23
9.7 Taylor Series

9.7 Taylor Series. Brook Taylor 1685 - 1731 Taylor Series Brook Taylor was an accomplished musician and painter. He did research in a variety of areas,

Embed Size (px)

Citation preview

9.7 Taylor Series

Brook Taylor1685 - 1731

Taylor Series

Brook Taylor was an accomplished musician and painter. He did research in a variety of areas, but is most famous for his development of ideas regarding infinite series.

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 0.2 0.25 0.3

-0.3

-0.2

-0.1

0.1

0.2

0.3

x

y

Identify this graph:What if we zoom out a bit?And a bit more?

-4 -3 -2 -1 1 2 3 4

-2

-1

1

2

x

y

-8 -6 -4 -2 2 4 6 8

-4

-2

2

4

x

y

What the?! The actual function is:

!17!15!13!11!9!7!5!3)(

171513119753 xxxxxxxxxxf

Suppose we wanted to find a fifth degree polynomial of the form:

at 0x that approximates the behavior of

If we make , and the first, second, third, fourth, and fifth derivatives the same, then we would have a pretty good approximation.

0 0P f

55

44

33

2210)( xaxaxaxaxaaxP

xxf sin)(

)0(0 fP )0(0 fP )0(0 fP

)0(0

iv

fP iv

)0(0v

fP v

00P a

55

44

33

2210)( xaxaxaxaxaaxP xxf sin)(

xxf sin)( 00sin)0( f

55

44

33

2210)( xaxaxaxaxaaxP

0f00a

0P

xxf cos)( 10cos)0( f

45

34

2321 5432)( xaxaxaxaaxP

0f 1

1a 0P1)0( aP

xxf sin)( 00sin)0( f

35

2432 4534232)( xaxaxaaxP

0f 0

22a 0P 22)0( aP

02 a

55

44

33

2210)( xaxaxaxaxaaxP xxf sin)(

02 a

00P axxf sin)(

00sin)0( f

55

44

33

2210)( xaxaxaxaxaaxP

00a

xxf cos)( 10cos)0( f

45

34

2321 5432)( xaxaxaxaaxP

11a1)0( aP

xxf sin)( 00sin)0( f

35

2432 4534232)( xaxaxaaxP

022a22)0( aP

11 a

00 a

55

44

33

2210)( xaxaxaxaxaaxP xxf sin)(

02 a11 a00 a

xxf cos)( 10cos)0( f

0f -1323 a

0P

2543 3453423)( xaxaaxP

323)0( aP

!3

1

23

13

a

xxf iv sin)( 00sin)0( ivf

xaaxP iv54 2345234)(

0ivf04234 a

0ivP4234)0( aP iv

04 a

xxf cos)()5( 10cos)0()5( f

5)5( 2345)( axP

0)5(f1

5!5 a 0)5(P5

)5( !5)0( aP !5

15 a

55

44

33

2210)( xaxaxaxaxaaxP xxf sin)(

02 a11 a00 a

xxf cos)( 10cos)0( f -1323 a

2543 3453423)( xaxaaxP

323)0( aP

!3

1

23

13

a

xxf iv sin)( 00sin)0( ivf

xaaxP iv54 2345234)(

04234 a

4234)0( aP iv 04 a

xxf cos)()5( 10cos)0()5( f

5)5( 2345)( axP

15!5 a 5

)5( !5)0( aP !5

15 a

3a!3

1

55

44

33

2210)( xaxaxaxaxaaxP xxf sin)(

02 a11 a00 a 04 a!5

15 a3a

!3

1

)(xP 0a 1a 2a 3a 4a 5a 5x4x3x2xx

0 0 01

!3

1!5

1

53

!5

1

!3

11)( xxxxP

P(x) is the fifth degree polynomial thathas the same first through fifth derivatives at x = 0 that f(x) = sin x has. We call P(x) the 5th degree Taylor Polynomial of f(x) at x = 0.

2 3 40 1 2 3 4P x a a x a x a x a x ln 1f x x

)1ln()( xxf

01ln)0( f 0)0( aP 00 a

1

1)(

xxf

110

1)0(

f

44

2321 432)( xaxaxaaxP

1)0( aP 11 a

2 3 40 1 2 3 4P x a a x a x a x a x

2

1

1f x

x

10 1

1f

22 3 42 6 12P x a a x a x

20 2P a 2

1

2a

2 3 40 1 2 3 4P x a a x a x a x a x ln 1f x x

3

12

1f x

x

0 2f

3 46 24P x a a x

30 6P a 3

2

6a

4

4

16

1f x

x

4 0 6f

4424P x a

440 24P a 4

6

24a

2

1

1f x

x

10 1

1f

22 3 42 6 12P x a a x a x

20 2P a 2

1

2a

2 3 40 1 2 3 4P x a a x a x a x a x ln 1f x x

2 3 41 2 60 1

2 6 24P x x x x x

2 3 4

02 3 4

x x xP x x ln 1f x x

P x

f x

If we plot both functions, we see that near zero the functions match very well!

