58
94 Chapter Five Attempting Objectivity 5.1 Introduction – Roger Marsh It is now necessary to try to bring some objectivity to the assessment of the correspondence between learning strategy and audible results. In the last chapter the use of a waveform editor was mentioned (in note 4) when trying to analyse how two performers approached a problematic bar of Ferneyhough’s Kurze Schatten II. In this chapter this method is extended and applied to several recordings to see if useful information can be gained by comparative analysis, as opposed to the examination of isolated instances. One obvious difficulty here is the paucity of recorded versions for comparison. Analysing music in this way is problematic so a fairly thorough discussion will be given of the limitations of such analyses. There is also the question of how objective this process can be. Whilst a recording, even of a live performance, is a fixed entity, performers, understandably, do not try to recreate exact performances time after time. On the other hand, one might presume that a commercially available recording represents a performer’s considered view of the piece, albeit at a particular time. It may even come with an endorsement from the composer. It is however, unrealistic to analyse more than a few bars from some representative pieces played by several performers on different instruments. It is also unnecessary. If the few bars chosen show some characteristics with regard to rhythmic interpretation it would be absurd to assume the other bars of the piece are miraculously free of any such deviations.

8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

94

 

 Chapter  Five  

 

Attempting  Objectivity  

 

5.1  Introduction  –  Roger  Marsh  

 

It   is   now   necessary   to   try   to   bring   some   objectivity   to   the   assessment   of   the  

correspondence  between  learning  strategy  and  audible  results.  In  the  last  chapter  

the  use  of   a  waveform  editor  was  mentioned   (in  note  4)  when   trying   to   analyse  

how   two   performers   approached   a   problematic   bar   of   Ferneyhough’s   Kurze  

Schatten   II.   In   this   chapter   this   method   is   extended   and   applied   to   several  

recordings   to  see   if  useful   information  can  be  gained  by  comparative  analysis,  as  

opposed  to  the  examination  of  isolated  instances.  One  obvious  difficulty  here  is  the  

paucity  of  recorded  versions  for  comparison.      

 

Analysing  music  in  this  way  is  problematic  so  a  fairly  thorough  discussion  will  be  

given   of   the   limitations   of   such   analyses.   There   is   also   the   question   of   how  

objective  this  process  can  be.  Whilst  a  recording,  even  of  a   live  performance,   is  a  

fixed  entity,  performers,  understandably,  do  not  try  to  recreate  exact  performances  

time   after   time.   On   the   other   hand,   one   might   presume   that   a   commercially  

available  recording  represents  a  performer’s  considered  view  of  the  piece,  albeit  at  

a  particular  time.  It  may  even  come  with  an  endorsement  from  the  composer.  It  is  

however,   unrealistic   to   analyse  more   than   a   few   bars   from   some   representative  

pieces   played   by   several   performers   on   different   instruments.   It   is   also  

unnecessary.   If   the   few   bars   chosen   show   some   characteristics   with   regard   to  

rhythmic  interpretation  it  would  be  absurd  to  assume  the  other  bars  of  the  piece  

are  miraculously  free  of  any  such  deviations.    

 

Page 2: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

95

In  Heroic  Motives.  Roger  Marsh  Considers   the  Relation  between  Sign  and  Sound   in  

‘Complex’   Music   (Marsh   1994),   Marsh   considered   this   question   of   rhythmic  

accuracy   with   an   analysis   of   several   bars   of   Irvine   Arditti’s   performance   of  

Ferneyhough’s   INTERMEDIO   alla   ciaccona   and   the   Arditti   String   Quartet’s  

recording  of   Ferneyhough’s  Second   String  Quartet1.  Marsh  did  not   give  details   of  

the  methods  or  instruments  he  used  to  calculate  the  durations  he  gives  apart  from  

the  use  of  a  calculator,  but  one  might  speculate  the  use  of  a  stopwatch  as  durations  

of  one   thousandth  of   a   second  are  given.  With   the  wide  availability  of  waveform  

editors,   very   precise   measurements   are   now   possible.   Marsh’s   example,   and  

several   others,  will   be   reconsidered   here   and   an   alternative   analysis   of   Arditti’s  

interpretation,  using  the  waveform  editor  Audacity  (1.3),  will  be  given.  

 

Interpreting  the  results  of  such  analyses  is  far  from  simple  as  it  involves  the  nature  

and  meaning  of  measurement,  the  philosophical  difficulties  concerning  the  nature  

of  a  score,  interpretation  of  composer-­‐specific  requirements  and  expectations,  the  

meaning  of  meter  and  rhythm,  and  the  natural  instinct  of  a  performer  to  ‘interpret’  

and  to  some  extent  inject  their  own  personality  or  individuality  into  the  music.  Any  

comments   that   follow   are   in   no   way   to   be   interpreted   as   critical   of   any   of   the  

performances,   the   pieces   or   the   composers,   and   whilst   Ferneyhough’s   music  

quintessentially   exhibits   the  most   extreme   rhythmic   complexities,   and   has   been  

chosen   for  analysis   for   that   reason,   the  music  of  other   composers  writing   in   this  

genre  could  equally  well  have  been  chosen.    

 

It  is  also  important  to  be  absolutely  clear  about  what  is  being  measured.  Recalling  

Ferneyhough’s  comment  quoted  in  Chapter  Four,  that  no  interpretation  should  be  

an  exact  reflection  of  the  notation  and  ‘nor  should  it  be’,  it  is  quite  obvious  that  the  

larger  musical  structures  should  not  be   the   focus  of  attention.  What   is  at   issue   is  

the   performance   of   the   precisely   notated   rhythmic   details   and   placement   of   the  

rhythmic  figure  within  its  metrical  context.  Examples  were  given  in  Chapter  Four.  

These  are  the  details  that  some  performers  claim  they  calculate  minutely.    

 

Page 3: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

96

Once  information  about  such  rhythmic  accuracy  has  been  determined,  then  should  

there  be  perceived  inaccuracies,  it  is  possible  to  speculate  on  the  reasons  why  this  

is  the  case.    These  might  include  instrumentally  specific  demands,  the  performer’s  

consideration  of  the  other  features  of  the  score  at  that  point,  matters  of  phrasing,  

gesture   and   generally   what  might   be   considered   interpretation.   For   each   of   the  

following  examples  these  issues  will  be  considered,  after  the  data  has  been  given,  

in   a   separate   section.  This   study   is   therefore   a  direct   ‘updating’   of  Marsh’s  work  

with  his  same  criteria.  

 

When  considering  what  excerpts  to  examine  it  is  important  that  the  pulse  be  slow  

enough   for   the   perception   of   the   detail2.   Most   of   the   examples   that   have   been  

chosen   have   metronome   marks   less   than   60.   There   are   other   factors   that  

determine  the  suitability  of  an  excerpt   for  analysis.  The  following  examples  were  

chosen  so  that  the  accuracy  of  the  performance  of  the  rhythmic  figuration  could  be  

determined.   There   must   be   no   obvious   indication   that   the   composer   intended  

some   rhythmic   licence.   Indeed,  most   of   the   examples  have   some   indication   from  

the  composer  that  their  intention  is  some  form  of  tempo  giusto.  If  a  performer  were  

to   impose   a   degree   of   rubato  on   the   excerpt   then   the   responsibility  must  weigh  

with   that  performer.  There  are   clearly  passages   in  new  complexity   compositions  

where   the   composer   intends   some   rhythmic   flexibility   (via,   for   example,   explicit  

phrasing  or  prescriptive  writing)  and  two  of  the  examples  given  can  be  considered  

to  fall   in  to  that  category.   If   it   is  clear  that  the  composer  did  not   intend  complete  

rhythmic  accuracy   the  excerpt   is   obviously  not   suitable   for   the  analytic  methods  

used  here.  Where  phrasing  is  understood  and  clearly  the  intention  of  the  composer  

(for  example  in  Williams’s  recording  of  the  bourrée)  the  bars  signifying  rhythmic  

distortion  because  of  the  phrasing  were  discarded  for  the  purposes  of  analysis  so  

that   information   about   the   rhythmic   accuracy   in   the   other   bars   could   be  

ascertained.  

 

 

 

Page 4: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

97

5.2  Measurement;  methods  and  criteria  –  Ferneyhough’s  Kurze  Schatten  II  

 

This   first   example   (Example   5.1),   bars   13   and   14   from   Ferneyhough’s   Kurze  

Schatten   II   for   guitar,  was  discussed   in   the  previous   chapter   (section  4.1)  where  

the  question  was  raised  of  the  ambiguity  of  the  placing  of  the  last  note  in  the  top  

voice  in  bar  14.  The  speculation  was  made  that  the  31:24  subdivision  was  an  error  

due  to   the  absence  of  an  8th  note  rest.  The  recordings  by  Magnus  Andersson  and  

Geoffrey  Morris  were   compared   to  elicit   their   solutions   to   this  problem  (chapter  

Four,   footnote   4).   Of   course   another   explanation   could   be   that   the   subdivision  

should  be  27:24  and,  faut  de  mieux,  the  analysis  will  use  this.    

 

Example  5.1    Ferneyhough,  Kurze  Schatten  II,  1st  movement,  bars  13-­‐14  

 

 This  example  serves  as  a  useful   introduction  to  all   the  problems  described  above  

and   will   therefore   be   considered   in   more   detail   than   the   examples   that   follow.  

Example  5.2  is  a  schematic  representation  of  Example  5.1.  If  accuracy  of  rhythm  is  

the  main  purpose  of  this  analysis  then  it  is  clear  that  not  every  one  of  the  26  notes  

that  are  to  be  played  in  these  two  bars  needs  to  be  assessed,  for  if  a  certain  number  

of  significant  notes  are  evaluated  the  others  will  be  relatively  correct  or  incorrect  

by  association.  That   is,   if   these  significant  notes  are  reasonably  accurately  placed  

then  further  investigation  of  the  remaining  notes  might  be  considered  desirable  for  

a  more  detailed  view.  If  the  significant  notes  are  inaccurately  placed  (according  to  

Page 5: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

98

some  criteria)  then  investigation  of  the  remaining  notes  is  pointless.  The  numbers  

in   Example   5.2   therefore   refer   to   the   notes   that  were  measured.   Here   the  word  

‘measured’   refers   to   the   assessment   of   the   placement   of   the   note   on   the   wave  

editor.    

 

Example   5.2   Ferneyhough,   Kurze   Schatten   II,   1st   movement,   bars   13-­‐14   –  

schematic  with  significant  notes    

 

   

All  the  struck  notes  in  the  top  two  voices  are  measured  but  in  the  lower  voice  only  

the   first   notes   of   each   of   the   note   groupings   are  measured.   The   following   table,  

Table  5.1,  shows  the  placements  of  the  15  notes  chosen  for  measurement  from  the  

recording   in   flagranti   by   Geoffrey   Morris   (Morris   2000)   (who   has   recorded   the  

piece  twice3).  The  measurement  is  in  minutes  and  seconds  to  two  decimal  places4.  

 

   

 

 

 

 

 

 

Page 6: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

99

Table   5.1     Ferneyhough,   Kurze   Schatten   II,   1st   movement,   bars   13-­‐14   –   actual  

timings  of  significant  notes      

Significant  notes   Actual  time  (secs)  1   1:  19.20  2   1:  20.03  3   1:  20.75  4   1:  21.47  5   1:  22.72  6   1:  23.58  7   1:  24.12  8   1:  24.85  9   1:  25.45  10   1:  26.22  11   1:  27.00  12   1:  27.93  13   1:  28.72  14   1:  29.79  15   1:  30.47  

 

Whilst   Ferneyhough   gives   a   metronome   marking   of   8th   note   =   ca.   44   it   is   only  

possible   to   make   sense   of   these   timings   if   the   exact   tempo   that   Morris   uses   is  

determined.  Also  it  cannot  be  assumed  that  the  metronome  marking  used  in  bar  13  

will  be  the  same  in  bar  14.  As  a  note  is  played  at  the  beginning  of  each  bar  it  is  easy  

to  calculate  the  duration  of  bar  13  and  hence  derive  a  metric.  Notes  1  and  10  (the  

starting   timings  of  bars  13  and  14  respectively)  are  7.2  seconds  apart  and  hence  

each  of  the  seven  16th  notes  should  take  1.002857143  seconds.  This  corresponds  

to   a  metronome  marking   of   16th   =   59.982905982   or   8th   =   29.91452991.   This   is  

substantially  slower   than  Ferneyhough’s  suggested   tempo,  even   taking   the   ‘circa’  

into  account.  The   first  measurement  problem   is  now  obvious.  The   calculator   can  

manipulate   figures   to   nine   decimal   places   but   for   practical   purposes   it   is  

unrealistic   to   expect   subdivisions   of   thousandths   of   a   second   from   a   performer.  

