24
A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with Adaptive Bandwidth Control and 4/4.5 Prescaler for Digital TV Tuners Lei Lu 1,2 , Zhichao Gong 1,2 , Youchun Liao 2 , Hao Min 1 , Zhangwen Tang 1 1 Fudan University, Shanghai, China 2 Ratio Microelectronics, Shanghai, China

A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with

Adaptive Bandwidth Control and 4/4.5 Prescaler for Digital TV Tuners

Lei Lu1,2, Zhichao Gong1,2, Youchun Liao2, Hao Min1, Zhangwen Tang1

1 Fudan University, Shanghai, China2 Ratio Microelectronics, Shanghai, China

Page 2: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 2

Outline• Motivation

• Synthesizer Architecture

• Proposed TechniquesAdaptive Bandwidth ControlDivision-Ratio-Based AFC Technique4/4.5 Prescaler

• Measurement Results

• Conclusions

Page 3: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 3

Motivation

• Digital TV tuners need a wideband frequency synthesizer such as DVB-T

• Loop bandwidth changes greatly during a wide frequency range

• Wideband VCO needs AFC to select the sub-band automatically

• Low phase noise and low phase error are required in the receiver

Page 4: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 4

Pros & Cons• Advantages

Loop bandwidth is adaptively controlledResidual fractional error is reduced and VCO clock is counted directlyLower phase noise due to the 4/4.5 prescalerMeasured low phase noise, low phase error and fast locking time

• DisadvantagesThe 4/4.5 prescaler leads to a little bit higher powerThe fractional spur is high when fractional modulus is close to 0 or 1

Page 5: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 5

Synthesizer Block Diagram

LPF

Prescaler4/4.5

P/S Counter

Double-edge Retiming

PFD

3rd-order DSM

Dithering

AFC8

Vref

s1fref

25MHz

s1

R1

R1

C1/2

C2

C2 R3

R3

C3

C3

Vref

s1

s1

s2

s2

VCO

fout

0.975~1.96GHz

2323 3.F[22:0]

N[7:0]+.F[23]9

9

Differential CP

4 MSBs

8

Page 6: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 6

Loop Bandwidth

• KVCO and fvco are two factors affecting loop bandwidth

• Maintain loop bandwidthOutput frequency fvco varies greatly across the wide range, but ICP also is tuned to compensate fvco

KVCO is maintainedThen the loop bandwidth is adaptively controlled across the whole frequency range

CP VCO ref 1 1

vco 1 2 3

Loop bandwidth2

= ⋅+ +

I K f RCπf C C C

Page 7: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 7

Simplified LC-tank of Multiband VCO• Switched capacitors and

switched varactors are both adjusted simultaneously with different values of units to maintain both KVCO and band steps

• α1 ~ α255 and β1 ~ β255 are programmed coefficients

• See [Lu, et al., IEEE RFIC Symp., 2008]

f

1 f

ctrl

osc+ osc-

en1

255 f

f

1 f

255 fen255

v v

1 v 1 v

en1

255 v 255 v

en255

ctrlB

ctrlB

LC

Page 8: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 8

Multiband VCO Calibration Using AFC• The purpose of AFC is to select the sub-band of

VCO whose center frequency is closest to the target frequency automatically

Page 9: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 9

Conventional AFC• Frequency comparison by counter• Selected fvco is closest to N*fref, not (N+.F)*fref

Residual fractional error .F*fref is generated

ref

divref

vco

Page 10: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 10

Division-Ratio-Based AFC

• Ndec is decoded from the division ratio N.Fdec, Residual fractional error is reduced to 2-4*fref

Page 11: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 11

Direct Count of VCO Clock

• High-speed asynchronous divide-by-2 counters are used to count the VCO clock directly

Ncntr cntr dec

ref

AFC

cntr

cntr cntr

cntr cntr cntr

vco

vco

ref

Counter Ncntr

dec dec

Page 12: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 12

Divider Chain• N=4, P=9~20, S=0~7, the overall division ratio

without DSM is N*P+0.5*S=36~83.5 (step=0.5)

Page 13: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 13

Behavioral Simulations of Phase Noise• Comparison between step size of 1 and step size of 0.5• Similar phenomenon in [Yang, et. al., IEEE JSSC, Nov.

