23
1 Dr. Bassel Soudan – University of Sharjah VLSI Design CMOS Capacitance Estimation 2 Dr. Bassel Soudan – University of Sharjah VLSI Design MOS Transistor Capacitance Any two conductors separated by an insulator have capacitance Gate to channel capacitor is very important Creates channel charge necessary for operation Source and drain have capacitance to body Across reverse-biased diodes Called diffusion capacitance because it is associated with source/drain diffusion

8 Cmos Capacitance

Embed Size (px)

Citation preview

Page 1: 8 Cmos Capacitance

1Dr. Bassel Soudan – University of SharjahVLSI Design

CMOS Capacitance Estimation

2Dr. Bassel Soudan – University of SharjahVLSI Design

MOS Transistor Capacitance

• Any two conductors separated by an insulator have capacitance

• Gate to channel capacitor is very important– Creates channel charge necessary for operation

• Source and drain have capacitance to body– Across reverse-biased diodes

– Called diffusion capacitance because it is associated with source/drain diffusion

Page 2: 8 Cmos Capacitance

3Dr. Bassel Soudan – University of SharjahVLSI Design

MOS Transistor CapacitanceGate

DrainSource

CGB

CDBCSB

CGS CGD

Gate

DrainSource

CGB

CDBCSB

CGS CGD

VDD

4Dr. Bassel Soudan – University of SharjahVLSI Design

Gate Capacitance

• Define Cpermicron = CoxL– Typically about 2 fF/µm

• Therefore, CGB = Cpermicron X W

• Realistically, there are additional capacitances.However, the aboverelationship is a good approximationof the gatecapacitance.

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, εox = 3.9ε0)

polysilicongate

WLCt

WLC OX

OX

OXGB ==

ε

Page 3: 8 Cmos Capacitance

5Dr. Bassel Soudan – University of SharjahVLSI Design

Diffusion Capacitance

• CSB, CDB

• Undesirable, called parasitic capacitance

• Capacitance depends on area and perimeter– Comparable to CG for

contacted diffusion

– ½ CG for uncontacted

– Varies with process

6Dr. Bassel Soudan – University of SharjahVLSI Design

MOSFET Resistance

• The resistance of a MOSFET transistor must be determined from the Shockley I-V relationships.– However, Ids(Vds, Vgs).

– Therefore, R – the resistance to current moving from the drain to the source is:

• However,– Shockley models for MOSFET transistor are not

accurate enough for modern transistors

– Too complicated for hand analysis

1−

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=ds

ds

V

IR

Page 4: 8 Cmos Capacitance

7Dr. Bassel Soudan – University of SharjahVLSI Design

Effective Resistance

• Simplification: treat transistor as resistor– Replace with effective resistance R

• Ids = Vds/R

– R averaged across switching range of digital gate• Simulate the transistor driving a known capacitance and

measure the time constant.

• Too inaccurate to predict current at any given time– But good enough to predict RC delay

8Dr. Bassel Soudan – University of SharjahVLSI Design

RC Delay Model

• Use equivalent circuits for MOS transistors– Ideal switch + capacitances and ON resistance

– Unit nMOS has resistance R, capacitance C

– Unit pMOS has resistance 2R, capacitance C• The PMOS resistance should actually be (k’n/k’p)R

• Capacitance proportional to width

• Resistance inversely proportional to width

kg

s

d

g

s

d

kCkC

kCR/k

kg

d

s

g

s

d

kC

kC

kC

2R/k

Page 5: 8 Cmos Capacitance

9Dr. Bassel Soudan – University of SharjahVLSI Design

RC Values

• Capacitance– C = Cg = Cs = Cd = 2 fF/µm of gate width

– Values similar across many processes

• Resistance– R ≈ 6 KΩ*µm in 0.6um process

– Improves with shorter channel lengths

• Unit transistors– May refer to minimum contacted device (4/2 λ)

– Or maybe 1 µm wide device

– Doesn’t matter as long as you are consistent

10Dr. Bassel Soudan – University of SharjahVLSI Design

Input Capacitance of the CMOS Inverter

• The input capacitance of the CMOS inverter can be written as:– Cin = CGN + CGP = (WN + WP) Cpermicron

– Cpermicron = COX X L:• COX – the oxide capacitance which depends on the type

of oxide used and is inversely dependent on the thickness of the oxide layer.

– COX is typically in the range of ~700aF/µm2

» a stands for atto – 10-18.

