44
A Bayesian Approach to Crystal Structure Refinement Dylan Quintana Carnegie Mellon University / NIST Center for Neutron Research

A Bayesian Approach to Crystal Structure Refinement...Gauss-Newton Algorithm Local Minimum Absolute Minimum χ 2 Variation in Parameters Stuck in local minima\爀一攀攀搀 最漀漀搀

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • A Bayesian Approach to Crystal Structure Refinement

    Dylan Quintana

    Carnegie Mellon University / NIST Center for

    Neutron Research

  • Preview

    Crystal Structure

    Refinement

    A Bayesian Approach

    Image: topdefinitions.com

  • Crystal Structure

    Unit Cell

    Symmetry

    Atoms

    Image: saimport.com

  • Monoclinic Triclinic

    Cubic Tetragonal Orthorhombic

    Hexagonal Rhombohedral

    Images: allaboutgemstones.com

  • Image: organicsoul.com

  • Adding atoms

  • Diffraction

    d

    λ

    Bragg’s Law: 2𝑑𝑑 sin𝜃𝜃 = 𝜆𝜆

    θ

  • Peaks from Bragg Angles 2θ Peaks from Bragg Angles 2θ

    Inte

    nsity

  • Peaks from Bragg Angles 2θ Superposition of Peaks

    Inte

    nsity

  • Peaks from Bragg Angles 2θ Diffraction Pattern

    Inte

    nsity

  • Images: ncnr.nist.gov, theochem.unito.it

  • Inte

    nsity

  • Inte

    nsity

  • Inte

    nsity

    Rietveld Refinement: minimize the value χ2

    𝜒𝜒2 = ∑(𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜)2

    𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜

  • Diffraction Pattern

    Cell Parameters a b c α β γ

    Atomic Parameters

    x y z

    Peak Parameters u v w scale

  • (Juan Rodríguez-Carvajal)

    Fitting algorithm: Gauss-Newton See also: GSAS, TOPAS, etc.

    PresenterPresentation NotesGauss-Newton: approximates function with Taylor series

  • Gauss-Newton Algorithm

    Local Minimum

    Absolute Minimum

    χ2

    Variation in Parameters

    PresenterPresentation NotesStuck in local minimaNeed good initial parameters, refinement orderNo guarantee of convergence

  • Refinement for Lazy People

    Dylan Quintana

    Carnegie Mellon University / NIST Center for

    Neutron Research

  • (Paul Kienzle)

    Fitting algorithm: DREAM

    Bumps Bayesian Uncertainty Modeling of Parametric Systems

    PresenterPresentation NotesBumps is a generic fitting package – not applied specifically to diffraction

  • DREAM Algorithm

    Markov Chain

    Monte Carlo

    Differential Evolution

    Bayesian Analysis

    Image: lumick.buroncp.com

    PresenterPresentation NotesGlobal fitting!Markov Chain Monte Carlo – error analysis on parameters

  • BLAND

  • Bumps Library for Analysis of Neutron Diffraction

  • FullProf Library

    Bumps BLAND

    Image: successfullivinginstitute.com

  • BLAND Goals

    Global fitting Eliminate need for intuition User-friendly interface Take over the world

  • Refinement at the push of a button!

    Image: graphicsfuel.com

  • Fitting Example: Al2O3

    Image: alumina-ceramic.net

  • Pre-fit

    χ2 = 363.927

  • Post-fit: Parameters

    Parameter Value 95% Interval Al1 B 0 [0, 0.063] Al1 z 0.352282 [0.35188, 0.35279] O1 B 0.0001 [0, 0.064] O1 x 0.69347 [0.6929, 0.6941] a 4.760787 [4.76068, 4.76100] c 13.00072 [13.0000, 13.0015] scale 1.4711 [1.457, 1.519] u 0.1721 [0.161, 0.185] v -0.1188 [-0.139, -0.092] w 0.0772 [0.069, 0.086]

  • Post-fit: Diffraction Pattern

    Inte

    nsity

    Observed

    Calculated

    χ2 = 9.486

  • Post-fit: Correlation Plot

    Al B

    Al z O B

    O x

    a

    c

    scale

    u

    v

    w

  • BLAND Goals

    Global fitting Eliminate need for intuition User-friendly interface Extensive testing Feature completeness Take over the world

  • Summary

    Crystal structures and diffraction

    The refinement process

    The old ways (FullProf)

    The new ways (BLAND)

  • Special Thanks

    William Ratcliff

    Paul Kienzle

    Alex Zhang

    Julie Borchers

    SURF directors

  • ?

  • Appendix

  • Why use neutrons?

    -4

    -2

    0

    2

    4

    6

    8

    10

    12 Neutron X-ray

    Cr Mn

    Fe

    Co Ni Cu Zn

    Scaled scattering length densities:

    Neutrons can differentiate between similar elements, and even isotopes of the same element

    Sc Ti

    V

  • COMPATIBLE INCOMPATIBLE

    (Awkward)

  • Cell constants: a, b, c, α, β, γ

    Refinement Parameters

  • Refinement Parameters

    Atomic positions: x, y, z

  • Refinement Parameters

    Peak width

    and scale

    A Bayesian Approach to Crystal Structure RefinementPreviewSlide Number 3Slide Number 4Slide Number 5Adding atomsDiffractionPeaks from Bragg Angles 2θPeaks from Bragg Angles 2θPeaks from Bragg Angles 2θSlide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Gauss-Newton AlgorithmSlide Number 19Refinement for Lazy PeopleSlide Number 21DREAM AlgorithmSlide Number 23Slide Number 24Slide Number 25BLAND GoalsRefinement at the push of a button!Fitting Example: Al2O3Pre-fitSlide Number 30Post-fit: ParametersPost-fit: Diffraction PatternPost-fit: Correlation PlotBLAND GoalsSummarySpecial Thanks?AppendixWhy use neutrons?Slide Number 40Slide Number 41Refinement ParametersRefinement ParametersRefinement Parameters