1005.5711Shelton, Zurek, arXiv:1008.1997Davoudiasl, et al, arXiv:1008.2399Buckley, Randal, arXiv:1009.0270MB, et al., arXiv:1009.3159Hall, March-Russel, West, arXiv:1010.0245Dutta, Kumar, arXiv:1012.1341Falkowski, Ruderman, Volansky, arXiv:1101.4936Cirelli, Panci, Servant, Zaharijas, arXiv:1110.3809Petraki, Trodden, Volkas, arXiv:1111.4786Kamada, Yamaguchi, arXiv:1201.2636

Haba, Matsumoto, Sato, arXiv:1101.5679Heckman, Rey, arXiv:1102.5346Graesser, Shoemaker, Vecchi, arXiv:1103.2771Frandsen, Sarkar, Schmidt-Hoberg, arXiv:1103.4350McDermott, Yu, Zurek, arXiv:1103.5472Buckley, arXiv:1104.1429Iminniyaz, Drees, Chen, arXiv:1104.5548Batell, Pradler, Spannowsky, arXiv:1105.1781Bell, et al., arXiv:1105.3730Cheung, Zurek, arXiv:1105.4612Davoudiasl, et al., arXiv:1106.4320March-Russel, McCullough, arXiv:1106.4319Cui, Randall, Shuve, arXiv:1106.4834Arina, Sahu, arXiv:1108.3967Buckley, Profumo, arXiv:1109.2164Barr, arXiv:1109.2562Lin, Yu, Zurek, arXiv:1111.0293von Harling, Petraki, Volkas, arXiv:1201.2200Iocco, Taoso, Leclercq, Meynet, arXiv:1201.5387

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 54: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

5 Asymmetric Dark Matter via Leptogenesis

6 A model of Asymmetric Dark Matter

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 55: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Asymmetric Dark Matter via Leptogenesis

Standard leptogenesis

Generation of lepton number asymmetry by CP violating decays ofheavy Majorana fermion singlets NR (typically type-I seesaw)

NR

L

Φ

+ NR

L

Φ

+ NR

L

Φ

Seeds a lepton number asymmetry L

Transfers to baryon sector through SU(2)L sphaleronsconserving B − L

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 56: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Asymmetric Dark Matter via Leptogenesis

Direct production

One way of producing ADM is to let the two sectors be seeded atthe same time, i.e.,

In addition to NR → LΦ, we have NR → Xφ

X can belong to a mirror world (An, et al., arXiv:0911.4463) or be theADM itself (Falkowski, et al., arXiv:1101.4936)

The mirror world has problems with extra radiation andneutrinos mixing between worlds

The pure ADM model needs extra symmetries to preventDM-neutrino mixing

It is also a Majorana fermion → small or no window (Buckley,

Profumo, arXiv:1109.2164)

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 57: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Asymmetric Dark Matter via Leptogenesis

Asymmetry transfer from L

The asymmetry in L could transfer to both B and X

SU(2)L

L

NR

B

OoE decay

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 58: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Asymmetric Dark Matter via Leptogenesis

Asymmetry transfer from L

The asymmetry in L could transfer to both B and X

Couple X to SU(2)L likebaryons and leptonsBarr, et al, 1990; Kaplan, 1992

SU(2)L

NR

OoE decay

X

L B

SU(2)LSU(2)L

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 59: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Asymmetric Dark Matter via Leptogenesis

Asymmetry transfer from L

The asymmetry in L could transfer to both B and X

Couple X to SU(2)L likebaryons and leptonsBarr, et al, 1990; Kaplan, 1992

Implies weakly interactinglight X , excluded by LEP

SU(2)L

NR

OoE decay

X

L B

SU(2)LSU(2)L

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 60: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Asymmetric Dark Matter via Leptogenesis

Aidnogenesis via Leptogenesis

The basic idea: New gauge group to provide new sphalerons

Extend the gauge sector ofthe SM

Additional sphaleronprocesses

Is this possible to acheive?MB, et al, arXiv:1009.3159

SU(2)L

NR

OoE decay

X

L B

newnew

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 61: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

5 Asymmetric Dark Matter via Leptogenesis

6 A model of Asymmetric Dark Matter

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 62: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Extending the SM gauge group

We want to introduce new spalerons ⇒ extend the gaugegroup

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 63: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Extending the SM gauge group

We want to introduce new spalerons ⇒ extend the gaugegroup

We want (part of) the extended group to couple to both SMand DM

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 64: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Extending the SM gauge group

We want to introduce new spalerons ⇒ extend the gaugegroup

We want (part of) the extended group to couple to both SMand DM

We want to prevent mixing between neutrinos and DM

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 65: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Extending the SM gauge group