Therefore  a  rounding  of  figures  such  as  these  to  no  more  than  three  decimal  places  

(and  more  often  two)  will  be  given.  Still,  small  errors  can  accumulate  and  it  will  not  

be  surprising  if  expected  values  are  different  by  small  margins  of  this  magnitude.  

Given   also   that  most   digital  metronomes  now   increment   in   units   of   one   and  not  

Page 7: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

100

fractions,  it  seems  reasonable  to  assume  that  should  a  performer  use  a  metronome  

at  all,   they  use  commercially  available  ones  with  such  a   limitation.   It   is  of  course  

quite   possible   that   some   performers   have   access   to   ever   more   accurate  

metronomes.  Given  this  it  seems  reasonable  to  assume  that  Morris’s  tempo  is  16th  

=  60   –   i.e.   one  16th   note  =  1   second  and   the   third   column  of   the   following   table,  

Table  5.2  shows  where  the  fifteen  notes  should  come  using  this  metronome  mark  

(colour  coded  for  each  bar).    

 

Table  5.2  Ferneyhough,  Kurze  Schatten  II,  1st  movement,  bars  13-­‐14  –  actual  and  

theoretical  timings  of  significant  notes  

 

 

Here  it  is  assumed  that  this  metronome  mark  has  continued  in  to  bar  14.  It  is  less  

easy  to  calculate  the  length  of  bar  14  as  the  first  note  of  bar  15  is  played  five  22nds  

(of  the  bar’s  length)  from  the  start  of  the  bar  (Example  5.3,  bar  15).    

Note   Actual  timing  (min:secs)  

Theoretical  timing  

(min:secs)  

Difference  (minus  

means  late)  

 

Comments  

1   1:  19.20   1:  19.20   0  by  construction  

 

2   1:  20.03   1:  19.597   -­‐0.433    

3   1:  20.75   1:  20.948   0.198    

4   1:  21.47   1:  20.988   -­‐0.482    

5   1:  22.72   1:  23.372   0.652    

6   1:  23.58   1:  24.356   0.776    

7   1:  24.12   1:  25.036   0.916    

8   1:  24.85   1:  25.16   0.31    

9   1:  25.45   1:  25.607   0.157    

10   1:  26.22   1:  26.22   0   by  construction  

11   1:  27.00   1:  26.91   -­‐0.09    

12   1:  27.93   1:  27.109   -­‐0.821    

13   1:  28.72   1:  27.12   -­‐1.60    

14   1:  29.79   1:  27.42   -­‐2.37    

15   1:  30.47   1:  28   -­‐2.47    

Page 8: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

101

Example  5.3      Ferneyhough,  Kurze  Schatten  II,  1st  movement,  bars  15-­‐16  

 

   

 

Bar  16  starts  at  1:43.92  (that  is,  one  minute,  43.92  seconds  –  this  standard  format  

for  the  representation  of  time  will  be  used  from  now  on).  The  first  note  played  in  

bar  15,  a  bar   in  19/16  subdivided   into   twenty-­‐two  16th  notes,  comes  on   the   fifth  

16th  note  at  1:37.6.  It  follows  by  simple  arithmetic  that  the  remaining  eighteen  16th  

notes   last   for   6.32   seconds   and   the   first   quarter   note   should   therefore   have   a  

duration  of  1.404  seconds  that  then  implies  bar  15  starts  at  1:36.196.  Bar  14  can  

now  be   assessed   as   lasting   for   9.98   seconds:   the   8th   note   now  has   a   duration   of  

1.663   seconds   and   the   16th   note   =   0.832   seconds   (as   opposed   to   1.002857143).    

Whilst  the  16th  note  duration  may  not  seem  substantially  slower  than  in  bar  13,  the  

8th  note  is  0.343  of  a  second  slower5.  

 

This   is   an   illustration   of   one   of   the   problems   of   calculating   a   metric.   It   is   not  

possible  to  know  where  Morris  places  the  bar  line  when  there  is  no  ictus.  It  is  not  

possible  to  differentiate  sustained  notes  or  silences  either  side  of  a  bar  line.  As  an  

aside,   Gordon   Downie’s   Piano   Piece   26   contains   not   one   bar   (in   51   pages)   that  

doesn’t   start   or   end   with   rests   or   tied   notes   (see   for   instance   Example   5.4).  

Calculating  metrics  for  this  piece  is  a  much  more  laborious  process.  

 

 

Page 9: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

102

Example  5.4.    Downie,  Piano  Piece  2,  page  11  

8th  =  50  

 One  reason  why  the  performer  may  change  tempo  slightly  between  bars  is  the  not  

uncommon   practice   of   learning   the   pieces   bar   by   bar   (see   for   example   (Schick  

1994,   136)).   The   resulting   performance   may   retain   elements   of   this   learning  

process.  

 

The   fourth   column   of   Table   5.2   shows   the   differences   in   seconds   between   the  

actual  and  theoretical  timings  a  tempo  (inferred  on  the  basis  of  the  bar  length).  No  

information  about  rhythmic  accuracy  can  be  obtained  from  the  timings  of  notes  1  

and  10,  as  they  are  the  notes  that  have  been  chosen  to  calculate  the  others.  Looking  

at  bar  13,  the  variation  in  the  notes  2  to  9  is  quite  considerable  –  three  of  the  notes  

coming  over  half  a  second  early.  Notes  4  and  5  are  consecutive  (schematically)  in  

the   lower   part   and   should   be   23.372   –   20.988   =   2.384   seconds   apart.   They   are  

played  at  22.72  –  21.47  =  1.25   seconds  distant  –  a  discrepancy  of  1.134  seconds  

over  four  16th  notes  duration.  Ever  larger  discrepancies  occur  in  bar  14.  Geoffrey  

Morris   has   written   (Morris   2002,   16)   that   he   uses   a   calculator   to   ‘establish   the  

changing  tempos  of  sections’  and  he  uses  a  pre-­‐programmable  metronome  with  a  

foot  pedal  that  can  store  20  different  speeds.  This  cannot  be  doubted  but  whether  

Page 10: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

103

the  learning  process  becomes  a  part  of  the  final  performance  is  another  question.  

Other  reasons  for  the  variance  of  the  rhythm  will  be  discussed  later.  

 

The   next   question   is:   what   rhythmic   accuracy   might   we   expect?     We   expect   a  

degree   of   instrumental   precision   but   also   a   flexibility   of   interpretation   from   the  

performer.  That  the  ear  can  discriminate  events  of  thousandths  of  a  second  apart  is  

accepted  but  this  is  not  the  same  as  the  ability  to  sense  such  small  time  intervals  in  

the   context   of   aesthetic   appreciation   of   the   flow   of   music7.   For   example,   most  

teachers  will  expect  their  students  to  be  able  to  discriminate  between  the  rhythm  

of  dotted  8th  followed  by  a  16th  note  and  a  2/3rd,  1/3rd  of  a  triplet  subdivision.  At  a  

quarter   note   =   60   (the   tempo   of   the   16th   note   in   bar   13   above)   the   difference  

between  the   two  would  be  0.09  second.  These  rhythms  are  well  known  however  

and   come   nowhere   near   close   to   the   rhythmic   complexities   encountered   in  

Ferneyhough’s   music.   On   the   other   hand   it   is   possible   to   subdivide   bar   13   into  

seven  16th  note  intervals  and  calculate  the  closeness  to  these  beats  as  acciaccaturas  

of  different  degrees  of  separation.  This  is  essentially  Steve  Schick’s  third  method  as  

described   in   the   previous   chapter.   This   method   would   at   least   make   meter   the  

primary   consideration   and   seems   to   accord   with   Ferneyhough’s   views   on   its  

importance  (Schick  1994,  138).  

 

Another  area  of  concern  is  the  measurement  of  note  placements  using  a  waveform  

editor.  Of  course  the  music  is  audible  and  can  be  played  back  at  any  speed  whilst  

viewing   the   waveform   so   the   ear   can,   and  must,   be   part   of   the   judgement.   The  

problem  is  that  at  ever-­‐greater  resolutions  the  waveform  becomes  more  difficult  to  

determine.   This   is   different   for   different   instruments.   For   example   percussion  

instruments,   particularly   woodblocks   or   high,   non-­‐pitched   sounds   have   a   very  

clear  waveform.  It  is  almost  impossible  to  determine  accurately  the  initial  stroke  of  

a   violin  bow.   Some  notes  played  very  quietly  may  not   register   significantly   even  

when  the  amplitude  axis   is   ‘stretched’.  Several  notes  played  simultaneously  or   in  

very  quick  succession  may  be  difficult  to  separate.    

 

Page 11: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

104

The  following  screen  shots  of  the  waveforms  of  Example  5.1  give  some  indication  

of   the   nature   of   the   difficulties.   Notes   played   on   the   guitar   are   fairly   easy   to  

determine  on  the  waveform  unless   they  are  extremely  soft.  Example  5.5  shows  a  

low  resolution   from  about  1:15   to  1:48  so   includes  bars  13,  14  and  15.  The   four  

piano  notes  at  the  start  of  bar  14  at  1:26.22  seconds  are  not  at  all  distinguishable.  

The   x-­‐axis   represents   time.   The   y-­‐axis,   representing   volume   (amplitude),   is  

measured  in  decibels  (dB)  and  is  the  default  of  the  editor.    

 

Example  5.5  Ferneyhough,  Kurze  Schatten  II,  1st  movement  –  waveform  from  1:15  

to  1:48  including  bars  13-­‐15    

 

   

Example  5.6  shows  a  higher  resolution  that  starts  at  1:19  continuing  to  1:27,  a  little  

in   to  bar  15.  The  amplitude  axis  has  been  stretched  to   fill   the  pane  but   the  same  

four  piano  notes  at  the  start  of  bar  14  (1:26.22)  are  still  all  but  indistinguishable.  

The  ‘loop  play’  function  in  Audacity  is  extremely  useful  in  determining  the  placing  

of   these   notes.   Whilst   the   higher   resolution   is   essential   if   ever   more   accurate  

timings   are   desired,   watching   the   progress   of   the   music   in   real   time   at   this   or  

higher   resolution   is   difficult   as   it   zips   by   so   quickly.   Hand-­‐eye   coordination   to  

Page 12: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

105

pause  or  start  the  program  at  certain  points  determined  by  the  ear  became  a  useful  

skill,  the  keyboard  short  cuts  proving  more  efficient  than  the  computer  mouse.  

 

Example  5.6    Ferneyhough,  Kurze  Schatten  II,  1st  movement  –  waveform  from    

1:19  to  1:27    

 

   

Example   5.7   shows   an   even   higher   resolution   from   1:23.2   to   1:27   –   roughly  

covering   notes   6   to   11   and   again   the   amplitude   axis   is   stretched   to   maximum.    

Although   the   score   shows   that   nine   notes   are   to   be   struck   in   this   period   it   is  

impossible  to  distinguish  them  by   looking  at   the  waveform.  It   is  a  useful   tool  but  

the   ear   is   still   essential   to   discriminate   quieter   notes.   Higher   resolutions   are  

possible   but   with   similar   problems.   It   is   likely   that   greater   familiarity   with   the  

program  Audacity  could  result  in  a  more  detailed  and  accurate  analysis.  

 

 

 

 

 

 

Page 13: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

106

Example  5.7    Ferneyhough,  Kurze  Schatten  II,  1st  movement  –  waveform  from    

1:23.2  to  1:27  

 

   

Finally,  there  is  the  issue  of  errors  of  calculation  when  so  many  numbers  are  being  

manipulated,  even  with  the  help  of  a  calculator.    

 

These  issues  will  only  be  mentioned  in  passing  from  now  on.    

 

 

5.3  Graphical  representation  of  results  

 

Footnote   4   states   the   use   of   graphical   representation   as   a   primary   means   of  

illustrating  faithfully  the  information  given  in  the  above  tables  was  rejected.  Whilst  

the  notion   is  superficially  attractive   it  might  be  helpful   to  give  some  examples  of  

problems   encountered   when   trying   to   produce   accurate   representations   of   the  

data.  These  problems  are  analogous  to  those  encountered  above  in  the  analysis  of  

the  waveforms.  