• L – the length of the channel.

Page 6: 8 Cmos Capacitance

11Dr. Bassel Soudan – University of SharjahVLSI Design

Example

• Calculate the input capacitance for a CMOS inverter with the following characteristics:

– COX = 690 aF/µm2

– WN / LN = 4µm / 2µm– WP / LP = 8µm / 2µm

Using the expressions from above:Cin = (WN + WP) Cpermicron

Cpermicron = L COX

Cpermicron = 2µm X 690 aF/µm2 = 1.38 fF/µmCin = (4µm + 8µm) X 1.38 fF/µmCin = 16.56 fF

12Dr. Bassel Soudan – University of SharjahVLSI Design

Inverter Delay Estimate

• Estimate the delay of a fanout-of-1 inverter

2

1A

Y 2

1

Page 7: 8 Cmos Capacitance

13Dr. Bassel Soudan – University of SharjahVLSI Design

Inverter Delay Estimate

• Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

Y2

1

14Dr. Bassel Soudan – University of SharjahVLSI Design

Inverter Delay Estimate

• Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

Page 8: 8 Cmos Capacitance

15Dr. Bassel Soudan – University of SharjahVLSI Design

Inverter Delay Estimate

• Estimate the delay of a fanout-of-1 inverter

d = 6RC

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

16Dr. Bassel Soudan – University of SharjahVLSI Design

Delay Components

• Delay has two parts– Parasitic delay – due to capacitances of the

driving gate itself.• 3 RC in the inverter example above.

• Independent of load.

– Effort delay – due to capacitances of the load gates.

• The other 3 RC in the inverter example above.

• Depends on the number and type of driven gates.

Page 9: 8 Cmos Capacitance

17Dr. Bassel Soudan – University of SharjahVLSI Design

Example: 3-input NAND

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

18Dr. Bassel Soudan – University of SharjahVLSI Design

Example: 3-input NAND

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

Page 10: 8 Cmos Capacitance

19Dr. Bassel Soudan – University of SharjahVLSI Design

Ex.: Capacitances of a 3-input NAND

• Determine the parasitic capacitances of a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3

3

222

3

20Dr. Bassel Soudan – University of SharjahVLSI Design

3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

2 2 2

3

3

3

Page 11: 8 Cmos Capacitance

21Dr. Bassel Soudan – University of SharjahVLSI Design

3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

2 2 2

3

3

33C

3C

3C

3C

2C

2C

2C

2C

2C

2C

3C

3C

3C

2C 2C 2C

22Dr. Bassel Soudan – University of SharjahVLSI Design

Combining Capacitances

• Capacitors on source diffusions of transistors connected to VDD or GND will be shorted out.

• The DC voltage on the second terminal of a capacitor is irrelevant to delay calculation.– Therefore, all capacitors will be estimated as

terminating to GND.

• Combine parallel and series capacitances in the normal manner.

Page 12: 8 Cmos Capacitance

23Dr. Bassel Soudan – University of SharjahVLSI Design

3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

9C

3C

3C3

3

3

222

5C

5C

5C

24Dr. Bassel Soudan – University of SharjahVLSI Design

Elmore Delay

• ON transistors look like resistors

• Pullup or pulldown network modeled as RC ladder

• Elmore delay of RC ladder

( ) ( )nodes

1 1 1 2 2 1 2... ...

pd i to source ii

N N

t R C

R C R R C R R R C

− −≈

= + + + + + + +

R1 R2 R3 RN

C1 C2 C3 CN

Page 13: 8 Cmos Capacitance

25Dr. Bassel Soudan – University of SharjahVLSI Design

Example: 2-input NAND

• Estimate worst-case rising and falling delay of 2-input NAND driving h identical gates.

h copies

2

2

22

B

Ax

Y

26Dr. Bassel Soudan – University of SharjahVLSI Design

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

Page 14: 8 Cmos Capacitance

27Dr. Bassel Soudan – University of SharjahVLSI Design

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY ( )6 4pdrt h RC= +

28Dr. Bassel Soudan – University of SharjahVLSI Design

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

Page 15: 8 Cmos Capacitance

29Dr. Bassel Soudan – University of SharjahVLSI Design

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

( ) ( ) ( ) ( )( )

2 2 22 6 4

7 4

R R Rpdft C h C

h RC

= + + +⎡ ⎤⎣ ⎦= +

(6+4h)C2CR/2

R/2x Y

30Dr. Bassel Soudan – University of SharjahVLSI Design

7C

3C

3C3

3

3

222

3C

2C2C

3C3C

IsolatedContactedDiffusionMerged

UncontactedDiffusion

SharedContactedDiffusion

Diffusion Capacitance

• we assumed contacted diffusion on every s / d.

