24

Click here to load reader

8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

  • Upload
    vuanh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Woodlands StudyStage 6 Geography, Biology and Senior Science

Students will:

measure abiotic variables including soils (texture, colour, pH, salinity); light, temperature, wind, humidity compare soils and describe landform relate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance of organisms using transects and quadrats describe trophic interactions found between organisms in the area

The web based student lessons on Woodlands cover the above tasks and allows students to do the following:

gather information from a secondary source to construct food chains and webs investigate adaptations to factors in the environment identify and describe in detail adaptations of a plant and animal describe and explain the short and long-term consequences on the ecosystem of species competing for resources (gum leaf skeletoniser) identify the impact of humans

Fieldwork Sites: This study can be completed at REEC, Temora or Adelong Falls Goldmill Ruins

Page 2: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Stage 6 Syllabus Mapping Grid - Box Gum Grassy Woodlands Study

Outcomes Addressed

Woodlands Study Activities Stage 6 Preliminary Biology Stage 6 Preliminary Senior Science Preliminary Stage 6 Geography

1. Site Description 2,13,14,15,16 7, 13,14,15,16 2,5,6,13

2. Measuring Abiotic Features 2,12,13,14,15,16 12, 13,14,15,16 2,7,8,10,11,13

3. Identifying problems in fieldwork methods 2,11,12, 13,14,15,16 2,11,12, 13,14,15,16 10,13

4. Vegetation abundance and distribution using quadrats 2,7,8,12, 13,14,15,16 7,12, 13,14,15,16 2,8,1011,13

5. Field Sketch of quadrat 2,7,8,12, 13,14,15,16 7,12, 13,14,15,16 8,10,11,13

6. Herbivory of leaves 2,7,8, 13,14,15,16 7,12, 13,14,15,16 8,10,13,

7. Adaptations of flora 2,7,8, 13,14,15,16 7,12, 13,14,15,16 2,8,10,13,

8. Food Chains 2,7,8, 13,14,15,16 4,7,12, 13,14,15,16 2,8,10,13

9. Evidence of Fauna 2,7,8, 13,14,15,16 7,12, 13,14,15,16 2,8,10,13

10. Transect of biotic features 2,7,8, 13,14,15,16 7,12, 13,14,15,16 2,8,10,11,13

11. Calculating Biomass 13,14,15,16 4,7,12, 13,14,15,16 2,8,10,11,13

12. Human Impact 4, 13,14,15,16 4, 13,14,15,16 2,6

Page 3: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Woodlands Study

ScienceStage 6

Skills Module 8.1 Mapping Grids

for Biology and Senior Science

Page 4: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Module 8.1 Skills Content for Biology and Senior Science Addressed in Study

Students:

1. D

escr

iptio

n

2. A

biot

ic F

eatu

res

3. F

ield

wor

k Pr

oble

ms

4. Q

uadr

ats

5. F

iled

Sket

ch

6. H

erbi

vory

of L

eave

s

7. A

dapt

atio

ns

8. F

ood

chai

ns

9. E

vide

nce

of F

auna

10. T

rans

ect

11. B

iom

ass

Cal

c

12. H

uman

Impa

ct

11.1 identify data sources to:a) analyse complex problems to determine appropriate ways in which each aspect may be researched.b) determine the type of data that needs to be collected and explain the qualitative or quantitative analysis that will be required

for this data to be usefulX X X X X X X X X x

c) identify the orders of magnitude that will be appropriate and the uncertainty that may be present in the measurement of data Xd) identify and use correct units for data that will be collected X Xe) recommend the use of an appropriate technology or strategy for data collection or gathering information that will assist

efficient future analysisX

11.2 plan first-hand investigations to:a) demonstrate the use of the terms ‘dependent’ and ‘independent’ to describe variables involved in the investigation

x

b) identify variables that need to be kept constant, develop strategies to ensure that these variables are kept constant and demonstrate the use of a control

x X

c) design investigations that allow valid and reliable data and information to be collected x Xd) describe and trial procedures to undertake investigations and explain why a procedure, a sequence of procedures or the

repetition of procedures is appropriateX

e) predict possible issues that may arise during the course of an investigation and identify strategies to address these issues if necessary

X

11.3 choose equipment or resources by:a) identifying and/or setting up the most appropriate equipment or combination of equipment needed to undertake an

investigation

X X X X X

b) carrying out a risk assessment of intended experimental procedures and identifying and addressing potential hazards Xc) identifying technology that could be used during investigations and determining its suitability and effectiveness for its

potential role in the procedure or investigationsd) recognising the difference between destructive and non-destructive testing of material and analysing potentially different

results of these two proceduresX X X X X X X X X X X

Page 5: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students:

1. D

escr

iptio

n

2. A

biot

ic F

eatu

res

3. F

ield

wor

k Pr

oble

ms

4. Q

uadr

ats

5. F

iled

Sket

ch

6. H

erbi

vory

of L

eave

s

7. A

dapt

atio

ns

8. F

ood

chai

ns

9. E

vide

nce

of F

auna

10. T

rans

ect

11. B

iom

ass

Cal

c

12. H

uman

Impa

ct

12.1 perform first-hand investigations by:a) carrying out the planned procedure, recognising where and when modifications are needed and analysing the

effect of these adjustments

X X X X X X X X X X X

b) efficiently undertaking the planned procedure to minimise hazards and wastage of resources Xc) disposing of any waste materials produced carefully and safely during the investigation Xd) identifying and using safe work practices during investigations X X X X X X X X X X X

12.2 gather first-hand information by:a) using appropriate data collection techniques, employing appropriate technologies including data loggers and

sensors

X

b) measuring, observing and recording results in accessible and recognisable forms, carrying out repeat trials as appropriate

X X X X

12.3 gather information from secondary sources by:a) accessing information from a range of resources including popular scientific journals, digital technologies and

the internetb) practising efficient data collection techniques to identify useful information in secondary sourcesc) extracting information from numerical data in graphs and tables as well as from written and spoken material in all

its formsd) summarising and collating information from a range of resourcese) identifying practising male and female Australian scientists, the areas in which they are currently working and

information about their research12.4 process information to:a) assess the accuracy of any measurements and calculations and the relative importance of the data and

information gathered

X X X X X X X X X

b) identify and apply appropriate mathematical formulae and concepts X X X X Xc) best illustrate trends and patterns by selecting and using appropriate methods, including computer-assisted

analysisd) evaluate the *relevance/validity of first-hand and secondary information and data in relation to the area of

investigationX

e) assess the reliability of first-hand and secondary information and data by considering information from various sources

X

f) assess the accuracy of scientific information presented in mass media by comparison with similar information presented in scientific journals

Page 6: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance
Page 7: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students:

1. D

escr

iptio

n

2. A

biot

ic F

eatu

res

3. F

ield

wor

k Pr

oble

ms

4. Q

uadr

ats

5. F

iled

Sket

ch

6. H

erbi

vory

of L

eave

s

7. A

dapt

atio

ns

8. F

ood

chai

ns

9. E

vide

nce

of F

auna

10. T

rans

ect

11. B

iom

ass

Cal

c

12. H

uman

Impa

ct

13.1 present information by:a) selecting and using appropriate text types or combinations thereof, for oral and written presentations

X X X X X X X X X X X

b) selecting and using appropriate media to present data and informationc) selecting and using appropriate formats to acknowledge sources of informationd) using symbols and formulae to express relationships and using appropriate units for physical quantities X X X X X X X X X X Xe) using a variety of pictorial representations to show relationships and presenting information clearly and

succinctlyX X X

f) selecting and drawing appropriate graphs to convey information and relationships clearly and accuratelyg) identifying situations where use of a curve of best fit is appropriate to present graphical information

14.1 analyse information to:a) identify trends, patterns and relationships as well as contradictions in data and information

X X X X X X

b) justify inferences and conclusions X X X X X X X X X X X Xc) identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem X X X Xd) predict outcomes and generate plausible explanations related to the observationse) make and justify generalisations X X X X X X X X X X X Xf) use models, including mathematical ones, to explain phenomena and/or make predictionsg) use cause and effect relationships to explain phenomena X X X X Xh) identify examples of the interconnectedness of ideas or scientific principles X X X X X X X X

14.2 solve problems by:a) identifying and explaining the nature of a problem

X X

b) describing and selecting from different strategies those which could be used to solve a problem Xc) using identified strategies to develop a range of possible solutions to a particular problem Xd) evaluating the appropriateness of different strategies for solving an identified problem X

14.3 use available evidence to:a) design and produce creative solutions to problemsb) propose ideas that demonstrate coherence and logical progression and include correct use of scientific

principles and ideasc) apply critical thinking in the consideration of predictions, hypotheses and the results of investigationsd) formulate cause and effect relationships X X X X X X X X X X X

* For Stage 6 Biology and Chemistry

Page 8: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Syllabus points addressed for the Stage 6 Biology Syllabus

8.2 A Local EcosystemContextual OutlineThe environment has an impact on all organisms in ways that a Biology student will learn to recognise and explain. Students are able to draw on existing knowledge of their own local area and expand on their understanding of biological concepts that can be identified through careful analysis of the biotic and abiotic factors operating.