 

In   detail:   to   represent   differences   of   100ths   of   a   second   (the   time   intervals  most  

commonly   used   in   the   tables)   the   divisions   on   the   coordinate   axes   must   be  

Page 14: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

107

commensurate.  Each  second  will  therefore  need  to  be  represented  by  one  hundred  

units.  For  a  scale  of  1mm  =  100th  of  a  second  (about  the  smallest  subdivision  that  is  

visibly  distinguishable  on  paper),  a  duration  of  one  second  will  be  represented  by  a  

line  10  cm  long.  Example  5.1  is  about  12  seconds  long  so  the  line  needs  to  be  120  

cm  long  –   i.e.  1.2m.  This  will   represent   the  numbered   ‘significant’  notes  1-­‐15  but  

the   line  would  need   to  be  1.7  m   long   to  represent   the  complete   two  bar  excerpt.  

Strictly   speaking   coordinate   axes   at   right   angles,   each   representing   the   time  

elapsing,  would  require  a  similar  area  of  paper.  Reducing  the  scale  to  1mm  =  10th  

of  a  second  results  in  a  graph  that  shows  the  theoretical/actual  times  to  be  visually  

identical  and  therefore  deceptive.   It  also  follows  that  while  the  graph  may  be  full  

size,   reducing   it   to   fit   on   an   A4   page   will   cause   a   similar   diminishing   of  

representational  detail.    

The  use  of  one  axis  to  simply  represent  the  numbered  notes  would  not  indicate  the  

time  durations  between  these  notes  so  would  be  unsatisfactory.  There  would  still  

be  the  problem  of  representing  the  actual  times.  

 

Other   representations   are   of   course   possible;   for   example,   note   number   against  

time  differences  between   theoretical  and  actual   time.   In  Table  5.2,   this  would  be  

column  1   plotted   against   column  4.   These   representations   do   not   illuminate   the  

research  findings.    

 

This   thesis   is   about   the   assessment   of   rhythmic   accuracy.   This   entails   the  

measurement  of  very  small  time  differences  and  engaging  with  the  numbers  if  the  

information  is  to  be  understood.  A  glance  at  a  pictorial  representation  of  the  data  

will   not   help,   or   be   sufficient,   to   absorb   any   of   the   information.   It   may   well   be  

deceptive.  However,  the  summary  after  each  table  indicates  the  important  points.    

 

It   is  of  course  possible  to  represent  the  information  graphically  in  a  less  accurate  

format.  This  will  be  given  later  with  the  strong  advice  that  interpretation  of  this  be  

treated  with  caution  and  that  the  information  provided  in  the  tables  will  be  more  

Page 15: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

108

accurate.  

 

 

5.4  John  Williams’s  recording  of  Bourrée  1  from  Cello  Suite  BWV  1009  (J.S.Bach)  

 

A  rigorous,  scientific  approach  to  analysis  often  necessitates  the  need  for  a  control,  

that   is,   a   parallel   investigation   or   analysis   where   the   variable,   or   that   which   is  

being   assessed   (in   this   case   rhythmic   accuracy),   is   held   constant   –   or,   as   in   this  

case,  is  uncontroversial.  A  metronome  is  a  possibility  but  as  it  is  a  surrogate  clock  –  

and  hence  essentially  the  instrument  we  are  using  to  analyse  these  examples  –  and  

as   the   human   element   would   appear   to   be   what   we   wish   to   measure,   it   is   not  

acceptable.  The  choice  has  been  made  to  use  John  Williams’s  recording  of  the  first  

eight  bars  of  the  Bourrée  1  from  the  J  S  Bach’s  Cello  Suite,  BWV  10098.  The  music  is  

highly  rhythmic,  with  a  simple  structure  and  measurement  of  note  placements   is  

relatively  easy  to  determine.  

 

Example   5.8   shows   these   eight   bars9   and   Example   5.9   is   a   schematic  

representation  with  the  significant  notes  that  have  been  chosen  for  measurement.    

 

Example  5.8    Bach,  Cello  Suite  BWV  1009  –  Bourrée  1,  bars  1-­‐8  

 (The  fingering  in  this  example  is  by  John  Williams  and  John  Duarte.)  

Page 16: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

109

Example  5.9    Bach,    Cello  Suite  BWV  1009  –  Bourrée  1  –  schematic  of  bars  1-­‐8  

   

The   problem   with   analysing   this   example   (and   most   similar   examples)   is   that  

phrasing  has  to  be  taken  into  account.  The  first  half  of  the  extract  (from  the  start  to  

the  third  beat  of  bar  4)  consists  of  two  phrases  and  the  second  half  is  one  phrase  

with  a  small,  but  audible  rallentando  in  bar  8.  This  raises  the  question  of  whether  

phrasing   should   be   an   issue   in   Examples   5.1   or   5.3   and   whether   some   licence  

should  be  given  accordingly.  (The  poco  rall.  at  the  end  of  bar  12  of  Kurze  Schatten  

II,   and   the   relatively   very   long   gap  between   the   last   note   of   bar  14   and   the   first  

played   note   in   bar   15   would   seem   to   suggest   that   bars   13   and   14   constitute   a  

phrase   though   the   music   is   highly   gestural   and   any   notion   of   phrasing   in   the  

conventional   sense  would   appear   to   be   inappropriate.     This  will   be   discussed   in  

more  detail   later.)  The  trill  at   the  beginning  of  bar  2  and  the  spread  chord  at   the  

beginning  of  bar  4  (notes  5  and  14  respectively)  also  have  the  effect  of  lengthening  

the  note  value  and  must  be  taken  into  consideration.  Table  5.3  shows  the  timings  

of  the  significant  notes.    

 

 

 

 

 

 

 

 

 

Page 17: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

110

Table  5.3  Bach,  Bourrée,  bars  1–8  –  significant  notes  with  actual  timings  (seconds)  Significant  notes   Actual  time  (secs)  

1   1.4  2   1.92  3   2.352  4   2.562  5   3.125  6   3.85  7   4.06  8   4.325  9   4.81  10   5.275  11   5.76  12   6.2  13   6.67  14   7.05  15   8.075  16   8.43  17   8.98  18   9.88  19   10.77  20   11.66  21   12.525  22   13.04  23   13.25  24   13.52  25   14.0  26   14.49  27   15.05  28   15.525  

 

Even   with   this   example   it   is   not   a   simple   matter   to   determine   the   metronome  

mark.   It   is  pointless  using  a  bar  that  contains  an  ornament  or  a  phrase  ending  to  

calculate   the   tempo   so   a   comparison   of   the   lengths   of   bars   that   do   not   contain  

phrase   endings,   with   each   associated   implied   metronome   marking,   is   shown   in  

Table  5.4.  

 

 

 

 

 

Page 18: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

111

Table  5.4    Bach,  Bourrée  –  bar  lengths  with  implicit  mm      

Bar  number   Bar  lengths  (secs)   Implied  mm  (1/4  =  )  

1   1.725   139.13  

3   1.775   135.21  

5   1.79   134.08  

6   1.755   136.75  

7   1.965   -­‐  

 

 

Bar   7   contains   a   rallentando   towards   the   cadence   so   again   is   not   useful   for   the  

calculation   of   the   metric.   Table   5.5   shows   the   comparison   of   the   actual   and  

theoretical  timings  of  the  twenty-­‐eight  notes.  Notes  1  to  8  are  in  the  first  phrase  so  

calculated  with  mm  =  139.13  (quarter  note)  which  corresponds  to  the  bar  length  of  

1.725  seconds.  Notes  9  to  15  in  the  second  phrase  are  calculated  with  mm  =  135.21  

and   notes   16   to   28   in   the   last   phrase   are   calculated   using  mm   =   135.415   –   the  

average  of  the  implied  metronome  markings  of  bars  5  and  6.  The  theoretical  times  

have  been  rounded  up  to  two  decimal  points.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 19: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

112

Table   5.5     Bach,   Bourrée,   bars   1-­‐8   –   actual   and   theoretical   timings   of   the  

significant  notes  (colour  coded  for  each  phrase)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note  Actual  timing  (secs)  

Theoretical  timing  (secs)  

Difference  (minus  means  

late)  

 

Comments  

1   1.4   1.4   0   By  construction  

2   1.92   1.83   -­‐0.09    

3   2.352   2.26   -­‐0.092    

4   2.562   2.69   0.128    

5   3.125   3.13   0.005    

6   3.85   3.56   -­‐0.29    

7   4.06   3.77   -­‐0.29    

8   4.325   3.99   -­‐0.335    

9   4.81   4.83   0.02    

10   5.28   5.28   0   By  construction  

11   5.76   5.72   -­‐0.04    

12   6.2   6.16   -­‐0.04    

13   6.67   6.61   -­‐0.06    

14   7.05   7.05   0   By  construction  

15   8.075   7.94   -­‐0.135    

16   8.43   8.54   0.11    

17   8.98   8.98   0   By  construction  

18   9.88   9.86   -­‐0.02    

19   10.77   10.74   -­‐0.03    

20   11.66   11.62   -­‐0.04    

21   12.525   12.5   -­‐0.025    

22   13.04   12.94   -­‐0.1    

23   13.25   13.16   -­‐0.09    

24   13.52   13.38   -­‐0.14    

25   14.0   13.82   -­‐0.18    

26   14.49   14.26   -­‐0.23    

27   15.05   14.7   -­‐0.35    

28   15.535   15.14   -­‐0.395    

Page 20: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

113

The  notes  9  and  16  correspond  to  the  anacrusis  and  have  therefore  been  calculated  

backwards  from  the  successor  note  using  the  appropriate  new  metronome  mark.  It  

is  readily  seen  that  the  differences  are  mostly  of  a  very  small  order  –  usually  less  

than  0.1  seconds.  The  discrepancies  towards  the  end  of  the  example  are  a  measure  

of   the   rallentando.   Very   small   discrepancies   are   due   to   the   restriction   of   the  

numbers  to  two  decimal  places.  

 

Overall   the   analysis   seems   to   show   a   high   degree   of   rhythmic   precision,   even  

allowing  for  expression.  A  possible  objection  to  this  methodology  is  that  by  taking  

three   different   metronome   marks   the   calculations   have   been   made   to   fit   the  

original   observations.   The   problem   is   that   any   ‘classical’   piece   of   music   will   be  

phrased  and  played  with  appropriate  interpretation  and  some  flexibility  in  tempo  

is  to  be  expected  –  especially  in  a  piece  for  a  solo  instrument.  The  three  different  

metronome   settings   however   correspond   to   quarter   note   lengths   of   0.43125,  

0.44375   and   0.44308   seconds   respectively   so   it   is   reasonable   to   credit  Williams  

with  retaining  an  accurate  pulse   throughout.   It   is  clear  also   that  no  piece,  played  

with  any  expression  at  all,  will  be  metronomically  accurate  over  a   long  period  of  

time.  At  some  point  though  it  must  be  reasonable  to  look  for  a  degree  of  rhythmic  

accuracy  and  if  this  cannot  be  achieved  in  one  or  two  bars  within  a  putative  phrase  

then  the  question  of  the  composer’s  use  of  such  complex  rhythms,  such  as  is  seen  

in  the  examples  given  earlier,  remains.  

 

 

5.5    Analysis  of  Stockhausen  -­‐  Klavierstücke  1  

 

Thomas’s  analysis  of  bar  6  of  Stockhausen’s    Klavierstücke  1  was  given  in  the  last  

chapter.  He  recalculated  the  tempos  to  avoid  the  complex  notation  arriving  at  mm  

8th   =   98.4   and  mm   8th   =   103.123   respectively   for   the   two   groups   (assuming   an  

initial   mm   8th   =   90).   For   ease   of   reference   the   example   is   given   again   here  

(Example  5.10).  

 

Page 21: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

114

Example  5.10    Stockhausen,  Klavierstücke  1,  bars  4-­‐6  

 

   

 

As   Thomas   rightly   points   out   it   is   what   performers   actually   do   that   needs  

investigation.  The  following  is  one  answer  to  this  question.  

 

Taking   as   an   example   the   recorded   performance   by   Steffen   Schleiermacher  

(Schleiermacher  2000)  and  using  Audacity  to  analyse  the  waveform  of  bars  5  and  

6,  the  tempo  he  has  used  must  first  be  found.  The  following  table  (Table  5.6)  gives  

the   start   times  of  bars  5,  6   and  7  and   the   start   times  of   the   two  groups   in  bar  6  

(estimated  to  two  decimal  places)  

 

Table  5.6      Stockhausen,    Klavierstücke  1  –  starting  times  of  bars  5-­‐7  

 

                 Start  time  (secs)  

Bar  5   19.16  

Bar  6  -­‐  start  of  group  1   21.02  

Bar  6  –  start  of  group  2   22.46  

Bar  7   24.03  

   

From  this  it  follows  that  bar  5  is  1.87  seconds  and  bar  6  is  3.01  seconds.  This  gives  

each  8th   in  bar  5  to  be  0.47  seconds  or  mm  8th  =  c128.  For  bar  6,  each  8th   is  0.75  

Page 22: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

115

seconds  or  mm  8th  =  80  so  it  is  not  clear  what  tempo  Schleiermacher  had  in  mind  

for  these  two  bars.    

