22
9/26/2012 PHY 113 A Fall 2012 -- Lecture 12 1 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan for Lecture 12: Chapter 7 -- The notion of work 1.Kinetic energy and the Work-Kinetic energy theorem 2.Potential energy and work; conservative forces

9/26/2012PHY 113 A Fall 2012 -- Lecture 121 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan for Lecture 12: Chapter 7 -- The notion of work 1.Kinetic

Embed Size (px)

Citation preview

PHY 113 A Fall 2012 -- Lecture 12 19/26/2012

PHY 113 A General Physics I9-9:50 AM MWF Olin 101

Plan for Lecture 12:

Chapter 7 -- The notion of work

1. Kinetic energy and the Work-Kinetic energy theorem

2. Potential energy and work; conservative forces

PHY 113 A Fall 2012 -- Lecture 12 29/26/2012

PHY 113 A Fall 2012 -- Lecture 12 39/26/2012

PHY 113 A Fall 2012 -- Lecture 12 49/26/2012

PHY 113 A Fall 2012 -- Lecture 12 59/26/2012

PHY 113 A Fall 2012 -- Lecture 12 69/26/2012

Note: Because of the special lecture, the tutorial this evening will be moved to Olin 104 after 6:30 PM.

PHY 113 A Fall 2012 -- Lecture 12 79/26/2012

Back to work:

F

dr

ri rj

rFr

rdW

f

i

fi

PHY 113 A Fall 2012 -- Lecture 12 89/26/2012

A man must lift a refrigerator of weight mg to a height h to get it to the truck.

iclicker exercise:For which method does the man do more work:

A. Vertically lifting the refrigerator at constant speed to height h?

B. Moving the refrigerator up the ramp of length L at constant speed with h=L sin .q

PHY 113 A Fall 2012 -- Lecture 12 99/26/2012

FP

q

mg

n

fk

xi xf

Assume FP sin q <<mg

Work of gravity? 0

Work of FP? FP cos q (xf-xi)

Work of fk?-mkn (xf-xi)=-mk(mg- FP sin ) q (xf-xi)

Multiple forces on block moving from xi to xf

PHY 113 A Fall 2012 -- Lecture 12 109/26/2012

iclicker exercise:Which of the following statements about friction forces are true.

A. Friction forces always do positive work.B. Friction forces always do negative work.C. Friction forces can do either positive or

negative work.

PHY 113 A Fall 2012 -- Lecture 12 119/26/2012

Why is work a useful concept?

Consider Newton’s second law:

Ftotal = m a Ftotal · dr= m a · dr

dtdtd

mdtdtd

dtd

mddtd

mdmdf

i

f

i

f

i

f

i

f

i

total vvrv

rv

rarFr

r

r

r

r

r

r

r

r

r

Wtotal = ½ m vf2 - ½ m vi

2

Kinetic energy (joules)

PHY 113 A Fall 2012 -- Lecture 12 129/26/2012

Introduction of the notion of Kinetic energy

Some more details:

Consider Newton’s second law:

Ftotal = m a Ftotal · dr= m a · dr

dtdtd

mdtdtd

dtd

mddtd

mdmdf

i

f

i

f

i

f

i

f

i

t

t

t

ttotal v

vrvr

vrarF

r

r

r

r

r

r

Wtotal = ½ m vf2 - ½ m vi

2

Kinetic energy (joules)

22

21

21

21

if

f

i

t

tmvmvmddmdt

dtd

mf

i

f

i

vvvvv

v v

v

PHY 113 A Fall 2012 -- Lecture 12 139/26/2012

Kinetic energy: K = ½ m v2

units: (kg) (m/s)2 = (kg m/s2) m

N m = joules

Work – kinetic energy relation:

Wtotal = Kf – Ki

PHY 113 A Fall 2012 -- Lecture 12 149/26/2012

Kinetic Energy-Work theorem

22

2

1

2

1if

f

i

totalfi mvmvdW rF

Example: A ball of mass 10 kg, initially at rest falls a height of 5m. What is its final velocity?

i

f

h

??fv

0iv

22

2

1

2

1iffi mvmvmghW

0

smmghv f /899.9)5)(8.9)(2(2

PHY 113 A Fall 2012 -- Lecture 12 159/26/2012

ExampleA block, initially at rest at a height h, slides down a frictionless incline. What is its final velocity?

hh=0.5m

22

2

1

2

1iffi mvmvmghW

0

smmghv f /13.3)5.0)(8.9)(2(2

PHY 113 A Fall 2012 -- Lecture 12 169/26/2012

Example A mass m initially at rest and attached to a spring compressed a distance x=-|xi|, slides on a frictionless surface. What is the velocity of the mass when x=0 ?

k

smv

mxmNkkgm

xm

kv

mvmvkxW

f

i

if

ififi

/63.02.05.0

5

2.0 /5 5.0For

2

1

2

1

2

1 222

0

PHY 113 A Fall 2012 -- Lecture 12 179/26/2012

Special case of “conservative” forces conservative non-dissipative

if

f

i

fi UUdW rrrF

F

write topossible isit , forces edissipativ-nonFor

iiff

ifif

f

i

fi

mgyUmgyU

mgymgyyymgdW

)( and )(

:Earth of surfacenear gravity of Example

rr

rF

PHY 113 A Fall 2012 -- Lecture 12 189/26/2012

2

212

21

2212

21

)( and )(

:force spring of Example

iiff

if

x

x

f

i

fi

kxUkxU

kxkxdxxkdWf

i

rr

rF

k

PHY 113 A Fall 2012 -- Lecture 12 199/26/2012

iclicker exercise:Why would you want to write the work as the difference between two “potential” energies?

A. Normal people wouldn’t.B. It shows a lack of imagination.C. It shows that the work depends only on the

initial and final displacements, not on the details of the path.

dx

dUF

dU

x

ref

that Note

:functionenergy potential Define

rFrr

r

PHY 113 A Fall 2012 -- Lecture 12 209/26/2012

(constant) 2

1

2

1

:Or2

1

2

1

22

22

EUmvUmv

mvmvUUW

iiff

ififfi

rr

rr

Work-Kinetic Energy Theorem for conservative forces:

PHY 113 A Fall 2012 -- Lecture 12 219/26/2012

Energy diagrams 22

2

1

2

1kxmvE

2max2

1221

2max2

1

max

,0(0)

:0 when :Note

,0

: when :Note

kxmvU

x

kxEv

xx

PHY 113 A Fall 2012 -- Lecture 12 229/26/2012

Example: Model potential energy function U(x) representing the attraction of two atoms