61
§8.2–Trigonometric Integrals Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 1 / 14

§8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

§8.2–Trigonometric Integrals

Mark Woodard

Furman U

Fall 2010

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 1 / 14

Page 2: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Outline

1 Powers of sine and cosine

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 2 / 14

Page 3: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Essential identities

Here are the basic identities that we need:

cos2(x) + sin2(x) = 1

cos2(x) =1 + cos(2x)

2

sin2(x) =1− cos(2x)

21 + tan2(x) = sec2(x)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 3 / 14

Page 4: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Essential identities

Here are the basic identities that we need:

cos2(x) + sin2(x) = 1

cos2(x) =1 + cos(2x)

2

sin2(x) =1− cos(2x)

21 + tan2(x) = sec2(x)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 3 / 14

Page 5: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Essential identities

Here are the basic identities that we need:

cos2(x) + sin2(x) = 1

cos2(x) =1 + cos(2x)

2

sin2(x) =1− cos(2x)

21 + tan2(x) = sec2(x)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 3 / 14

Page 6: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Essential identities

Here are the basic identities that we need:

cos2(x) + sin2(x) = 1

cos2(x) =1 + cos(2x)

2

sin2(x) =1− cos(2x)

2

1 + tan2(x) = sec2(x)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 3 / 14

Page 7: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Essential identities

Here are the basic identities that we need:

cos2(x) + sin2(x) = 1

cos2(x) =1 + cos(2x)

2

sin2(x) =1− cos(2x)

21 + tan2(x) = sec2(x)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 3 / 14

Page 8: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of sine and cosine, Case 1

Consider an integral of the form

∫cosm(x) sinn(x)dx : m or n is odd.

We use the identity sin2(x) + cos2(x) = 1 and u-substitution.

Problem

Evaluate I =

∫sin4(x) cos7(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 4 / 14

Page 9: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of sine and cosine, Case 1

Consider an integral of the form

∫cosm(x) sinn(x)dx : m or n is odd.

We use the identity sin2(x) + cos2(x) = 1 and u-substitution.

Problem

Evaluate I =

∫sin4(x) cos7(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 4 / 14

Page 10: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of sine and cosine, Case 1

Consider an integral of the form

∫cosm(x) sinn(x)dx : m or n is odd.

We use the identity sin2(x) + cos2(x) = 1 and u-substitution.

Problem

Evaluate I =

∫sin4(x) cos7(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 4 / 14

Page 11: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of sine and cosine, Case 1

Consider an integral of the form

∫cosm(x) sinn(x)dx : m or n is odd.

We use the identity sin2(x) + cos2(x) = 1 and u-substitution.

Problem

Evaluate I =

∫sin4(x) cos7(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 4 / 14

Page 12: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

sin4(x) cos7(x) = sin4(x)(cos2(x)

)3cos(x)

= sin4(x)(1− sin2(x)

)3cos(x).

Let u = sin(x). Then du = cos(x)dx and I =

∫u4(1− u2)3du.

Then

I =

∫ (u4 − 3u6 + 3u8 − u10

)du

=u5

5− 3u7

7+

3u9

9− u11

11+ C

=sin5(x)

5− 3 sin7(x)

7+

3 sin9(x)

9− sin11(x)

11+ C

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 5 / 14

Page 13: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

sin4(x) cos7(x) = sin4(x)(cos2(x)

)3cos(x)

= sin4(x)(1− sin2(x)

)3cos(x).

Let u = sin(x). Then du = cos(x)dx and I =

∫u4(1− u2)3du.

Then

I =

∫ (u4 − 3u6 + 3u8 − u10

)du

=u5

5− 3u7

7+

3u9

9− u11

11+ C

=sin5(x)

5− 3 sin7(x)

7+

3 sin9(x)

9− sin11(x)

11+ C

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 5 / 14

Page 14: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

sin4(x) cos7(x) = sin4(x)(cos2(x)

)3cos(x)

= sin4(x)(1− sin2(x)

)3cos(x).

Let u = sin(x). Then du = cos(x)dx and I =

∫u4(1− u2)3du.

Then

I =

∫ (u4 − 3u6 + 3u8 − u10

)du

=u5

5− 3u7

7+

3u9

9− u11

11+ C

=sin5(x)

5− 3 sin7(x)

7+

3 sin9(x)

9− sin11(x)

11+ C

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 5 / 14

Page 15: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

sin4(x) cos7(x) = sin4(x)(cos2(x)

)3cos(x)

= sin4(x)(1− sin2(x)

)3cos(x).