 

Taking  bar  6  (and  thus  a  mm  8th  =  80)  the  first  group  of  two  8ths  should  take  1.20  

seconds   and   the   second   group   of   three   8ths   should   take   1.81   seconds.   The  

waveform  shows  group  1  =  1.44  seconds  and  group  2  =  1.77  seconds10.    

 

Schleiermacher  therefore  takes  0.24  seconds  longer  for  the  first  group  and  is  0.04  

seconds   shorter   for   the   second.   This   seems   to   show   a   degree   of   accuracy   of   his  

subdivision   of   the   bar   into   5   equal   parts   and   distribution   of   the   notes   between  

them.  On  the  other  hand  it  is  easy  to  hear  that  Schleiermacher  does  not  divide  the  

first  group  into  seven  equal  parts  as  a  distinct  pause  can  be  heard  between  the  5th  

and  6th  notes  in  this  group.  

 

Recall   that   for   Thomas,   these   tempo   shifts   ensure   the   performer   is   ‘kept  

sufficiently  alert’  (Thomas  2009,  84)  and  support  his  argument  that  the  performer  

must   ‘adopt   an   approach   which   focuses   on   ‘action’   rather   than   ‘interpretation’  

(Thomas  2009,  85).  Is  it  possible,  on  the  evidence  of  the  recording  alone,  to  tell  if  

Schleiermacher  was   adopting   such   an   approach?   The   score   obviously   prompted  

him  to  perform  it  the  way  he  did  but  to  what  extent  did  interpretation  play  a  part?  

Can  the  two  ever  really  be  separated?  

 

It  is  of  interest  to  note  that  Thomas  chose  exactly  the  same  bar  of  Stockhausen  as  

Marsh   (Marsh   1994,   85).   Marsh   states   it   is   one   of   the   examples   given   by   the  

linguist  Nicolas  Ruwet  in  an  article  published  in  1958  (Marsh  1994,  85).  According  

to   Marsh,   Ruwet’s   point   was   that,   with   such   inaccurate   performances,   such  

complexity  was   no  more   than   conceptual.   This   of   course   is   exactly   the   criticism  

made  against  new  complexity.  

 

 

Page 23: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

116

5.6   Irvine   Arditti’s   performance   of   Ferneyhough’s   INTERMEDIO   alla   ciaccona   –   a  

reconsideration  of  Marsh’s  analysis  

 

The  next   analysis   is   of   Irvine  Arditti’s   recording)   of   Ferneyhough’s   INTERMEDIO  

alla   ciaccona   for   solo   violin11.   The   results   can   then   be   compared   with   Marsh’s  

analysis   of   the   same   excerpt.   In   the   interview  with   Paul   Archbold,   Arditti   states  

that   he   was   given   the   last   two   pages   of   the   score   two   days   before   the   first  

performance  and  that  his  recording  was  made  the  day  before  the  concert  –  that  is,  

one   day   after   receiving   the   score   (Arditti   2012).   It   is   not   known   if   this   is   the  

recording  that  was  subsequently  given  a  commercial  release.  

 

Marsh  analysed  the  first  four  bars  but  the  first  six  seem  to  constitute  a  phrase  (or  

perhaps  two).  It  is  easier  to  calculate  a  metric  if  the  sixth  bar  is  included  as  there  is  

a  clear  start  to  that  bar.  Example  5.11  is  the  relevant  part  of  the  score  and  Example  

5.12   the   schematic  view  of   the   same  with   the   significant  notes   labelled.  As   there  

are  so  few  notes  actually  bowed  (as  opposed  to  sustained)  all  the  played  notes  are  

significant.  

 

Example  5.11    Ferneyhough,  INTERMEDIO  alla  ciaccona,  bars  1-­‐5  

 

 

   

 

Page 24: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

117

Example  5.12  Ferneyhough,  INTERMEDIO  alla  ciaccona  –  schematic  view  of    

bars  1-­‐5  

 

   

 

Table  5.7  gives  the  usual  data.  This  time  all  measurements  have  been  restricted  to  

two  decimal  places.  

 

Table   5.7   Ferneyhough,   INTERMEDIO   alla   ciaccona,   bars   1-­‐6   –   actual   and  

theoretical  timings  

 

Note   Actual  time  (secs)  Theoretical  time  

(secs)  Difference  (minus  

means  late)  Comments  

1   1.0   1.0   0   by  construction  

2   6.68   6.21   -­‐0.47    

3   7.35   6.49   -­‐0.86    

4   12.83   14.77   1.94    

5   16.71   16.2   -­‐0.51    

6   17.66   17.1   -­‐0.56    

7   18.7   18.71   0.01    

8   19.42   19.63   0.21    

9   20.19   20.2   0.01   by  construction  

 

The  twenty-­‐four  8th  notes  are  played  in  19.19  seconds  which  corresponds  to  an  8th  

note   duration   of   0.8   seconds   (actually   0.79958333   seconds)   and   a   metronome  

mark  of  8th  =  75.  This  is  a  fair  bit  faster  than  the  composers  tempo  indication  of  8th  

Page 25: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

118

=  54-­‐60.    The  0.01  of  a  second  discrepancy  at  note  9  is  due  to  the  calculations  being  

restricted  to  two  decimal  points.    

 

Pace  Roger  Marsh,  this  analysis  does  not  show  such  an  inaccurate  performance  if  

strict   adherence   to   Ferneyhough’s   rhythmic   schema   is   the   sole   criterion.   The  

glaring  exception   is  note  4  which   is  a  shade  under   two  seconds  adrift  but  all  but  

one  of  the  other  notes  are  about  0.5  or  less  of  a  second  off  the  theoretical  time.  And  

this  is  over  a  total  period  of  about  twenty  seconds.  Speculations  about  reasons  for  

this   inaccuracy   in   note   4   are   reserved   until   section   5.10.   Marsh   states  

‘Ferneyhough’s   performance   note   allows   for   some   flexibility   in   the   basic   tempo,  

but  does   insist   that   the   tempo  should  remain  constant   throughout’   (Marsh  1994,  

84).    This  imperative  to  keep  the  tempo  constant  does  not  appear  in  the  published  

score.  The  notes  on  the  CD  state  that  Ferneyhough  was  the  artistic  advisor  to  the  

recording  project  so  one  can  only  assume  he  was  satisfied  with  the  performance.    

 

There   is   however,   yet   another   way   of   interpreting   this   same   data.   In   previous  

examples  we  have   restricted  analysis   to  one  or   two  bars  and   if  we   take  bar  5   in  

isolation  we  get  the  following  Table  5.8.  The  tempo  is  now  8th  note  =  86.21.    Overall  

the  notes  could  be  said  to  “fit”  better  but  it  is  ironic  that  the  one  note  that  is  part  of  

a  complex  subdivision  in  this  bar  (note  8)  could  be  considered  to  be  the  one  less  

accurately  played.    

 

Table  5.8    Ferneyhough,  INTERMEDIO  alla  ciaccona  –  timings  for  bar  5-­‐6  

 

Note   Actual  time  (secs)   Theoretical  time  (secs)  

Difference    (minus  means  late)  

Comments  

5   16.71   16.71   0   By  construction  

6   17.66   17.5   -­‐0.16    

7   18.7   18.9   0.02    

8   19.42   19.69   0.27    

9   20.19   20.2   0.01   by  construction  

Page 26: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

119

This   example   shows   that   analysis   of   performance   is   not   possible   purely   on   the  

basis  of  the  recorded  result.  The  artist’s  intentions  are  unlikely  to  be  spelt  out  and  

a  thoroughly  metronomic  performance  would  probably  be  heard  as  sterile  in  this  

music  as  in  the  music  of  Bach.  Alternatively  one  might  argue  that  if  the  performer  

can’t   ‘get   it   right’   in   relatively   easy   passages   (in   comparison   with   the   frenetic  

activity  for  much  of  the  rest  of  this  particular  score)  why  should  we  take  seriously  

their  insistence  that  they  have  made  detailed  analyses  of  the  rhythms?  It  must  be  

added  at  this  point  that,  apart  from  his  short  essay  in  Complexity?  (Arditti  1990,  9)  

it  is  not  known  if  Arditti  has  made  such  a  claim.  Marsh  makes  a  similar  point  when  

he  says:    

 

It  may  be  argued  that  fluctuations  in  tempo,  however  dramatic,  do  not  

substantially  change  the  nature  or  ‘meaning’  of  the  music  and  I  would  of  

course   accept   that.     There   are   occasions,   however,   when   performer  

rationalisation  (for  it   is  this  and  not  sloppiness  which  accounts  for  the  

discrepancies   noted   above)   does   appear   to   come   perilously   close   to  

changing   the  music   into   something   the   composer  almost   certainly  did  

not  intend  or  predict.  (Marsh  1994,  84)  

 

Marsh   gives   his   own   transcription   of   Arditti’s   performance   of   the   first   four   bars  

(Marsh  1994,  84  Ex.  3),  which  he  construes  as  three  bars.  The  nested  ‘irrationals’  

of  bars  2  and  4  of   the  original   are   replaced  by  nothing  more   complicated   than  a  

triplet.  He  gives  another   transcription  of   the   first   two  bars  of   the   fifth  system  on  

the   first  page  (page  2  of   the  score)   that  contains  none  of  Ferneyhough’s  complex  

rhythms  (Marsh  1994,  84  Ex.  5).  Whilst  these  transcriptions  may  be  accurate  this  

really  only  prompts  the  following  question:   if  Ferneyhough  had  written  in  such  a  

way  would  Arditti’s  performance  be  any  more   rhythmically   accurate   to   this  new  

scoring?  It  is  probable  that  Arditti  would  have  ‘interpreted’  this  notation  –  perhaps  

to   the   point  where   it  might   have   resembled   Ferneyhough’s   original.   These   ideas  

will  be  considered  in  more  detail  in  Chapter  Ten.  

 

Page 27: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

120

Marsh’s   concern   is   whether   new   complexity   can   become   a   ‘coherent   musical  

language’  (Marsh  1994,  85).  He  concludes  that:  

 

this   is   music   in   which   precise   detail   is,   paradoxically,   of   little  

importance.  It  is  a  music  of  generalised,  if  often  spectacular,  effect.  It  is  

not   a  music   concerned  with  organic   continuity  or   evolution,   except   in  

theoretical  terms.  (Marsh  1994,  86)  

 

This   is   a   serious   criticism.   One  might   also   add   that   whilst   all   the   analyses   have  

been  focussing  on  assessing  the  rhythmic  accuracy,  further  investigation  might  be  

made   as   to   the   accuracy   of   the   other   musical   parameters   –   in   particular   the  

quartertone  pitches.    

 

 

5.7  Bone  Alphabet  –  Schick  and  Tomlinson  

 

The  next  two  analyses  are  of  the  same  piece.  There  are  (at  least)  two  commercially  

available   recordings   of   Ferneyhough’s  Bone   Alphabet   for   percussion;   one   by   the  

dedicatee  Steve  Schick  (Schick  2000)  and  the  other  by  Vanessa  Tomlinson  (Elision  

1998).   Example   5.13   (see   the   supplementary   files   for   the   first   page,   of   Bone  

Alphabet)  is  the  first  5  bars  of  the  score  with  the  significant  notes  numbered.  There  

is   no   need   for   a   schematic   view   here.   Before   looking   closely   at   the   timings   it   is  

worth   mentioning   some   of   the   difficulties   encountered   when   looking   to   the  

waveform  and   trying   to   tie   it   to  what   is   heard   so   that   significant  notes   could  be  

chosen.  This  piece   is  unusual   in   that  Ferneyhough  has   left   it   to   the  performer   to  

decide  what   percussion   instruments   to   use.   The   two   performers  made   different  

choices.  Helpfully  Schick  gives  his  instrumentation  (Schick  1994,  135)  but  there  is  

no   information   about   Tomlinson’s   choice.   The   first   bar   was   the   best   choice   for  

identifying   the   high  woodblock   and   low   tom   tom   in   Schick’s   performance   and   it  

was   then  easy   to   identify   the  sound,   if  not   the  actual   instrument,   that  Tomlinson  

used.  A  percussionist  would  probably  be  able  to  differentiate  between  the  sounds  

Page 28: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

121

of   the  different   instruments  but   for   the  non-­‐specialist   it   is  difficult   to  distinguish  

them  in  the  complex  texture  of  this  score.  Note  3  has  been  included  as  it  appears  

that  Schick  plays  it  on  the  high  wood  block  –  the  tone  is  identical  to  notes  1  and  2  –  

whereas  in  Tomlinson’s  recording  it  is  definitely  a  different  sound.    It  is  not  known  

why  Schick  changed  this  (if  indeed  he  did)  but  it  is  confusing  in  what  is  a  difficult  

score  to  follow  (again,  for  the  non–specialist).  