This pattern occurs no matter what the original function was!

Our polynomial: 2 3 41 2 60 1

2 6 24x x x x

has the form: 42 3 40 0 0

0 02 6 24

f f ff f x x x x

or: 42 3 40 0 0 0 0

0! 1! 2! 3! 4!

f f f f fx x x x

This is called a Taylor Polynomial. If we continue this pattern infinitely, we get a Taylor Series. When theseries is centered at x = 0, it is called a Maclaurin Series.

If we want to center the series (and it’s graph) at some point other than zero, we get the Taylor Series:

Taylor Series:

(generated by f at )x a

2 3

2! 3!

f a f aP x f a f a x a x a x a

Maclaurin Series:

(generated by f at )

0x

...!3

)0(

!2

)0()0()0()( 32

x

fx

fxffxP

2 3 4 5 61 0 1 0 1

1 0 2! 3! 4! 5! 6!

x x x x xP x x

Example: Generate the Maclaurin Series for cosy x

cosf x x 0 1f sinf x x 0 0f

cosf x x 0 1f sinf x x 0 0f 4 cosf x x 4 0 1f

2 4 6 8 10

1 2! 4! 6! 8! 10!

x x x x xP x

...!3

)0(

!2

)0()0()0()( 32

x

fx

fxffxP

The formula for Maclaurin Series is:

cosy x 2 4 6 8 10

1 2! 4! 6! 8! 10!

x x x x xP x

The more terms we add, the better our approximation.

example: cos at 2

y x x

2 3

0 10 1

2 2! 2 3! 2P x x x x

cosf x x 02

f

sinf x x 1

2f

cosf x x 02

f

sinf x x 12

f

4 cosf x x 4 0

2f

3 5

2 2

2 3! 5!

x xP x x

...!3

)()(

!2

)()())(()()(

axaf

axafaxafafxP

When referring to Taylor polynomials, we can talk about number of terms, order or degree.

2 4

cos 12! 4!

x xx This is a polynomial in 3 terms.

It is a 4th order Taylor polynomial, because it was found using the 4th derivative.

It is also a 4th degree polynomial, because x is raised to the 4th power.

The 3rd order polynomial for is , but it is degree 2.

cos x2

12!

x

The x3 term drops out when using the third derivative.

This is also the 2nd order polynomial.

A recent AP exam required the student to know the difference between order and degree.

A Taylor Polynomial is used to approximatea function.

!4!21cos

42 xxx

A Taylor Series is equal to a function.

...!5!4!2

1cos542

xxx

x

In practice, we usually use a Taylor Polynomialto approximate a function so we also want toknow the error in using the approximation.

!4!21cos

42 xxx

The error (also known as the remainder, Rn(x))is the difference between the actual value of the function, f(x), and the polynomial of degree n,Pn(x).

)()()( xRxPxf nn )(!4!2

1cos 4

42

xRxx

x )()()( xRxPxf nn

)()()( xRxPxf nn

Taylor’s Theorem specifies that the remainderRn(x) (also called the Lagrange Error or Lagrangeform of the remainder) is given by the formula:

1)1(

)()!1(

)()(

nn

n axn

zfxR

This looks a lot like the next term in the TaylorSeries except that it is not evaluated at a butat some number z which is between x and a.

z

z

)(!

)()(...

!2

)()())(()()(

2

xRn

axaf

axafaxafafxf n

nn

1)1(

)()!1(

)()(

nn

n axn

zfxR

)(!

)()(...

!2

)()())(()()(

2

xRn

axaf

axafaxafafxf n

nn

Taylor’s Theorem guarantees that there exists a value of z between a and x such that:

)()()( xRxPxf nn

It usually isn’t possible to find the value of but you can often find an upper bound on it.This will be called max

zf n 1

zf n 1

55

4 )0(!5

)()( x

zfxR

)(!4!2

1cos 4

42

xRxx

x Example:

Therefore the Lagrange error term

zzfxxf sin)( then ,cos)( Since 5

zsin of value theknowt don' We 1sin1 that know do but we z

1)( that meanswhich 5 zf

555

4 !5

1)0(

!5

)()( xx

zfxR

1)1(

)()!1(

)()(

nn

n axn

zfxR