We want to introduce new spalerons ⇒ extend the gaugegroup

We want (part of) the extended group to couple to both SMand DM

We want to prevent mixing between neutrinos and DM

GADM = GSM × SU(2)H

Horzontal chiral symmetry providing new spalerons

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 66: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Extending the SM gauge group

We want to introduce new spalerons ⇒ extend the gaugegroup

We want (part of) the extended group to couple to both SMand DM

We want to prevent mixing between neutrinos and DM

GADM = GSM × SU(2)H × SU(3)dc

Horzontal chiral symmetry providing new spalerons

Charge DM under additional “dark color” group to preventmixing with singlets

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 67: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Introduction of new fermion fields

For each SM generation, we also introduce:

A right handed fermion singlet NR (type-I seesaw) ⇒leptogenesis, neutrino masses

A dark sector of fermions xR , xL, which will form a Diracfermion ⇒ ADM

Put different flavors of right handed fields in doublets ofSU(2)H :

(

e

µ

)

R

,

(

u

c

)

R

,

(

d

s

)

R

,

(

x1

x2

)

R

Make xR and xL triplets under SU(3)dc ⇒ xL does not mixwith NR (and some interesting phenomenology)

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 68: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Complete fermion content

Field Y L H C dc

LLα (ναL, ℓαL) −1/2 2 1 1 1

LH (eR , µR) −1 1 2 1 1

τR −1 1 1 1 1

ναR 0 1 1 1 1

QαL (uαL, dαL) 1/6 2 1 3 1

QuH(uR , cR) 2/3 1 2 3 1

QdH(dR , sR) −1/3 1 2 3 1

tR 2/3 1 1 3 1

bR −1/3 1 1 3 1

XH (x1R, x2

R) 0 1 2 1 3

x3R, xα

L0 1 1 1 3

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 69: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Removing the thermal component

XX

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 70: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Removing the thermal component

XX

xx

SU(3)dc

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 71: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Removing the thermal component

xx SM

SU(3)dc

SU(2)H

X

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 72: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Removing the thermal component

SM

SU(3)dc

SU(2)H

X

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 73: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Gauge extension, particle content and predictions

Dark matter properties

The SU(2)H sphalerons satisfy ∆B = 2∆L = 2∆X

Along with SM sphalerons, B − L−X remains non-anomalousand conserved

After sphaleron freezout

X = −11

14B ⇒ mDM = 5.94± 0.42 GeV

SU(3)dc is confining ⇒ DM consists of dark baryons

We expect a thermal abundance of both DM and anti-DM inthe early Universe

Below the SU(3)dc phase transition, the thermal componentgoes into dark mesons

Dark mesons decay to SM via SU(2)H

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 74: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Phenomenology

In the early Universe

We want the dark mesons to decay before BBN ⇒ lowerbound on GH

F

The SU(2)H is going to induce FCNC, from K 0 → eµ:

GHF < 3.6 · 10−12

GeV2

Too low for dark mesons to decay fast enough

Could couple to second and third generation where bounds areweaker

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 75: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Phenomenology

Breaking SU(2)H in stages

Another possibility: SU(2)H is broken to a flavor conservingU(1)

Break SU(2)H by a scalar triplet vev in the flavor conservingdirection

10 20 30 40 50 60

10

20

30

40

50

60

fH fΠ

mHmΠ

For τ < 10−2 sGHF

>5 · 10−11 GeV2

10−10 GeV2

5 · 10−10 GeV2

10−9 GeV2

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 76: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Phenomenology

With τ in the doublet

10 20 30 40 50 60

10

20

30

40

50

60

fH fΠ

mHmΠ

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter

Page 77: A Brief Introduction to Asymmetric Dark Matter · The WIMP miracle Baryons Mass: m N ≃ 1 GeV Abundance: n b/nγ = (6.19±0.15)·10−10 Density: Ω b ≃ 0.046 WIMP Dark Matter

ADM via Leptogenesis A model of ADM

Phenomenology

Conclusions

Our model has the following “nice” features:

Anomaly free extension of the SM gauge groupDark matter and baryon abundances similarDark matter and baryon masses similar and given by similarprocessesDark matter is stable without any additional parityAllows for some interesting phenomenology at low energies,such as flavor violation or possible direct detection

In fairness, also some “ugly” features must be mentioned:

Why a horizontal SU(2)?The assignment of flavors to SU(2)H doublets is artificialDifficult to extend to, e.g., SU(3) flavor symmetry

Mattias Blennow Max–Planck–Institut fur Kernphysik

A Brief Introduction to Asymmetric Dark Matter