 

Example   5.13     Ferneyhough,   Bone   Alphabet,   bars   1-­‐5   (with   significant   notes  

numbered)                    

 

 As  has  already  been  mentioned  several  times,  Schick  is  quite  explicit  that  he  learnt  

this  piece  in  a  bar  by  bar  fashion.  His  three  ways  to  approach  learning  the  rhythms  

have   already   been   summarised   in   Chapter   Four.   One   would   expect   a   synthesis  

when  putting  it  all  together  and  finally  recording  it,  but  this  recording  does  seem  

to  retain  some  element  of  this  fragmented  learning  approach.  This  can  be  seen  by  

calculating   the  metronome  marks   for  each  of   the   first   four  bars.  Table  5.9  shows  

the   bar   lengths   and   corresponding  metronome  marks   from   the   performance   by  

Schick  and  Table  5.10  the  same  for  Tomlinson.  The  start  of  bar  3  was  particularly  

difficult  to  assertain  as  the  pianissimo  notes  were  all  but  invisible  on  the  waveform.  

Using     notes   17   and   19   in   Tomlinsons   performance   a   calculation     was  made   to  

Page 29: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

122

determine   the   start   of   bar   3.   This   produced   a   predicted   time   of   8.038   seconds  

which   corresponds  quite  well  with   the   aurally   and   visually   perceived  note  16.  A  

forward  calculation  using  bar  2  (that  is,  notes  9  and  17)  resulted  however,   in  the  

determination  of   the  start  of  bar  3  to  be  some  way  before  several  of   the  notes  at  

the  end  of  bar  2.  This  was  therefore  rejected.  Again,   this   illustrates   the  problems  

encountered  in  this  methodology.  

 

Table  5.9     Ferneyhough,  Bone  Alphabet,   bars  1-­‐4  –   timing  data   and   implied  mm  

(Schick)    Bar                    Bar     Length  (secs)   Implied  mm  (8th)  

1   3.525   68.18  

2   2.5   48  

3   4.85   61.86  

4   7.5   56  

 

 

Table  5.10  Ferneyhough,  Bone  Alphabet,  bars  1-­‐4  –   timing  data  and   implied  mm  

(Tomlinson)    Bar     Length  (secs)   Implied  mm  (8th)  1   4.1   52.54  

2   3   40  

3   5.92   50.68  

4   7.43   56.53  

 

At  this  point  we  draw  attention  to  the  composer’s  tempo  of  8th  note  =  54  and  the  

rigoroso   which   could   be   construed   as   referring   to   tempo.   Note   that   both  

performers   drop   the   tempo   substantially   for   bar   2.   One   can   speculate   that   the  

difficulties   in  performing   this  bar  were  such   that   it  was  only   feasible  at  a   slower  

tempo,   though   this   reason  would   not   be   acceptable   in  more   traditional   areas   of  

music.  This  could  be  another  indication  of  the  residue  in  performance  of  the  bar  by  

bar   learning   process.   The   piece   does   seem,   however,   to   have   been   composed   in  

some   sort   of   modular   fashion   with   many   (if   not   most)   bars   exhibiting   some  

Page 30: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

123

repetitive   rhythmic   patterning.   This   could   be   contrasted   with   Examples   5.1,   5.3  

and  5.11  where  no  such  patterning  can  be  perceived.  

 

Tables  5.11  and  5.12  show,  for  each  performer,  the  usual  table  of  timings  of  the  26  

significant  notes  together  with  the  theoretical  timings  calculated  according  to  the  

metronome  marks  given  in  Table  5.9.  The  colours  indicate  each  of  the  four  bars.  

 

Table  5.11    Ferneyhough,  Bone  Alphabet  –  timing  data  from  Schick’s  performance  

of  bars  1-­‐4  

 

Note   Actual  time  (secs)   Theoretical  time  (secs)  

Difference    (minus  means  late)   Comments  

1   0.225   0.225   0   by  construction  

2   0.75   0.665   -­‐0.085    3   1.25   1.215   -­‐0.035    4   1.44   1.413   -­‐0.027    5   1.7   1.545   -­‐0.155    6   2.14   1.985   -­‐0.155    7   2.74   2.49   -­‐0.25    8   3.035   2.975   -­‐0.06    9   3.75   3.75   0   by  construction  

10   4.2   3.805   -­‐0.395    

11   4.85   4.215   -­‐0.635    

12   4.85   4.792   -­‐0.058    

13   5.4   5.208   -­‐0.192    

14   5.8   5.625   -­‐0.175    

15   5.45   5.664   0.214    

16   6.25   6.25   0   by  construction  

17   6.85   6.943   0.093    

18   8.5   8.675   0.175    

19   11.1   11.1   0   by  construction  

20   11.43   12.07   0.64    

21   12.69   12.555   -­‐0.135    

22   13.15   13.04   -­‐0.11    

23   14.33   14.01   -­‐0.32    

24   15.35   14.98   -­‐0.37    

25   15.95   15.465   -­‐0.485    

26   16.71   15.95   -­‐0.76    

27   17.55   16.92   -­‐0.63    

 

Page 31: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

124

By  comparison  with   the  examples   looked  at  so   far,  and  with   the  proviso   that   the  

metronome  marks   are   as   calculated,   these   figures   show   a   remarkable   degree   of  

rhythmic   precision.   Of   the   twenty-­‐seven   notes   considered,   only   three   notes   are  

more   than  half  a  second  out  and  thirteen   less   than  0.2  seconds.  Notes  11  and  12  

were   indistinguishable   on   the   waveform   and   only   becoming   so   at   a   very   high  

resolution  where  they  were  accordingly  recorded  as  being  at  the  very  same  time.  

 

Table   5.12   Ferneyhough,   Bone   Alphabet   –   timing   data   from   Tomlinson’s  

performance  of  bars  1-­‐4  

 

Note   Actual  time  (secs)   Theoretical  time  (secs)  

Difference    (minus  means  late)   Comments  

1   1.05   1.05   0   by  construction  

2   1.6   1.563   -­‐0.037    3   1.97   2.075   0.105    4   2.07   2.434   0.364    5   2.55   2.588   0.038    6   3.06   3.1   0.040    7   3.6   3.664   0.064    8   4.3   4.253   -­‐0.047    9   5.15   5.15   0   by  construction  

10   5.92   5.806   -­‐0.114    

11   6.49   6.298   -­‐0.192    

12   6.53   6.4   -­‐0.13    

13   7.09   6.9   -­‐0.19    

14   7.57   7.4   -­‐0.17    

15   7.57   7.447   -­‐0.123    

16   8.15   8.15   0   by  construction  

17   8.92   8.996   0.076    

18   11   11   0    

19   14.07   14.07   0   by  construction  

20   14.64   15.081   0.441    

21   15.73   15.662   -­‐0.068    

22   16.32   16.142   -­‐0.178    

23   17.39   17.254   -­‐0.136    

24   17.6   18.266   0.666    

25   18.85   18.846   -­‐0.004    

26   19.3   19.327   0.027    

27   20.35   20.439   0.089    

 

Page 32: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

125

If   anything   Tomlinson’s   account   exhibits   an   even   greater   degree   of   rhythmic  

accuracy.     The   exception,   almost   unaccountably,   is   note   24   which   should   come  

exactly  on  the  fifth  8th  note  of  a  7/8  bar.    

 

 

5.8  Ferneyhough,  Bone  Alphabet,  bars  20-­‐22.    Schick’s  performances  

 

Schick   also   gives   a   detailed   description   of   his   approach   to   learning   the   triplet  

motive   that   occurs   five   times   in   bars   20-­‐22   of   Bone   Alphabet     (Example   5.14)  

(Schick   1994,   141-­‐3,   Schick   2006,   108-­‐9).   (See   also   the   supplementary   files   for  

page  6  of  the  score  –  bars  15-­‐22.)  

 

Example  5.14      Ferneyhough,  Bone  Alphabet,  bars  18  -­‐22    

 

   

He  writes:  

 

Reconfiguring   the   nested   polyrhythms   as   changes   in   tempo   supports  

the   sense   of   fractured   time   inherent   in   this   passage.   An   accurate  

performance   of   this   material   should   stutter:   it   sound,   feel,   and   look  

interrupted  and  incomplete  (Schick  2006,  108)  

Page 33: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

126

After  giving  the  analysis  he  calculates  the  tempi  of  each  appearance  of  the  figure  as  

mm  =  60,  52.5,  75,  44  and  79.   It   is   then   that  he  makes  his  comment  about  being  

able  to  remember  and  reproduce  such  tempi  quoted  earlier  (Schick  2006,  109).  

 

As   Schick   has   asserted   that   such   finely   delineated   rhythms   can   be   reproduced  

accurately  it  is  reasonable  to  analyse  his  recording  (Schick  2000)  to  see  if  this  can  

be   verified  objectively.   To   this   end   the  passage  was   analysed  using   the  Audacity  

wave  editor.  The  timings  of   first  notes  of  each  bar  were  logged  together  with  the  

timings  of  the  first  and  last  notes  of  the  first,  second,  fourth  and  fifth  appearance  of  

the  triplet  figure.  The  third  was  not  easy  to  assess  so  was  omitted  but  a  reasonable  

assessment   of   accuracy   can   be   made   with   information   about   four   of   the   five  

instances.  The  times  were  estimated  to  the  nearest  100th  of  a  second.  

 

The   following   (Table   5.13)   gives   these   timings   together   with   the   resulting  

calculation   of   the   actual   tempi   for   each   bar.   The   start   of   bar   23   is   a   rest   so   the  

duration   of   bar   22   is   not   easy   to   determine   but   it   is   reasonable   to   assume   the  

tempo  does  not  change  significantly12.  

 

Table  5.13    Ferneyhough,  Bone  Alphabet,  bars  20-­‐22  –  timings  with  implied  mm  

 

Bar  number   Start  time   Resultant  mm  (8th)  

20   1:34.20   57.97  

21   1:38.34     58.37  

22   1:43.48   Not  calculated.  

 

The  next  table  (Table  5.14)  gives  the  time  places  of  the  first  and  last  notes  of  the  

first,  second,  fourth  and  fifth  triplet  figures  together  with  their  durations.  

 

 

 

Page 34: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

127

Table  5.14  Ferneyhough,  Bone  Alphabet,  bars  20-­‐22  –  timings  of  1st  and  3rd  notes  

of  triplets                                

 

Triplet  figure  

 Time  of  1st  note  (min:secs)  

 Time  of  3rd  note  (min:secs)  

Duration  (secs)  

1   1:34.20     1:34.88     0.68    

2   1:36.33     1:37.16     0.83    

4   1:41.08     1:42.02     0.94    

5   1:43.92     1:44.70     0.78    

 

The   duration   does   not   of   course   mean   the   duration   of   the   triplet,   merely   the  

duration  of  2/3rds  of  the  triplet,  as  the  precise  end  of  the  figure  (that  is  the  actual  

duration  of  the  third  note)  is  impossible  to  determine.    These  durations  therefore  

need  to  be  increased  by  a  factor  of  3/2  to  represent  the  duration  of  the  triplet  as  a  

totality.  

 

It  is  therefore  reasonable  to  take  Schick’s  triplets  as  having  the  durations  shown  in  

Table  5.15.  

 

Table  5.15    Ferneyhough,  Bone  Alphabet,  bars  20-­‐22  –  inferred  lengths  of  triplets    

 

Triplet  figure   Total  duration  (secs)  

1   1.02    

2   1.25    

4   1.41    

5   1.17    

   

If  we  use  Schick’s  8th  note  pulse  for  each  bar  (8th  =  1.035  seconds  for  bar  20  and  

1.028   seconds   for   bar   21   and   22)   the   triplet   figures   should   have   the   durations  

listed  in  Table  5.1613.  

Page 35: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

128

Table  5.16  Ferneyhough,  Bone  Alphabet  –  theoretical  lengths  of  triplets  in  bars  20-­‐

22  implied  by  Schick’s  tempi  

 

Triplet  figure   Duration  (secs)  

1   1.035  

2   1.18    

4   1.26    

5   0.78    

 

From  which  we  conclude  that  Schick  deviates  from  his  own  tempi  by  the  durations  

shown  in  Table  5.17.  