Let u = sin(x). Then du = cos(x)dx and I =

∫u4(1− u2)3du.

Then

I =

∫ (u4 − 3u6 + 3u8 − u10

)du

=u5

5− 3u7

7+

3u9

9− u11

11+ C

=sin5(x)

5− 3 sin7(x)

7+

3 sin9(x)

9− sin11(x)

11+ C

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 5 / 14

Page 16: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of sine and cosine, Case 2

Consider an integral of the form

∫cosm(x) sinn(x)dx : m and n even.

Use the the half-angle identities, repeatedly if necessary.

Problem

Solve the integral

∫ π/2

0sin2(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 6 / 14

Page 17: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of sine and cosine, Case 2

Consider an integral of the form

∫cosm(x) sinn(x)dx : m and n even.

Use the the half-angle identities, repeatedly if necessary.

Problem

Solve the integral

∫ π/2

0sin2(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 6 / 14

Page 18: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of sine and cosine, Case 2

Consider an integral of the form

∫cosm(x) sinn(x)dx : m and n even.

Use the the half-angle identities, repeatedly if necessary.

Problem

Solve the integral

∫ π/2

0sin2(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 6 / 14

Page 19: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of sine and cosine, Case 2

Consider an integral of the form

∫cosm(x) sinn(x)dx : m and n even.

Use the the half-angle identities, repeatedly if necessary.

Problem

Solve the integral

∫ π/2

0sin2(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 6 / 14

Page 20: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

We will solve the anti-derivative problem I =

∫sin2(x)dx first and

evaluate at the end.

Since sin2(x) = (1− cos(2x))/2, we have

I =

∫1− cos(2x)

2dx =

x

2− sin(2x)

4+ C .

We can drop the “+C” and evaluate the resulting anti-derivativebetween the limits, obtaining∫ π/2

0sin2(x)dx =

π

4.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 7 / 14

Page 21: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

We will solve the anti-derivative problem I =

∫sin2(x)dx first and

evaluate at the end.

Since sin2(x) = (1− cos(2x))/2, we have

I =

∫1− cos(2x)

2dx =

x

2− sin(2x)

4+ C .

We can drop the “+C” and evaluate the resulting anti-derivativebetween the limits, obtaining∫ π/2

0sin2(x)dx =

π

4.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 7 / 14

Page 22: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

We will solve the anti-derivative problem I =

∫sin2(x)dx first and

evaluate at the end.

Since sin2(x) = (1− cos(2x))/2, we have

I =

∫1− cos(2x)

2dx =

x

2− sin(2x)

4+ C .

We can drop the “+C” and evaluate the resulting anti-derivativebetween the limits, obtaining∫ π/2

0sin2(x)dx =

π

4.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 7 / 14

Page 23: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

We will solve the anti-derivative problem I =

∫sin2(x)dx first and

evaluate at the end.

Since sin2(x) = (1− cos(2x))/2, we have

I =

∫1− cos(2x)

2dx =

x

2− sin(2x)

4+ C .

We can drop the “+C” and evaluate the resulting anti-derivativebetween the limits, obtaining∫ π/2

0sin2(x)dx =

π

4.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 7 / 14

Page 24: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem

Evaluate I =

∫sin2(x) cos2(x)dx.

Solution

By two applications of the double-angle formulas we find

sin2(x) cos2(x) =1− cos2(2x)

4

=1

8− cos(4x)

8.

Finally

I =

∫ (1

8− cos(4x)

8

)dx =

x

8− sin(4x)

32+ C

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 8 / 14

Page 25: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem

Evaluate I =

∫sin2(x) cos2(x)dx.

Solution

By two applications of the double-angle formulas we find

sin2(x) cos2(x) =1− cos2(2x)

4

=1

8− cos(4x)

8.

Finally

I =

∫ (1

8− cos(4x)

8

)dx =

x

8− sin(4x)

32+ C

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 8 / 14

Page 26: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem

Evaluate I =

∫sin2(x) cos2(x)dx.

Solution

By two applications of the double-angle formulas we find

sin2(x) cos2(x) =1− cos2(2x)

4

=1

8− cos(4x)

8.