While the study of the relationships of organisms with each other and with their physical environment can be theoretically presented in a classroom setting or by using simulations of natural populations, communities and even ecosystems, the study of ecology in the field is essential. Study of this module must include field experience of a local terrestrial or aquatic ecosystem to observe and measure some of the abiotic parameters to which the main plant and animal species are adapted and to study some of the trophic, competitive and symbiotic interactions between organisms in that ecosystem.

Students should be encouraged to analyse and report on those aspects of the local environment that have been affected by people and propose realistic solutions to the problems that exist. The report should include: a statement of purpose; a clear and detailed description of the area studied; any background material collected on the area; appropriate presentation of data collected; analysis of data; suggestions of the relationships that exist in the area; and an assessment of human impact on the area.

This module increases students’ understanding of the nature, practice and applications of biology.

Assumed Knowledge

Domain: knowledge and understandingRefer to the Science Years 7–10 Syllabus for the following:5.10a) distinguish between biotic and abiotic features of the local environment5.10b) describe the importance of cycles of materials in ecosystems5.10c) describe some impacts of human activities on ecosystems5.11.2a )relate pollution to contamination by unwanted substances 5.11.2c) discuss strategies used to balance human activities and needs in ecosystems with conserving, protecting and maintaining the quality

and sustainability of the environment.

Page 9: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students learn to: Students:

1. The distribution, diversity and numbers of plants and animals found in ecosystems are determined by biotic and abiotic factors

compare the abiotic characteristics of aquatic and terrestrial environments

process and analyse information obtained from a variety of sampling studies to justify the use of different sampling techniques to make population estimates when total counts cannot be performed

identify the factors determining the distribution and abundance of a species in each environment

describe the roles of photosynthesis and respiration in ecosystems

identify uses of energy by organisms

identify the general equation for aerobic cellular respiration and outline this as a summary of a chain of biochemical reactions

Page 10: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students learn to: Students:

2. Each local aquatic or terrestrial ecosystem is unique

examine trends in population estimates for some plant and animal species within an ecosystem

choose equipment or resources and undertake a field study

of a local terrestrial or aquatic ecosystem to identify data sources and:– measure abiotic variables in the ecosystem being studied

using appropriate instruments and relate this data to the distribution of organisms

– estimate the size of a plant population and an animal population in the ecosystem using transects and/or random quadrats

– collect, analyse and present data to describe the distribution of the plant and animal species whose abundance has been estimated

– describe two trophic interactions found between organisms in the area studied

– identify data sources and gather, present and analyse data by:- tabulation of data collected in the study- calculation of mean values with ranges- graphing changes with time in the measured abiotic

data- evaluating variability in measurements made during

scientific investigations

gather information from first-hand and secondary sources to construct food chains and food webs to illustrate the relationships between member species in an ecosystem

process and analyse information and present a report of the investigation of an ecosystem in which the purpose is introduced, the methods described and the results shown graphically and use available evidence to discuss their relevance

outline factors that affect numbers in predator and prey populations in the area studied

identify examples of allelopathy, parasitism, mutualism and commensalism in an ecosystem and the role of organisms in each type of relationship

describe the role of decomposers in ecosystems

explain trophic interactions between organisms in an ecosystem using food chains, food webs and pyramids of biomass and energy

define the term adaptation and discuss the problems associated with inferring characteristics of organisms as adaptations for living in a particular habitat

identify some adaptations of living things to factors in their environment

identify and describe in detail adaptations of a plant and an animal from the local ecosystem

describe and explain the short-term and long-term consequences on the ecosystem of species competing for resources

identify the impact of humans in the ecosystem studied

Page 11: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Syllabus points addressed for the Stage 6 Senior Science Syllabus

8.5 Local Environment

Contextual OutlineThe immediate environment has an impact on all living things in many different ways. Each local environment has unique physical, chemical, geological and biological features that are related to various cycles in operation. The interaction of those features determines the ecosystems that are present and the type and number of flora and fauna the ecosystem is able to sustain. By drawing on their existing knowledge of the local area, students are able to expand their understanding of the scientific concepts that impact on or are caused by biotic and abiotic factors operating in the environment.

The complexity of ecosystems can make them difficult to study and to understand but field study can be very exciting and rewarding as information is collected, analysed and discussed, leading to a better understanding of the local area.