• Good layout minimizes diffusion area

• Ex: NAND3 layout shares one diffusion contact– Reduces output capacitance by 2C

– Merged uncontacted diffusion might help too

Page 16: 8 Cmos Capacitance

31Dr. Bassel Soudan – University of SharjahVLSI Design

Layout Comparison

• Which layout is better?

AVDD

GND

B

Y

AVDD

GND

B

Y

32Dr. Bassel Soudan – University of SharjahVLSI Design

Determining the Total Delay for a Circuit

• In order to determine the total delay for a circuit, one has to determine the delay of each stageand then calculate the total delay for all stages combined.– Two delays: rising and falling.

• Example, using Elmore Delay Model, determine the total delay of the following circuit:

IN

OUT

12 C

Page 17: 8 Cmos Capacitance

33Dr. Bassel Soudan – University of SharjahVLSI Design

Determine Transistor Sizes

IN

OUT

12 C

P: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

34Dr. Bassel Soudan – University of SharjahVLSI Design

Assume Logic Transition

IN

OUT

12 C

10PDN

PUN

PDN

PUNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

Page 18: 8 Cmos Capacitance

35Dr. Bassel Soudan – University of SharjahVLSI Design

Determine Individual Stage Delays

IN

OUT

12 C

10PDN

PUN

PDN

PUNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

R 3C 4(4C)

d = 19RC

36Dr. Bassel Soudan – University of SharjahVLSI Design

Determine Individual Stage Delays

IN

OUT

12 C

10PDN

PUN

PDN

PUNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

R 6C 3C

d = 9RC

Page 19: 8 Cmos Capacitance

37Dr. Bassel Soudan – University of SharjahVLSI Design

Determine Individual Stage Delays

IN

OUT

12 C

10PDN

PUN

PDN

PUNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

R 3C 5C + 5C + 3C = 13C

d = 16RC

38Dr. Bassel Soudan – University of SharjahVLSI Design

Determine Individual Stage Delays

IN

OUT

12 C

10PDN

PUN

PDN

PUNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

R/2 4C 6C

R/2

12C

d = (R/2)4C + (R/2 + R/2) (6C + 12C) = 20RC

Page 20: 8 Cmos Capacitance

39Dr. Bassel Soudan – University of SharjahVLSI Design

Total Rising Output Delay

IN

OUT

12 C

10PDN

PUN

PDN

PUNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

Tpdr = 19RC + 9RC + 16RC + 20RC = 64RC

40Dr. Bassel Soudan – University of SharjahVLSI Design

Other Logic Transition

IN

OUT

12 C

10PUN

PDN

PUN

PDNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

Page 21: 8 Cmos Capacitance

41Dr. Bassel Soudan – University of SharjahVLSI Design

IN

OUT

12 C

Determine Individual Stage Delays

10PUN

PDN

PUN

PDNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

R 3C 4(4C)

d = 19RC

42Dr. Bassel Soudan – University of SharjahVLSI Design

IN

OUT

12 C

Determine Individual Stage Delays

10PUN

PDN

PUN

PDNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

R/2 2C 6C

R/2

3C

d = (R/2)2C + (R/2 + R/2) (6C + 3C) = 10RC

Page 22: 8 Cmos Capacitance

43Dr. Bassel Soudan – University of SharjahVLSI Design

IN

OUT

12 C

Determine Individual Stage Delays

10PUN

PDN

PUN

PDNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

R 3C 5C + 5C + 3C = 13C

d = 16RC

44Dr. Bassel Soudan – University of SharjahVLSI Design

IN

OUT

12 C

Determine Individual Stage Delays

10PUN

PDN

PUN

PDNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

d = 18RC

R 6C 12C

Page 23: 8 Cmos Capacitance

45Dr. Bassel Soudan – University of SharjahVLSI Design

Total Falling Output Delay

IN

OUT

12 C

10PUN

PDN

PUN

PDNP: 2N: 1 P: 2

N: 2P: 2N: 1 P: 4

N: 1

P: 2N: 3

P: 2N: 1

Tpdf = 19RC + 10RC + 16RC + 18RC = 63RC