 

Table  5.17  Ferneyhough,  Bone  Alphabet  -­‐  triplets  in  bars  20-­‐22  -­‐  Schick’s  deviation  

from  his  own  tempi  

                             

Triplet  figure   Schick’s  deviation  from  his  own  tempo  

1   0.015  second  too  short  (1.035-­‐1.02)  

2   0.07  second  too  long        (1.25-­‐1.18)  

4   0.15  second  too  long        (1.41-­‐  1.26)  

5   0.39  second  too  long        (1.17-­‐0.78)  

 

Now  assuming  Ferneyhough’s  mm  8th  =  60  these  durations  should  be  as  per  Table  

5.18  

 

 

 

 

 

 

 

Page 36: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

129

Table   5.18     Ferneyhough,   Bone   Alphabet   –   triplets   in   bars   20-­‐22   –   theoretical  

timings  based  on  8th  =  60  

 

Triplet  figure   Total  duration  at  Ferneyhough’s  8th  =  60  (secs)  

1   1.0    

2   1.14    

4   1.23    

5   0.76    

 

Schick’s  real  time  deviations  from  a  strict  adherence  to  Ferneyhough’s  tempo  are  

given  in  Table  5.19.  

 

Table   5.19   Ferneyhough,   Bone   Alphabet   –   Schick’s   performance   compared   to  

Ferneyhough’s  tempo  

 

Triplet  Figure   Schick’s  deviation  from  8th  =  60  (secs)  

1   0.02  too  long    (1.02-­‐1.00)  

2   0.11  too  long    (1.25-­‐1.14)  

4   0.18  too  long    (1.41-­‐1.23)  

5   0.41  too  long    (1.17-­‐0.76)  

 

The  above  is  one  way  to  analyse  the  accuracy  of  Schick’s  performance.  The  passage  

is  a  tempo  (though  comodo)  and  the  relevant  notes  are  reasonably  easy  to  hear  and  

assess   their   time  values   to  100th  of  a  second  (using   the  wave  editor).  Apart   from  

the  first  triplet  figure  (which  corresponds  to  the  beginning  of  the  bar)  the  placing  

of  the  triplet  in  the  bar  has  not  been  assessed  for  accuracy  –  only  its  duration.  The  

placement  of  every  other  note  in  the  three  bars  also  contributes  to  assessment  of  

the   total,   literal   accuracy,   as   do   the   dynamics   and   other   similar   interpretive  

aspects.    

 

Page 37: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

130

Notwithstanding  all  these  factors  it  is  clear  that  Schick  is  less  than  0.4  of  a  second  

away   from   complete   rhythmic   accuracy,   as   far   as   duration   of   the   triplets   is  

concerned,   using   his   own   tempi   and   less   than   about   0.4   of   a   second   from  

Ferneyhough’s  given  tempo.  Most  of  the  differences  are  less  than  0.2  of  a  second.  

The  largest  difference  is  in  the  last  triplet  which  is  still  less  than  0.4  seconds.    

 

One  view  is  that  these  differences  are  irrelevant  to  the  musical  experience  for  the  

listener  and   that   the  value  of   such  an  analysis   is  nugatory.  This  would  clearly  be  

the  case  if  Schick  had  not  been  so  keen  to  subscribe  to  the  notion  of  the  possibility  

of  complete  accuracy.  At  8th  note  =  60,  tenths  of  a  second  are  easily  perceptible.  For  

example,   each   32nd   note   at   this   tempo   would   be   take   0.25   seconds   and   the  

recognition  of  accuracy  of  subdividing  a  note  value  at  this  tempo  in  to  four  equal  

parts  is  fairly  rudimentary.    

 

 

5.9    Dillon’s  Shrouded  Mirrors,  Grahame  Klippel’s  performance    

 

Of  the  three  case  studies  recorded  by  me,  the  only  piece  with  notation  comparable  

in   its   complexity   to   the   previous   examples   is   Dillon’s   Shrouded   Mirrors   (see  

Chapter  Nine   and   the   supplementary   data   file).     The   following   analysis   is   of   the  

first  six  bars  of  my  performance.    Whilst  the  composer  has  indicated  mm  8th  =  72  

for   the   duration   of   this   portion,   on   analysis   my   mm   was   determined   to   be  

somewhere   between   53   and   58.   This   excerpt   is   comparable   with   the   earlier  

examples:  in  particular,  the  regular  pulse  means  the  results  of  the  analysis  can  be  

compared  with  the  analysis  of  the  Bach  Bourrée.    

 

In  order   to   calculate   the  duration  of   the  whole   section   the  placement  of   the   first  

chord  of  bar  7  has  to  be  ascertained.  As  bar  7  starts  with  a  rasgueado  chord  it  is  a  

matter   of   judgment   as   to   where   the   beat   actually   falls.   The   error   factor   here   is  

negligible  though  when  averaging  over  the  whole  length  of  the  passage.  

 

Page 38: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

131

Example   5.15   shows   the   relevant   extract.   Unlike   the   other   examples,   the   time  

placements  of  almost  all   the  distinct  notes  have  been  calculated.  That   is,  most  of  

the   notes   have   been   deemed   to   be   significant.   This   example   can   therefore   be  

analysed  in  more  detail  than  the  others.  

 

Example  5.15    Dillon,  Shrouded  Mirrors,  bars  1–7    

 

   

Example  5.16  gives  the  usual  schematic  view  with  the  significant  notes  numbered.  

 

Example  5.16  Dillon,  Shrouded  Mirrors,  bars  1-­‐7  -­‐  schematic  with  significant  notes  

 

 The  following  table  gives  the  timings  for  the  49  notes.  

 

Page 39: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

132

Table  5.20  Dillon,  Shrouded  Mirrors,  bars  1-­‐7  -­‐  actual  timings  for  significant  notes  

Note

Actual time (secs)

Note

Actual time (secs)

1 2.57 26 11.45 2 2.91 27 11.73 3 3.18 28 11.93 4 3.61 29 12.26 5 3.77 30 12.36 6 4.08 31 12.90 7 4.38 32 13.24 8 4.51 33 13.32 9 4.67 34 13.96 10 5.27 35 14.44 11 6.4 36 14.69 12 6.57 37 15.08 13 7.1 38 15.35 14 7.21 39 15.88 15 7.57 40 16.00 16 7.97 41 16.41 17 8.08 42 16.58 18 8.37 43 16.71 19 8.70 44 17.03 20 8.88 45 17.39 21 9.57 46 17.62 22 9.97 47 17.86 23 10.52 48 18.26 24 10.70 49 18.83 25 11.07

 

For  the  first  analysis  of  the  accuracy  of  the  rhythmic  figures  it  is  clear  that,  as  the  

times   of   notes   1,   4   and   9   are   known,   it   is   possible   to   assess   the   accuracy   of   the  

subdivisions  of  the  first  two  beats.  

 

The  length  of  the  first  beat  is  3.61  -­‐  2.57  =  1.04  seconds.  This  corresponds  to  mm  

8th   =   58.   The   length   of   the   second   beat   is   4.67   –   3.61   =   1.06   seconds.   This  

corresponds  to  mm  8th  =  57.    (The  calculations  for  the  mm  are  of  course  rounded  to  

the  nearest  integer.)  

 

Page 40: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

133

Table  5.21  gives  the  theoretical  and  actual  timings  for  the  first  beat  calculated  on  

the  basis  of  the  beat  being  1.04  seconds  long.  

 

Table  5.21  Dillon,  Shrouded  Mirrors,  bar  1  –  timings    for  the  first  beat  

 

Note   Actual  time  (secs)   Theoretical  time  (secs)  

Difference    (minus  means  late)   Comments  

1 2.57 2.57 0 by construction 2 2.91 2.83 -0.08 3 3.18 2.99 -0.19  

Table  5.22  gives  the  same  information  for  the  second  beat  calculated  on  the  basis  

of  the  beat  being  1.06  seconds  long.  

 

Table  5.22  Dillon,  Shrouded  Mirrors,  bar  1  –  timings  for  the  second  beat  

 

Note Actual time (secs) Theoretical time (secs)

Difference (minus means late) Comments

4 3.61 3.61 0 by construction 5 3.77 3.79 0.02 6 4.08 4.14 0.06 7 4.38 4.41 0.03 8 4.51 4.46 -0.05

 

Using  this  method  to  analyse  rhythmic  accuracy,  the  above  tables  show  that,  based  

on  a  very  limited  time  scale,  the  ‘error’  is  extremely  small.  Only  one  note  is  over  0.1  

of  a  second  away  from  its  theoretical  time.    

 

Table  5.23  gives  the  same  formation  for  bars  3–7  with  the  beat   length  (and  mm)  

calculated  as  an  average  from  notes  16-­‐49.  Bar  3  starts  at  7.97  seconds  and  bar  7  

starts  at  18.86  seconds  so  this  extract  is  10.86  seconds  long  and  thus  comparable  

to  the  other  examples.  The  10  beats  average  at  1.09  seconds  corresponding  to  mm  

8th  =  56.  This  is  very  slightly  slower  than  the  values  calculated  on  the  basis  of  the  

Page 41: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

134

first   two   beats   of   bar   1.   Table   5.23  was   therefore   compiled   assuming   8th   note   =  

1.09  seconds.  

 

Table  5.23  Dillon,  Shrouded  Mirrors,  bar  3-­‐6  –  timings  for  the  significant  notes  16-­‐

49.  

Note Actual time (secs) Theoretical time (secs)

Difference (minus means late) Comments

16 7.97 7.97 0 by construction

17 8.08 8.11 0.03 18 8.37 8.24 -0.13 19 8.70 8.52 -0.18 20 8.88 8.79 -0.09 21 9.57 9.61 0.04 22 9.97 9.79 -0.18 23 10.52 10.51 -0.01 24 10.70 11.02 0.32 25 11.07 11.06 -0.01 26 11.45 11.24 -0.21 27 11.73 11.46 -0.27 28 11.93 11.79 -0.14 29 12.26 11.97 -0.29 30 12.36 12.11 -0.25 31 12.90 12.69 -0.21 32 13.24 13.15 -0.09 33 13.32 13.24 -0.08 34 13.96 13.64 -0.32 35 14.44 14.29 -0.15 36 14.69 14.51 -0.18 37 15.08 15.06 -0.02 38 15.35 15.33 -0.02 39 15.88 15.82 -0.06 40 16.00 16.04 0.04 41 16.41 16.47 0.06 42 16.58 16.69 0.11 43 16.71 16.91 0.20 44 17.03 17.24 0.21 45 17.39 17.56 0.17 46 17.62 17.78 0.16 47 17.86 18.22 0.36 48 18.26 18.33 0.07 49 18.83 18.83 0 by construction  

Page 42: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

135

It  is  readily  seen  from  these  tables  that  the  error  in  seconds  is  never  greater  than  

0.36  of   a   second  with  about  60%  of   the  note  differences  being   less   than  0.1  of   a  

second.    Specifically,  28  of  the  47  notes  were  less  than  0.1  of  a  second  away  from  

their   theoretical   time.  A   further  9  notes  were  between  0.1  and  0.2  seconds  away  

from  the  theoretical  time,  7  notes  were  between  0.2  and  0.3  seconds  and  2  notes  

were  over  0.3   seconds  away   from   theoretical   time.  The   readings  of   first   and   last  

notes  were  of  course  discarded.    

 

It  should  be  noted  that   the  predominant   ‘complex’  subdivision  of  each  8th  note   is  

into  5ths.  The  8th  note  durations  calculated  above,  namely  1.04,  1.06  and  1.09  would  

therefore  be  subdivided  into  0.208,  0.212  and  0.218  seconds  intervals  respectively.  

It   follows   that   a   difference   greater   than   these   values   between   actual   and  

theoretical  time  in  a  suitable  rhythmic  figure  (for  example  between  notes  1  and  3,  

4  and  8  and  so  on)  indicates  an  error  in  the  performance  of  the  quintuple  unit.  

 

Bars  3  and  4  have  a  3:2   in  one  part   against   the  quintuplet   subdivision  of   the  8th  

notes   in   the   other   part.   These   bars   have   a   greater   degree   of   complexity   to   the  

others.   The   relevant   significant   notes   here   are   21-­‐25   and   26-­‐33.   For   bar   3,   only  

note   24   seems   to   be  much  more   inaccurately   placed   than   the   others.   For   bar   4  

most   of   the   notes   seem   to   be   about   0.2   seconds   out   from   their   theoretical  

placements  so  this  bar  is  comparatively  more  inaccurately  played.    

 

At  this  point  it  must  be  made  clear  that,  while  the  piece  contained  numerous  edits,  

this  portion  was  unedited.  