Students are encouraged to analyse those aspects of the local environment that have been affected by people and propose realistic solutions to the problems that may exist as they undertake field work and develop their report. The report should include: a statement of purpose, a clear and detailed definition of the area studied, any background material collected on the area, appropriate presentation of data collected, analysis of data, discussion of the relationships that exist in the area and an assessment of human impact on the area.

This module increases students’ understanding of the nature and practice of science and the implications of science for society and the environment.

Assumed KnowledgeRefer to the Science Years 7–10 Syllabus for the following:4.10a) describe some adaptations of living things to factors in their environment4.10b) describe, using examples of food chains and food webs from Australian ecosystems, how producers, consumers and decomposers are

related

4.10c) describe the roles of photosynthesis and respiration in ecosystems.

Page 12: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students learn to: Students:1. The distribution,

diversity and numbers of plants and animals found in ecosystems are determined by the biotic and abiotic factors

describe the differences between abiotic and biotic features of the environment

perform a first-hand investigation using transect, random quadrat, capture-recapture and tagging/ marking methods to make estimates of real or simulated populations of organisms and use the available evidence to discuss the advantages and disadvantages of these methods

compare the abiotic characteristics of aquatic and terrestrial environments

identify the factors determining the distribution and abundance of a species in each environment

describe and explain the short- and long-term consequences on the ecosystem of members of the same species competing for resources

explain the need to use sampling techniques to make population estimates when total counts cannot be made

2. There is a flow of energy and matter in an ecosystem

discuss the importance of the cycling of materials in ecosystems

identify data sources, gather and process information from first-hand and secondary sources to construct food chains and food webs to illustrate the flow of matter and energy and use the available evidence to discuss the relationships between different organisms in the ecosystem

describe the flow of matter through a natural ecosystem using the water, carbon/oxygen and nitrogen cycles

identify uses of energy in organisms

describe the flow of energy through a natural ecosystem

Page 13: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students learn to: Students:

3. Each local aquatic or terrestrial ecosystem is unique

examine trends in population sizes for some plant and animal species within an ecosystem

process secondary information to identify OH&S issues to identify potential sources of physical, chemical and biological risk before undertaking an investigation of a local terrestrial or aquatic environment

plan, choose equipment or resources for, and perform a field study of a local terrestrial or aquatic ecosystem to:– measure abiotic variables in the ecosystem being studied using

appropriate instruments and where possible combine with recorded values and relate this to the distribution of organisms

– estimate the size of a plant and an animal population in the ecosystem using transects and/or random quadrats techniques

– gather data to describe the distribution of the plant and animal species whose abundance has been estimated

– use available evidence to describe observed trophic interactions between two plant and two animal species found in the area

process and analyse information to prepare a report on the field study undertaken using an appropriate reporting style

outline factors that affect numbers in predator and prey populations

explain the importance of the role of decomposers in the local ecosystem

explain trophic interactions between organisms in the local ecosystem using food chains, food webs and pyramids of biomass and energy where appropriate

outline energy flow and cycling of matter in the local ecosystem studied

identify and describe adaptations of a plant and an animal from the local ecosystem

Page 14: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students learn to: Students:

4. The impact of humans on aquatic and terrestrial environments varies from place to place

describe the effects of a range of human impacts on the local environment

perform a first-hand investigation to gather information by surveying local residents and discuss concerns about human impact on the local area

process, analyse and present information from secondary sources to trace the use of the local environment over the last 50 years

identify features of the local environment which may vary in importance for different groups in the local society

discuss views that different groups in the local society have on human impact on the local environment

outline some criteria for local government regulations concerning zoning of the land for uses such as:– domestic housing– units– schools– public transport facilities– commercial developments– primary produce– industry

Page 15: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Woodlands Study

GeographyStage 6

Geographical tools and skills

Page 16: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Geographical Tools and Skills

These Stage 6 geographical tools and skills build from those developed in Geography Stages 4–5. Stage 6 tools and skills are assessed in the HSC examination.

Students learn to interpret maps by: Addressed in Study

1. D

escr

iptio

n

2. A

bito

ic F

eatu

res

3. F

ield

wor

k Pr

oble

ms

4. Q

uadr

ats

5. F

iled

Sket

ch

6. H

erbi

vory

of L

eave

s

7. A

dapt

atio

ns

8. F

ood

chai

ns

9. E

vide

nce

of F

auna

10. T

rans

ect

11. B

iom

ass

Cal

c

• calculating the gradient of a slope as a ratio X

• calculating the vertical exaggeration of a cross-section

• determining sight lines between two points

• constructing a transect between two points and describing the changes along it X

• identifying spatial interaction and change using a variety of sources X X

• describing patterns, relationships, networks, linkages and evidence of change within and between regions or areas

X X X X X X X X X X X

• determining the density of a specific feature on a map

• reading, constructing and interpreting choropleth maps

• recognising the key features of changing pressure patterns on weather maps

• designing and interpreting flowcharts.