Finally

I =

∫ (1

8− cos(4x)

8

)dx =

x

8− sin(4x)

32+ C

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 8 / 14

Page 27: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem

Evaluate I =

∫sin2(x) cos2(x)dx.

Solution

By two applications of the double-angle formulas we find

sin2(x) cos2(x) =1− cos2(2x)

4

=1

8− cos(4x)

8.

Finally

I =

∫ (1

8− cos(4x)

8

)dx =

x

8− sin(4x)

32+ C

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 8 / 14

Page 28: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 1

Consider an integral of the form

∫tanm(x) secn(x)dx where n, the

power of the secant, is even.

In this case, keep a sec2(x) and convert the remaining secants totangents through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = tan(x), du = sec2(x)dx .

Problem

Solve I =

∫ π/4

0tan4(x) sec6(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 9 / 14

Page 29: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 1

Consider an integral of the form

∫tanm(x) secn(x)dx where n, the

power of the secant, is even.

In this case, keep a sec2(x) and convert the remaining secants totangents through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = tan(x), du = sec2(x)dx .

Problem

Solve I =

∫ π/4

0tan4(x) sec6(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 9 / 14

Page 30: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 1

Consider an integral of the form

∫tanm(x) secn(x)dx where n, the

power of the secant, is even.

In this case, keep a sec2(x) and convert the remaining secants totangents through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = tan(x), du = sec2(x)dx .

Problem

Solve I =

∫ π/4

0tan4(x) sec6(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 9 / 14

Page 31: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 1

Consider an integral of the form

∫tanm(x) secn(x)dx where n, the

power of the secant, is even.

In this case, keep a sec2(x) and convert the remaining secants totangents through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = tan(x), du = sec2(x)dx .

Problem

Solve I =

∫ π/4

0tan4(x) sec6(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 9 / 14

Page 32: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 1

Consider an integral of the form

∫tanm(x) secn(x)dx where n, the

power of the secant, is even.

In this case, keep a sec2(x) and convert the remaining secants totangents through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = tan(x), du = sec2(x)dx .

Problem

Solve I =

∫ π/4

0tan4(x) sec6(x)dx.

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 9 / 14

Page 33: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

tan4(x) sec6(x) = tan4(x)(sec2(x)

)2sec2(x)

= tan4(x)(1 + tan2(x)

)2sec2(x).

We make the substitution u = tan(x) and du = sec2(x)dx; thus,

I =

∫ 1

0u4(1 + u2)2du =

∫ 1

0(u4 + 2u6 + u8)du =

143

315

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 10 / 14

Page 34: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

tan4(x) sec6(x) = tan4(x)(sec2(x)

)2sec2(x)

= tan4(x)(1 + tan2(x)

)2sec2(x).

We make the substitution u = tan(x) and du = sec2(x)dx; thus,

I =

∫ 1

0u4(1 + u2)2du =

∫ 1

0(u4 + 2u6 + u8)du =

143

315

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 10 / 14

Page 35: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

tan4(x) sec6(x) = tan4(x)(sec2(x)

)2sec2(x)

= tan4(x)(1 + tan2(x)

)2sec2(x).

We make the substitution u = tan(x) and du = sec2(x)dx; thus,

I =

∫ 1

0u4(1 + u2)2du =

∫ 1

0(u4 + 2u6 + u8)du =

143

315

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 10 / 14

Page 36: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 2

Consider an integral of the form

∫tanm(x) secn(x)dx where m, the

power of the tangent, is odd.

In this case, keep one tangent and convert the remaining tangents tosecants through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = sec(x), du = sec(x) tan(x)dx .

Problem

Solve

∫ π/3

0tan7(x) sec5(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 11 / 14

Page 37: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 2

Consider an integral of the form

∫tanm(x) secn(x)dx where m, the

power of the tangent, is odd.

In this case, keep one tangent and convert the remaining tangents tosecants through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = sec(x), du = sec(x) tan(x)dx .

Problem

Solve

∫ π/3

0tan7(x) sec5(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 11 / 14

Page 38: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 2

Consider an integral of the form

∫tanm(x) secn(x)dx where m, the

power of the tangent, is odd.

In this case, keep one tangent and convert the remaining tangents tosecants through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = sec(x), du = sec(x) tan(x)dx .

Problem

Solve

∫ π/3

0tan7(x) sec5(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 11 / 14

Page 39: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 2

Consider an integral of the form

∫tanm(x) secn(x)dx where m, the

power of the tangent, is odd.