 

It  is  instructive  to  analyse  these  figures  using  yet  another  method.    It  can  be  argued  

that  it  is  not  so  much  the  actual  placement  of  the  notes  compared  to  an  inflexible  

measure   such   as   theoretical   time   that   is   of   aesthetic   significance,   but   the  

relationships  between  consecutive  notes.    

 

Page 43: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

136

Table  5.24  shows  the  relationships  between  the  notes  of  the  first  two  beats  of  bar  1  

based  on  the  numbers  given  in  Tables  5.21  and  5.22.  

 

Table   5.24   Dillon,   Shrouded   Mirrors   –   actual   and   theoretical   time   differences  

between  pairs  of  notes  in  the  first  two  beats  of  bar  1  

 

Note pairs Actual time difference (secs)

Theoretical time difference (secs)

Difference (minus means too long)

1-2 0.34 0.27 -0.07 2-3 0.27 0.16 -0.11 3-4 0.43 0.62 0.19 4-5 0.16 0.18 0.02 5-6 0.31 0.35 0.04 6-7 0.30 0.27 -0.03 7-8 0.13 0.05 -0.08  

And  Table  5.25  gives  the  same  information  for  bars  3-­‐6  based  on  Table  5.23  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 44: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

137

Table  5.25  Dillon,  Shrouded  Mirrors  –  actual  and  theoretical  time  differences  

between  pairs  of  notes  of  bars  3-­‐6  

 

 

Note pairs Actual time (secs) Theoretical time (secs)

Difference (minus means too long)

16-17 0.11 0.14 0.03 17-18 0.29 0.13 -0.16 18-19 0.33 0.28 -0.05 19-20 0.18 0.27 0.08 20-21 0.69 0.82 0.13 21-22 0.40 0.18 -0.22 22-23 0.55 0.72 0.17 23-24 0.28 0.51 0.23 24-25 0.37 0.04 -0.33 25-26 0.38 0.18 -0.20 26-27 0.28 0.22 -0.06 27-28 0.20 0.33 0.13 28-29 0.33 0.18 -0.15 29-30 0.10 0.14 0.04 30-31 0.54 0.58 0.04 31-32 0.34 0.46 0.12 32-33 0.08 0.09 0.01 33-34 0.64 0.40 -0.24 34-35 0.48 0.65 0.17 35-36 0.25 0.22 -0.03 36-37 0.39 0.55 0.16 37-38 0.27 0.27 0.00 38-39 0.53 0.49 -0.04 39-40 0.12 0.22 0.10 40-41 0.41 0.43 0.02 41-42 0.17 0.22 0.05 42-43 0.13 0.22 0.09 43-44 0.32 0.33 0.01 44-45 0.36 0.32 -0.04 45-46 0.23 0.22 -0.01 46-47 0.24 0.44 0.20 47-48 0.40 0.11 -0.29 48-49 0.57 0.50 0.07

 

Page 45: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

138

Combining  the  results  of  Tables  5.24  and  5.25  we  see  that,  of  the  39  note  pairs,  22  

were  between  0  and  0.1  second  adrift,  11  were  between  0.1  and  0.2  seconds  adrift,  

6  between  0.2  and  0.3  seconds  adrift  and  one  over  0.3  second.  

 

If   we   recall   that   the   first   analysis   showed   that,   for   bar   3,   all   but   note   24   of   the  

significant  notes  21-­‐25  were  relatively  accurately  played  and  for  bar  4  notes  26-­‐33  

were   mostly   about   0.2   seconds   out.     Table   5.25   shows,   on   the   face   of   it  

paradoxically,  that  the  note  relationships  in  bar  3  were  more  inaccurate  than  those  

in  bar  4.   It   can  of   course  be   the   case   that   the  placements   are   inaccurate  but   the  

relationships   are   accurate.   It   is   another   instance   of   how   problematic   the  

measurement  of  rhythmic  accuracy  can  be.  

 

 

5.10    Interpretation  of  the  analyses  -­‐  comparisons  and  performance  factors  

 

In   this   section   the   results   of   each   analysis   are   inspected   with   the   objective   of  

assessing  the  degree  of  rhythmic  accuracy  and  the  influence  other  musical  factors  

may  have  on   the  performance  of   the   rhythmic   figures.   In   some  cases   it  might  be  

thought   presumptuous   to   speculate   on   reasons   why   the   performer   has   not  

performed   with   greater   accuracy.   This   is   unfortunately   unavoidable   if   an  

interpretation  of  the  research  results  is  to  be  attempted.  

 

The   first   analysis   was   of   bars   13-­‐14   of     Ferneyhough’s   Kurze   Schatten   II.   The  

results   were   presented   in   Table   5.2.   The   following   graph   (Figure   5.1)   gives   an  

alternative  view  of  the  figures.    The  origin  of  the  co-­‐ordinate  axes  corresponds  to  

the  time  value  of  1  minute  as  the  excerpt  starts  at  1:19  secs.    

 

 

 

 

 

Page 46: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

139

Figure  5.1  Ferneyhough,  Kurze  Schatten  11  –  graphical  representation  of  Table  5.2  

 

 

   

This   graph,   produced   using   an   online   chart   tool14,   shows   the   inadequacies   of  

graphical   representation.   It   does   however   show   some   divergence   between   the  

theoretical  and  actual  times.    

 

It  was  stated  in  section  5.4  that  phrasing  is  an  issue  and  the  end  of  a  phrase  might  

be  interpreted  with  a  very  slight  rallentando.    This  could  easily  be  the  case  here  as  

there   is   a   substantial   pause  between   the   last   note  of   bar  14   and   the   first   played  

note  of  bar  15.  Another  highly  significant   factor   is   the  need  to  change  right  hand  

articulation   frequently   and   quickly   between   tasto  where   the   right   hand15   plucks  

the  strings  very  near  or  even  over  the  fingerboard,  that  is  towards  the  centre  of  the  

string,  and  pizzicato  where  the  palm  of  the  hand  is  resting  very  close  to,  or  actually  

Page 47: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

140

on,   the   bridge   of   the   guitar.   There   is   also   the   frequent   need   to   interpolate   the  

harmonics.  These  demand  a  very  sensitive  touch  by  a  left  hand  finger  in  exactly  the  

right   position   over   the   fret   to   avoid   getting   a   noise   instead   of   the   bell   like   tone  

intended.  In  addition  to  these  technical  requirements  there  are  also  rapid  changes  

of  dynamic  and  articulation  (staccato,  vibrato).  Again,  as  mentioned  in  section  5.4,  

the  passage  has  a  gestural  rather  than  motoric  quality  and  the  performer  may  not  

be  prioritising  rhythmic  precision.    

 

The   next   analysis   was   of   the   first   part   of   the   Bach   Bourrée.   A   degree   of  

interpretation  by  the  performer  is  expected  and  can  be  inferred  from  the  data.  The  

analysis  clearly  showed  the  phrasing.  For  example,  notes  6,  7  and  8  arrived  later  by  

a  significant  amount  compared  to  the  other  notes  in  the  phrase.  Similarly,  notes  26,  

27   and   28   indicate   the   expected   rallentando.     The   timing   of   note   6   signaled   the  

effect   of   the   trill   in   bar   2.   The   music   had   little   of   the   gestural   content   of   the  

previous  example  and,  as   the  bourrée   is  a  dance  movement,   it   is  understandable  

that   the   performer   would   prioritise   rhythm.   Figure   5.2   shows   the   relationships  

graphically.  Note   the  almost  complete   identity  of   the   theoretical  and  actual   lines.  

The  data  given  in  the  tables  clearly  gives  a  more  reliable  view.  The  ¼  note  duration  

was   calculated   to  be  about  0.44   seconds   for  much  of   the  extract   so  as   the  music  

moved  generally  in  ¼  and  8th  notes  the  deviation  from  theoretical  time  (apart  from  

the  phrase  endings  and  ornaments)  was  extremely  small.  

 

 

 

 

 

 

 

 

 

 

Page 48: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

141

Figure  5.2    Bach,  Bourrée  –  graphical  representation  of  Table  5.5    

   

The   next   analysis   was   of   bar   6   of   Stockhausen’s     Klavierstücke   1   (see   Example  

5.10).    This  was  a  very  short  excerpt  (3.01  seconds)  so  not  comparable  to  the  other  

examples   from   the   point   of   view   of   assessing   accuracy   over   a   period   of   several  

bars.   However,   it   did   provide   the   opportunity   to   see   how   the   performer   had  

performed   a   rhythmic   figure   comparable   to   some   of   Ferneyhough’s.   The   results  

showed  that  the  subdivision  5:4  was  accurate  but  that  the  subdivision  of  the  first  

group  7:8  was  uneven.  The  reason  for  the  quite  audible  gap  between  the  5th  and  6th  

notes  (the  two  chords  D  flat,  C  natural  –  E  natural,  D  sharp)  of  this  group  might  be  

the  sffz  marking  on  the  E  natural  and  the  attempt  to  mark  the  difference  between  

the  fff  of  the  first  5  notes  and  the  ff  on  the  D  sharp  of  the  6th  note  group.  

 

Page 49: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

142

The  substantial  difference  in  mm  between  bars  5  and  6  is  puzzling.  The  performer  

might  have  wanted  to  press  on  and  slightly  shorten  what  might  be  construed  as  a  

pause,  shaping  it  as  the  end  of  a  phrase.  It  is  not  possible  to  tell.    

 

The  next  analysis  was  of  Arditti’s  performance  of  Ferneyhough’s  INTERMEDIO  alla  

ciaccona.   This   passage   is   about   20   seconds   long   so   comparable   to   the   other  

examples.    Figure  5.3  gives  the  usual  information  in  graphical  form.  

 

Figure  5.3  Ferneyhough,  INTERMEDIO  alla  ciaccona  –  graphical  representation  of  

Table  5.7  

 

 This  music  is  gestural   in  a  similar  manner  to  the  Kurze  Schatten  II  example  given  

earlier   so   the   difficulty   in   detecting   or   calculating   a   pulse   that   conveys  

unequivocally   the   mm   chosen   makes   an   analysis   of   rhythmic   accuracy   quite  

tentative.   The   ambiguous   phrasing   possibilities   also   suggest   alternative  

Page 50: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

143

interpretations  of   the  data.  As  the  performance  of  several  of   the  significant  notes  

(in  particular,  notes  7,  8  and  9)  do  correlate  reasonably  well  with  their  theoretical  

time  counterparts,  one  can  only  speculate  as  to  why  the  others  do  not  –  by  factors  

of  0.5  of  a  second  and  longer.  The  timings  seem  to  suggest  that  Arditti  construed  

notes  1  and  2  as  one  phrase,  and  notes  3  and  4  as  another.  Slightly  elongating  the  

first   phrase  would  make  note  2   slightly   late   and  note  3   even   later   as   an   audible  

indication   of   the   start   of   the   phrase.   Note   4   coming   early   might   then   be   an  

indication   of   the   Arditti’s   need   to   resolve   the   sustained   notes.   It   seems   unlikely  

that  technical  issues,  such  as  the  need  to  prepare  for  the  microtones,  would  be  the  

reason  for  any  discrepancy  as  bars  4  and  5  are  relatively  accurately  played  despite  

all   but   one   of   the   chords   containing   a   microtone.     When   bar   5   was   analysed  

separately  an  alternative  reading  of  the  rhythmic  relationships  was  obtained  that  

showed   rather   greater   accuracy.   It   might   be   that,   as   this   bar   is   more   clearly  

subdivided   into   five  8th  note  groups,   the   subdivisions  were  more  clearly  defined.  

The   prevalence   of  microtones   throughout   the  whole   piece   does   not   support   the  

earlier  hypothesis  that  these  might  impose  technical  restraints.  

 

Several  bars   from  two  performances  of   the   first   four  bars  of  Ferneyhough’s  Bone  

Alphabet  were  then  analysed.  The  duration  of  this  passage  was  about  20  seconds  

and   thus   comparable   to   the   other   examples   when   an   average   was   taken   to  

calculate   the   mm.   The   music   here   seems   modular   with   each   bar   apparently  

showing  a  coherent  rhythmic  schema  unrelated  to  that  of  the  following  bar.  Both  

recordings   showed   a   high   degree   of   accuracy;   small,   but   potentially   significant,  

differences  are  not  well  represented  by  these  graphical  methods.      

