3
 10.  Thin Cylinder Theory at a Glance (for IES, GATE, PSU) 1. Thin Rings Uniformly distributed loading (radial) may be due to either  Internal pressure or external pressure  Centrifugal force as in the case of a rotating ring Case-I: Internal pressure or external pressure   s = qr Where q = Intensity of loading in kg/cm of O ce  r = Mean centreline of radius s = circumferential tension or hoop’s tension (Radial loading ducted outward)  Unit stress, σ  = = s qr  A A   Circumferential strain, E c qr  AE σ = =   Diametral strain, ( d ) = Circumferential strain, ( c ) Case-II: Centrifugal force  Hoop's Tension, 2 2 ω =  w r s g  Where w = wt. per unit length of circumferential element ω  = Angular velocity  Radial loading, q = 2 ω =  w r s r g   Hoop's stress, 2 2 . σ ω = = s w r  A Ag  2. Thin Walled Pressure Vessels For thin cylinders whose thickness may be considered small compared to their diameter. i Inn er dia of the cy linde r (d ) 15 or 20 wall thick ness (t) >  Page 308 of 429

89589540-Strength-of-Materials-by-S-K-Mondal-10.pdf

Embed Size (px)

Citation preview

8/14/2019 89589540-Strength-of-Materials-by-S-K-Mondal-10.pdf

http://slidepdf.com/reader/full/89589540-strength-of-materials-by-s-k-mondal-10pdf 1/3

 

10.  Thin Cylinder

Theory at a Glance (for IES, GATE, PSU)1. Thin Rings

Uniformly distributed loading (radial) may be due to

either

•  Internal pressure or external pressure

•  Centrifugal force as in the case of a rotating ring

Case-I: Internal pressure or external pressure 

•  s = qr Where q = Intensity of loading in kg/cm of Oce 

r = Mean centreline of radius

s = circumferential tension or hoop’s

tension

(Radial loading ducted outward) 

•  Unit stress, σ  = =s qr 

 A A 

•  Circumferential strain,E

c

qr 

 AE 

σ ∈ = =  

•  Diametral strain, (∈d ) = Circumferential strain, (∈c

)

Case-II: Centrifugal force

•  Hoop's Tension,

2 2ω 

= w r 

sg

  Where w = wt. per unit length of circumferential element 

ω  = Angular velocity

•  Radial loading, q =

2ω 

= w r s

r g 

•  Hoop's stress,2 2.σ ω = =

s wr 

 A Ag 

2. Thin Walled Pressure Vessels

For thin cylinders whose thickness may be considered small compared to their diameter.

iInner dia of the cylinder (d )

15 or 20wall thickness(t)

>  

Page 308 of 429

8/14/2019 89589540-Strength-of-Materials-by-S-K-Mondal-10.pdf

http://slidepdf.com/reader/full/89589540-strength-of-materials-by-s-k-mondal-10pdf 2/3

Chapter-10 Thin Cylinder S K Mondal’s

3. General Formula

1 2

1 2

σ σ + =

  p

r r t  

Where 1σ  =Meridional stress at A

2σ  =Circumferential / Hoop's stress

P = Intensity of internal gas pressure/ fluid pressure

t = Thickness of pressure vessel.

4. Some cases:

•  Cylindrical vessel

1 2=

2 4 2σ σ = = =

 pr pD pr pD

t t t t  1 2

  ,r r r ⎡ ⎤→ ∞ =⎣ ⎦  

1 2max

2 4 8

σ σ τ 

−= = =

 pr pD

t t 

 

•  Spherical vessel

1 22 4

σ σ = = = pr pD

t t   [r1 = r2 = r]

•  Conical vessel

1 1

tan[ ]

2 cos

 pyr 

α σ 

α = → ∞   and

2

tan

cos

 py

α σ 

α =  

Notes:

•   Volume 'V' of the spherical shell,3V=

6

π 

i D

1/36

π 

⎛ ⎞⇒ = ⎜ ⎟

⎝ ⎠i

V  D  

•  Design of thin cylindrical shells is based on hoop's stress 

5. Volumetric Strain (Dilation)

•  Rectangular block,

0

 x y z

Δ=∈ + ∈ + ∈  

• Cylindrical pressure vessel

∈1=Longitudinal strain =   [ ]1 2 1 22

 pr 

 E E Et 

σ σ μ μ − = −  

2∈ =Circumferential strain =   [ ]2 1 1 22

σ σ μ μ − = −

 pr 

 E E Et  

 Volumetric Strain,1 2

2 [5 4μ] [5 4μ]2 4

Δ=∈ + ∈ = − = −

o

V pr pD

V Et Et   

i.e. ( ) ( ) ( )1 2, 2

vVolumetric strain longitudinal strain circumferential strain∈ = ∈ + × ∈  

•  Spherical vessels

1 2 [1 ]2

 pr 

 Et μ ∈=∈ =∈ = −  

α

α   α

α

Page 309 of 429

8/14/2019 89589540-Strength-of-Materials-by-S-K-Mondal-10.pdf

http://slidepdf.com/reader/full/89589540-strength-of-materials-by-s-k-mondal-10pdf 3/3

Chapter-10 Thin Cylinder S K Mondal’s

0

33 [1 ]

2

V pr 

V Et μ 

Δ= ∈= −  

6. Thin cylindrical shell with hemispherical end

Condition for no distortion at the junction of cylindrical and hemispherical portion

2

1

1

2

t

t

μ 

μ 

−=

−  Where, t1= wall thickness of cylindrical portion

t2 = wall thickness of hemispherical portion

7. Alternative method

Consider the equilibrium of forces in the z-direction acting on the part

cylinder shown in figure.

Force due to internal pressure p acting on area π  D2/4 = p. π  D2/4

Force due to longitudinal stress sL acting on area π  Dt =1

σ π  Dt

Equating:  p. π  D2/4 =1

σ π  Dt

or  14 2

pd pr  

t tσ    = =  

Now consider the equilibrium of forces in the x-direction acting on the

sectioned cylinder shown in figure. It is assumed that the

circumferential stress2

σ   is constant through the thickness of the

cylinder.

Force due to internal pressure p acting on area Dz = pDz

Force due to circumferential stress2

σ   acting on area 2tz =2

σ  2tz

Equating: pDz =2

σ  2tz

or 2

2

pD pr  

t tσ    = =  

Page 310 of 429