In this case, keep one tangent and convert the remaining tangents tosecants through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = sec(x), du = sec(x) tan(x)dx .

Problem

Solve

∫ π/3

0tan7(x) sec5(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 11 / 14

Page 40: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Powers of tangent and secant, Case 2

Consider an integral of the form

∫tanm(x) secn(x)dx where m, the

power of the tangent, is odd.

In this case, keep one tangent and convert the remaining tangents tosecants through 1 + tan2(x) = sec2(x).

Make a u-substitution: u = sec(x), du = sec(x) tan(x)dx .

Problem

Solve

∫ π/3

0tan7(x) sec5(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 11 / 14

Page 41: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

tan7(x) sec5(x) = tan(x)(tan2(x)

)3sec5(x)

= tan(x)(sec2(x)− 1)3 sec5(x)

If u = sec(x), then du = tan(x) sec(x)dx and

I =

∫ 2

1(u2 − 1)3u4du

=

∫ 2

1(u10 − 3u8 + 3u6 − u4)du

=4779

40

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 12 / 14

Page 42: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

tan7(x) sec5(x) = tan(x)(tan2(x)

)3sec5(x)

= tan(x)(sec2(x)− 1)3 sec5(x)

If u = sec(x), then du = tan(x) sec(x)dx and

I =

∫ 2

1(u2 − 1)3u4du

=

∫ 2

1(u10 − 3u8 + 3u6 − u4)du

=4779

40

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 12 / 14

Page 43: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Solution

Write

tan7(x) sec5(x) = tan(x)(tan2(x)

)3sec5(x)

= tan(x)(sec2(x)− 1)3 sec5(x)

If u = sec(x), then du = tan(x) sec(x)dx and

I =

∫ 2

1(u2 − 1)3u4du

=

∫ 2

1(u10 − 3u8 + 3u6 − u4)du

=4779

40

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 12 / 14

Page 44: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

A note on powers of tangents and secants

Our analysis is not exhaustive:

We do not have any direct methods for integrating powers of tangentalone and powers of secant alone, for example,∫

tan8(x)dx and

∫sec4(x)dx .

These integrals can be solved, but we will not address these cases bydirect methods.

We do not have any methods for integrating an even power oftangent times an odd power of secant, for example,∫

tan4(x) sec5(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 13 / 14

Page 45: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

A note on powers of tangents and secants

Our analysis is not exhaustive:

We do not have any direct methods for integrating powers of tangentalone and powers of secant alone, for example,∫

tan8(x)dx and

∫sec4(x)dx .

These integrals can be solved, but we will not address these cases bydirect methods.

We do not have any methods for integrating an even power oftangent times an odd power of secant, for example,∫

tan4(x) sec5(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 13 / 14

Page 46: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

A note on powers of tangents and secants

Our analysis is not exhaustive:

We do not have any direct methods for integrating powers of tangentalone and powers of secant alone, for example,∫

tan8(x)dx and

∫sec4(x)dx .

These integrals can be solved, but we will not address these cases bydirect methods.

We do not have any methods for integrating an even power oftangent times an odd power of secant, for example,∫

tan4(x) sec5(x)dx .

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 13 / 14

Page 47: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint:

this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 48: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint:

this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 49: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint:

this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 50: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint:

this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 51: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint:

this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 52: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 53: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint:

use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 54: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint:

use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 55: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 56: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint:

save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 57: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint:

save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 58: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 59: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint:

try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 60: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint:

try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14

Page 61: §8.2 Trigonometric Integrals - Furman Universitymath.furman.edu/~mwoodard/math151/docs/sec_8_2.pdf · 1 cos(2x) 2 dx = x 2 sin(2x) 4 +C: We can drop the \+C" and evaluate the resulting

Powers of sine and cosine

Problem (Some ad hoc problems)

Show that∫

tan(x)dx = ln | sec(x)|+ C

Show that∫

sec(x)dx = ln | sec(x) + tan(x)|+ C

Evaluate∫

sec2(x)dx Hint: this is easy!

Evaluate∫

tan2(x)dx Hint: use a nice trig identity.

Evaluate∫

tan3(x)dx Hint: save out a tangent and then use a trigidentity.

Evaluate∫

sec3(x)dx Hint: try parts with u = sec x. (see page 500.)

Mark Woodard (Furman U) §8.2–Trigonometric Integrals Fall 2010 14 / 14