 

 

 

 

 

 

Page 51: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

144

Figure   5.4   Ferneyhough,   Bone   Alphabet   (Schick).   Graphical   representation   of  

Table  5.11  

 Figure  5.5  Ferneyhough,  Bone  Alphabet  (Tomlinson).  Graphical  representation  of  

Table  5.12  

 

Page 52: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

145

Both   analyses   suggest   a   high   degree   of   rhythmic   precision   is   possible   thus  

supporting  the  high  modernist  view  –  that  rhythm  is  an  independent  parameter  –  

is  viable.  There  seems  to  be  no  reason  why  the  other  examples  could  not  be  played  

with  comparable  rhythmic  precision.    On  the  other  hand,  both  performers  dropped  

the   tempo   for   the  second  bar.  These  analyses  were  also  calculated  on  a  different  

mm  for  each  bar.    

 

It   really   isn’t   possible   for   a   non-­‐specialist   to   comment   on   what   performative  

factors  might  have  influenced  a  percussionist  but  one  can  speculate  that  the  rapid  

changes  of  dynamic  in  each  of  the  first  four  bars  and  the  necessity  to  range  over  4-­‐

6  different  percussion  instruments  might  be  a  factor.    

 

The   last   analysis   was   of   my   own   performance   of   the   first   six   bars   of   Dillon’s  

Shrouded  Mirrors.  My  learning  methods  will  be  given  later  (in  the  case  study)  but  

suffice   it   to  say  my  priority,  bearing  the  Tempo  giusto   in  mind,  was  to  maintain  a  

regular  pulse.  As  this  was  the  first   time  I  have   learnt  the  piece   it   is   likely  that,  as  

Redgate  found  with  Ausgangspunkte,  I  might  refine  my  interpretation  over  time.  I  

was   indeed   surprised   when   I   found   my   analysis   showed   my   tempo   was   rather  

slower   than   indicated.   This   is   despite   having   heard   the   other   two   recorded  

versions  and  using  a  metronome  in  the  early  stages  of  learning.  

 

 

 

 

 

 

 

 

 

 

 

Page 53: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

146

Figure  5.6  Dillon,  Shrouded  Mirrors.  Graphical  representation  of  Table  5.23  

 

 

 The  music  has  a  regular  8th  note  pulse  for  much  of  the  duration  so  this  excerpt  can  

be  compared  to  that  of  the  Bach  Bourrée.  The  several  analyses  showed  a  degree  of  

accuracy   comparable   to   the   other   performances   given.   There  were   no   egregious  

errors  for  which  explanations  or  speculations  need  to  be  contrived.  There  were  no  

instrumental  issues  to  influence  the  performance  of  the  rhythmic  figures,  the  tonal  

changes  from  sul  pont  to  sul  tasto  being  routine  for  guitarists.    It  is  not  possible  for  

me  to  comment  on  the  aesthetic  qualities  of  my  own  performance.  

 

 

5.11  Conclusions  

 

The  premise  of  this  chapter  is  that  it  must  be  possible  to  assess  the  outcome  of  the  

methods   performers   use   to   analyse,   and   thus   learn,   complex   rhythms   and   it   is  

worth   reiterating   that   the   examples   for   analysis   were   chosen   so   that   the  

Page 54: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

147

performer’s  strategy  for  dealing  with  rhythmic  figuration  could  be  determined.  It  is  

therefore   important   to   know   if   different  methods   produce   significantly   different  

results.   Some  methods   are   quite   rigorous   but   do   they   translate   to   performances  

that  are  more  accurate?  Is  there  an  aesthetic  dimension  to  rhythmic  accuracy?    It  

is,  however,  regrettable  that  few  performers  have  indicated  whether  they  use  any  

of  the  learning  methods  given  above.  

 

This  has  been  neither  a  representative  survey  of  new  complexity  pieces  nor  of  new  

complexity   composers.   Neither   is   it   a   comprehensive   survey   of   methods   of  

assessing  rhythmic  accuracy.  Each  example  shows  that  there  are  always  choices  to  

be  made  about  which  extract  is  to  be  analysed.  If  just  one  bar  or  even  one  beat  is  

extracted  the  corresponding  results  might  be  rather  different  to  those  obtained  by  

analysis  of  a  longer  section  and,  in  consequence,  averaging  mm  or  note  length.    It  is  

also   the   case   that   the   smaller   the   unit   that   is   analysed   the   smaller   the   note  

differences  are  likely  to  be.    

 

In   the   analysis   of   Shrouded   Mirrors   yet   another   method   was   introduced.   The  

measurement  of  note  relationships  showed  another  way  of  interpreting  the  figures  

obtained  from  the  waveform.  This  is  of  course  most  useful  if  most  of  the  notes  in  

the  passage  are  significant,  and  hence  adjacent.   It   is  not  clear  what  method  gives  

the   best   indication   of   rhythmic   accuracy,   as   the   interpretation   of   the   results   is  

slightly  different.    

 

If  the  relatively  minute  differences  are  ignored,  we  can  see  that  Schick,  Tomlinson,  

and   my   own   performances   display   similar   degrees   of   accuracy   to   the   control.  

Morris  and  Arditti  seem,  at  times,  rather  wayward.  The  comparisons  though  may  

not   be   fair;   as   stated   earlier,   the   first   movement   of   Kurze   Schatten   II   and   the  

opening  of  INTERMEDIO  alla  ciaccona  are  much  more  gestural  pieces  and  an  artist  

may   consider   the   separation   of   gestural   events   may   be   slightly   modified   for  

aesthetic   reasons   (see   (Kanno  2001)).   The   results   also   support   the   view   that   no  

Page 55: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

148

great  abuse  to  the  overall  integrity  of  the  work  is  inflicted  if  rhythmic  accuracy  is  

not  prioritised.  

 

On   the   other   hand,   these   examples   can   be   interpreted   as   showing   that   a   high  

degree  of  rhythmic  precision  is  possible  should  the  performer  be  prepared  to  take  

the  time  to  do  the  analysis  and  be  able  to  remember  the  results  over  perhaps  many  

years  and  performances.    A  weaker  conclusion  is  that   if   the  performer  prioritises  

rhythmic   precision   then   a   performance   that   at   least   adheres   to   the   accurate  

placement  of  the  beat,  will  produce  an  acceptable  result.  In  the  end,  the  assessment  

as   to  whether   or   not   the   overall   performance   is   of   sufficient   quality   to  meet   the  

aesthetic  criteria  the  composer  has  in  mind  is  imponderable.    

 

The  question  remains  as  to  what  constitutes  an  acceptable  degree  of  accuracy.  On  

the  face  of  it  a  divergence  from  a  strict  metronomic  pulse  by  a  matter  of  a  few  of  

hundredths   of   a   second   might   seem   quite   an   achievement   and   divergence   by  

almost   0.5   of   a   second  might   be   construed   as   quite   inaccurate.   Is   there  musical  

‘meaning’   in   such   rhythmic   complexity?     If   so   then   this   meaning   should   be  

appreciable   by   the   listener   –   especially   as   the   work   enters   the   repertoire   and  

becomes  familiar.    Given  that  the  score  is  (normally)  available  to  both  listener  and  

performer,  should  listeners  be  prepared  to  applaud  inaccurate  performances?  The  

listener   might   be   considered   to   be   colluding   with   the   performer   against   the  

composer  by  accepting  such  deviance  from  the  composer’s  intentions.    

 

Returning  to  Marsh’s  question  of  whether  or  not  new  complexity  is,  or  can  become,  

a   ‘coherent   musical   language’   the   first   question   to   ask   is   ‘what   is   a   coherent  

musical  language’?  The  performances  that  have  been  analysed  here  all  confirm  his  

belief  that  the  music  has  a  ‘spectacular  effect’.  On  the  other  hand  his  qualification  

that   ‘It   is   not   a  music   concerned  with   organic   continuity   or   evolution,   except   in  

theoretical   terms’   seems   questionable.   If   the   music   is   composed   with   some  

‘theoretical’  concern  for  organic  continuity  and  evolution  one  would  expect  that  to  

be  appreciable  in  performance,  at  least  to  some  degree.  The  composers  mentioned  

Page 56: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

149

previously   have,   however,   all   stressed   that   their   music   is   not   determined   by  

process.  The   composer   is   always  present  making   choices.   If   performances  of   the  

music   have   an   effect   they   must   be   more   than   vapid,   meretricious   displays   of  

virtuosity.  The  performances  would  not  be  deemed  successful  by  anybody  if  they  

presented  an  incoherent  musical  argument.  This  music  does  not  follow  traditional  

modes  of  musical  development  and  has  to  be  accepted  in  its  own  terms.    

 

 

 

 

 

 

 

Notes  

 

1.   Irvine  Arditti’s  performance  is  on  the  following  CDs:    

 

                  Irvine  Arditti:  Recital  for  Violin  Disques  Montaigne,  WM  334  789003  

                  Brian  Ferneyhough:  Nieuw  Ensemble,  Etcetera  KTC1070  

               

            (Arditti  1990  and  Nieuw  Ensemble  1989).  

 

              A   comparison   of   the   timings,   as   per   Table   5.7,   of   the   recordings   using  

Audacity   shows   identical   times   for   the   significant   notes   though   the  

waveforms   are   not   quite   the   same.   They  may   be   two   different   recordings.  

Marsh  also   compared  Arditti’s   recording   for   the  BBC’  Music   in  Our  Time   in  

1993  but  found  no  significant  differences  in  the  timings  (Marsh  1994,  86).    

 

2            This  is  not  strictly  true  as  a  faster  piece  might  contain  little  detail  and  a  very  

slow   piece   might   have   a   great   density   of   detail   but   the   point   is   that   the  

Page 57: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

150

examples  must  be  chosen  so  that  measurement  is  possible  and  comparisons  

valid.  

 

3.       Morris’s  first  recording  is  on  (Elision  1998)  

 

4.       The  numerical  data  (primarily  timings)  in  this  chapter  is  presented  initially  in  

the  form  of  tables.  The  significance  of  the  data  is  explained  immediately  after  

each  table  and  little  note  has  to  be  taken  of  the  actual  numbers.      As  the  whole  

point  of  analysing  these  timings  is  to  obtain  information  about  accuracy  it  is  

essential   to   give   the   raw   data.     Alternative  methods   of  presenting   this   data  

have  been  considered  and  rejected.  Graphical  representation  can  actually  be  

misleading;   the   choice   of   scale   can   make   the   information   ‘fit’   alternative  

interpretations.   This   is   explained   in   section   5.3.   Simple   graphical  

representations  of   the  data  do,   however,   appear   later   in   section  5.8,  where  

the  data  is  interpreted  and  comparisons  made.  

 

5.       It   is   very  easy   to  make  errors   in   such  calculations.  The  arithmetic  here  has  

been  checked  several  times.    

 

6.       Gordon  Downie:  piano  piece  2,  self-­‐published.  

 

7.       For  example:  ‘dialogue  and  lip  movements  in  a  film  can  be  50-­‐60  milliseconds  

out  of  sync  before  you  notice  it’  (Brooks  2012).  

 

8.       CD.   John  Williams:  Guitar  Recital,  London  452  173-­‐2  but  originally  released  

on  LP  Delysé  ECB3149.    

 

9.     The  edition  used  is:  J.S.  Bach:  Cello  Suite  No.  3  arranged  for  guitar  by  John  W.  

Duarte,  Schott  GA  214.  

 

Page 58: 8. Chapter 5epubs.surrey.ac.uk/807043/8/8. Chapter 5 .pdf · 96 Once!information!about!such!rhythmic!accuracy!has!been!determined,!thenshould! there!be!perceived!inaccuracies,it!ispossibletospeculate

151

10.       Bar   6   is   3.01   seconds   long.   Divided   into   5   8th   notes,   each   8th   note   =   0.602  

seconds.  Therefore  the  first  group  of  two  8th  notes  should  take  1.204  seconds  

and  the  second  group  1.806  seconds.  

 

11.      Brian  Ferneyhough:  INTERMEDIO  alla  ciaccona,  Edition  Peters  No.  7346.  See  

note  1  for  the  recording  details.  

 

12.     For   each   triplet   figure   in   turn:   Bar   20   is   in   4/8   with   a   duration   of   4.14  

seconds  which  implies  the  8th  note  =  1.035  seconds.  Bar  21  is   in  5/8  with  a  

duration  of  5.14  seconds  implying  8th  note  =  1.028  seconds.  

 

13.     1  should  last  one  8th  note  so  =  1.035.  

                  2  should  last  4/7ths  of  (2  *  1.035)  =  1.18      

                  4  should  last  4/7ths  of  6/7ths  of  5/6ths  of  (3  *  1.028)  =  1.26    

                  5  should  last  4/7ths  of  2/3rds  of  (2  *  1.028)  =  0.78  

 

14.          www.onlinecharttool.com  

 

15.        We  are  assuming  the  performer   is  right  handed  and  therefore  plucking  the  

strings  with  his  right  hand.