Page 17: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students learn to analyse graphs and statistics by: Addressed in Study

1. D

escr

iptio

n

2. A

bito

ic F

eatu

res

3. F

ield

wor

k Pr

oble

ms

4. Q

uadr

ats

5. F

iled

Sket

ch

6. H

erbi

vory

of L

eave

s

7. A

dapt

atio

ns

8. F

ood

chai

ns

9. E

vide

nce

of F

auna

10. T

rans

ect

11. B

iom

ass

Cal

c

• calculating the rate of increase or decrease between two points

• estimating the value of proportional circles of different size using a key

• estimating the value of particular segments in pie graphs of different size

• identifying the three elements depicted in a ternary graph and the line scale of each

• stating the ‘mix’ of elements at any point on a ternary graph

• identifying clusters and patterns on a ternary graph

• constructing and interpreting proportional divided circles

• interpreting frequency distributions and diagrams

• reading and interpreting logarithmic and semilogarithmic graphs

• interpreting and analysing population pyramid data.

Page 18: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Students learn to interpret photographs by: Addressed in Study

1. D

escr

iptio

n

2. A

bito

ic F

eatu

res

3. F

ield

wor

k Pr

oble

ms

4. Q

uadr

ats

5. F

iled

Sket

ch

6. H

erbi

vory

of L

eave

s

7. A

dapt

atio

ns

8. F

ood

chai

ns

9. E

vide

nce

of F

auna

10. T

rans

ect

11. B

iom

ass

Cal

c

• orientating a photo to a map

• estimating the scale of aerial photographs and satellite images

• estimating the time of day at which a photograph was taken

• calculating areas of land use as a ratio

• identifying spatial associations, interactions and change X X X X X X X X X X X

• constructing a precise map from an aerial photograph or satellite image

• using Geographic Information Systems (GIS) to examine spatial and ecological issues.

Students learn to conduct fieldwork by: • formulating a geographical question or issue for study• identifying, collecting and recording geographical data from a variety of primary sources• constructing a log of events and activities, which records the development of a fieldwork activity• synthesising data and evaluating the fieldwork activity.

NOTE: These skills and tools may be applied and assessed in any of the course topics. Examples of their application are provided in each of the Preliminary and HSC topics.

Page 19: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Syllabus points addressed for the Stage 6 Geography Syllabus

8.2.1 Biophysical Interactions

Time Allocation: 54 indicative hoursThe focus of this study is a geographical investigation of biophysical processes and how an understanding of these processes contributes to sustainable management.

Outcomes

The student:P1 differentiates between spatial and ecological dimensions in the study of geographyP2 describes the interactions between the four components which define the biophysical environmentP3 explains how a specific environment functions in terms of biophysical factorsP6 identifies the vocational relevance of a geographical perspective P7 formulates a plan for active geographical inquiryP8 selects, organises and analyses relevant geographical information from a variety of sources P9 uses maps, graphs and statistics, photographs and fieldwork to conduct geographical inquiriesP10 applies mathematical ideas and techniques to analyse geographical dataP12 communicates geographical information, ideas and issues using appropriate written and/or oral, cartographic and graphic forms.

Page 20: 8.2A Local Ecosystem - Home - Riverina Environmental ... · Web viewrelate abiotic data to the distribution of plants and animals collect data to describe the distribution and abundance

Content

Students learn to:use geographical skills and tools such as• constructing a transect to describe the variety and distribution of plants in a specific area

identify geographical methods applicable to, and useful in, the workplace such as• collecting and analysing field data

Students learn about:the biophysical environment• the nature and functioning of the four components: the atmosphere, hydrosphere, lithosphere and biosphere in a specific biophysical

environment including:– the variety and distribution of plants and animals and soil formation

• the interactions between, and the human impacts on, the functioning of the atmosphere, hydrosphere, lithosphere and biosphere.

biophysical processes and issues• a case study investigating ONE issue in ONE of the biophysical components, to illustrate how an understanding of biophysical processes

contributes to sustainable management in the environment. The investigation will include:– interactions with other components of the biophysical environment – the sensitivity of the biophysical environment to change – the importance of understanding key biophysical processes for effective management