2006]step size of 1 step size of 0.5

102 103 104 105 106 107-150

-130

-110

-90

-70

Frequency Offset (Hz)

Pha

se N

oise

(dB

c/H

z)

total

VCO

CP

LPF

Ref.Div

DSM

102 103 104 105 106 107-150

-130

-110

-90

-70

Frequency Offset (Hz)

Pha

se N

oise

(dB

c/H

z)

total

VCO

CP

LPF

Ref.

DSM

Div

4.5dB reduction

Page 14: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 14

Schematic of 4/4.5 Prescaler

• Works at both rising edge and falling edge• In divide-by-4.5 mode when mod is high

Page 15: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 15

Timing Chart• Divide-by-4.5 mode• Q8 lags half a period behind Q5

vco

4.5

9

9

9

9

4.5 4.5

4.5 4.5 4.5

Page 16: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 16

Double-Edge-Triggered Retiming Circuit• Comparison between single and double edge

single-edge-triggered retiming

double-edge-triggered retiming

div

vco

vco

div

Page 17: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 17

Other Circuit Details

• VCOPower supply from LDOComplementary cross-coupled transistorsTwo tail inductors to lower the phase noise

• Charge PumpDifferentially configuredRail-to-rail CMFB

• Loop FilterOn-chip MIM capacitor and high-res poly resistor

• DSM & P/S CounterProgrammed using Verilog language

Page 18: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 18

Die Micrograph

Page 19: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 19

VCO Gains and Band Steps

0 50 100 150 200 2504

5

6

7

8

9

10

11

12

Sub-band (0~255)

KV

CO (M

Hz/

V)

0 50 100 150 200 2503

4

5

6

7

8

9

Ban

d S

tep

(MH

z)

Page 20: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 20

Loop Bandwidth & Phase Error

1 1.2 1.4 1.6 1.8 20.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

Output Frequency (GHz)

Pha

se E

rror (

Deg

)

1 1.2 1.4 1.6 1.8 20

20

40

60

80

100

120

140

160

Loop

Ban

dwid

th (k

Hz)

Page 21: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 21

Phase Noise• The division ratio is 53.56

Target

Page 22: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 22

Locking Time

1.11.21.31.41.5

Freq

uenc

y (G

Hz)

0 10 20 30 40 501

1.11.21.31.4

Time (μs)

Freq

uenc

y (G

Hz)

5 15 25 351.21

1.2121.2141.216

start

Page 23: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 23

Performance Summary

20 μs (6.4 μs for AFC)Locking Time< 1.5 HzFrequency

Resolution

0.6° to 1.05°Phase Error (rms)

83 to 102 kHz

Loop Bandwidth

-123@1 MHz14 mACurrent

-91@ 3kHzPhase Noise

(dBc/Hz)

1.8 VSupply Voltage

0.975 to 1.96 GHz (67.1%)

Output Frequency1.58 *1 mm2Die Area

25 MHzReference Frequency

0.18 μm CMOSTechnology

Page 24: A 975 to 1960 MHz, Fast-Locking Fractional-N Synthesizer with …rfic.fudan.edu.cn/pulications/ieee_j_c/isscc09_ppt.pdf · 2009-04-09 · A 975 to 1960 MHz, Fast-Locking Fractional-N

© 2009 IEEE International Solid-State Circuits Conference © 2009 IEEE 24

Conclusions

• Have demonstrated loop bandwidth is maintained in calibration-enable mode

• Have obtained 20 μs locking time and residual fractional error is reduced for AFC

• Have designed a 4/4.5 prescaler to obtain lower output phase noise contributed from DSM

• Have demonstrated low phase noise and low phase error performance across the whole wideband tuning range